聚四氟乙烯的六大表面改性技术
- 格式:doc
- 大小:21.17 KB
- 文档页数:4
聚四氟乙烯PTFE的改性为了改善PTFE存在的缺陷,可以通过增强、填充、复配和共混等多种手段对PTFE进行改性,以弥补自身缺陷,从而使开发出来的复合材料广泛适应于机械、电子电气、航空航天、汽车等行业的零部件的制备,改性方法主要有表面改性、填充改性和共混改性。
l 表面改性由于PTFE极低的表面活性和不粘性限制了它与其他复合材料的复合,因此必须对PTFE 材料进行一定的表面改性,以提高其表面活性。
常用技术有表面活化技术,可以采用高能射线的辐射使其表面脱氟,在一定装置和条件下与其他材料氟化接技;用一些惰性气体的低温等离子处理PTFE材料,发生碳—氟或碳—碳键的断裂,生成大量自由基以增加PTFE的表面自由能,改善其润湿性和粘接性;将PTFE浸人熔融的醋酸钾中,在适宜温度下处理形成具有一定活性的活化层;PTFE在一定配比的氢氧化钠、二丙烯基三聚氰胺混合液加热处理可以提高其表面活性;PTFE经过一定强度和时间的电晕处理,可以形成可胶接的活化层。
化学腐蚀改性,将PTFE经过一定化学试剂处理可以提高其表面活性,这些化学试剂可以是金属钠的氨溶液、萘钠四氢呋喃溶液、碱金属汞齐、五羰基铁溶液等。
表面沉积改性,将PTFE浸渍在某些金属氢氧化物的胶体溶液中,使得胶体粒子沉积在PTFE表面。
从而增大其湿润性,改善其表面活性,而易于与其他材料复合。
上述表面改性方法主要适应于PTFE 薄膜,通常PTFE薄膜进行适当处理后,可使其与其他材料很好粘接复合,从而广泛应用于化工防腐村里、密封制品及润滑装置的设计与制造中,其主导思想是引人极性基团,增加界面结合力。
2 填充改性在PTFE中加人填充剂,从而改善和克服PTFE的缺陷,目前填充PTFE制品是产量最大的PTFE树脂产品,值得注意的是在国外PTFE填充技术都是由PTFE树脂生产厂家完成,而我国PTFE填充技术都是由加工生产企业来完成。
通过在PTFE树脂填充无机类、金属类和有机高聚物类等不同填料来改善PTFE的耐压性、耐磨性和冷却性,这些填料要求能经受住PTFE的烧结温度;不与PTFE反应;另外具有一定粒度并能改善PTFE的一些物化性能。
聚四氟乙烯的改性及应用聚四氟乙烯,又称特氟龙,是一种具有优异性能的工程材料。
其具有高耐腐蚀、高绝缘、低摩擦系数等特性,在许多领域都有广泛的应用。
然而,聚四氟乙烯也存在一些局限性,如加工难度大、耐热性差等,因此需要通过改性等方法进行优化。
本文将重点探讨聚四氟乙烯的改性方法、应用领域以及未来发展趋势。
改性聚四氟乙烯的方法主要包括:化学改性、填充改性、共混改性、表面改性等。
化学改性是通过改变聚四氟乙烯的分子结构来实现的,常见的方法包括:磺化、氧化、氢化等。
这些方法可以增加聚四氟乙烯的极性,提高其溶解性和粘结性能。
然而,化学改性往往会引起材料性能的损失,同时工艺难度较大。
填充改性是在聚四氟乙烯中加入一些无机或有机填料,以改善其性能。
常见的填料有:玻璃纤维、碳纤维、无机盐等。
这些填料可以显著提高聚四氟乙烯的耐热性、强度和耐磨性。
然而,填充改性会增大材料的密度,降低其绝缘性能。
共混改性是将聚四氟乙烯与其他塑料或橡胶共混,以获得综合性能。
常见的共混材料有:聚酰胺、聚碳酸酯、丁腈橡胶等。
这些共混材料可以改善聚四氟乙烯的加工性能、耐热性和韧性。
然而,共混改性可能会导致材料的不相容性和界面结合力的减弱。
表面改性是通过改变聚四氟乙烯的表面性质来实现的,常见的方法包括:等离子处理、射线处理、化学浸渍等。
这些方法可以增加聚四氟乙烯表面的粗糙度、极性和粘结性能。
表面改性对材料性能的影响较小,但会影响表面的光滑度和均匀性。
聚四氟乙烯被广泛应用于以下领域:管道和阀门:由于聚四氟乙烯具有出色的耐腐蚀和低摩擦系数,常用于制造管道和阀门。
特别是在强酸强碱等腐蚀性环境中,聚四氟乙烯管道和阀门可以显著提高设备的寿命和安全性。
防腐涂层:聚四氟乙烯涂层是一种常见的防腐材料,可用于各类金属和塑料表面。
它具有优异的耐腐蚀性和高绝缘性,可以长期有效保护基材不受腐蚀和电化学损伤。
高压电器:聚四氟乙烯在高压电器领域也有广泛应用,如高压绝缘子、高压电缆等。
聚四氟乙烯的改性及应用研究摘要:聚四氟乙烯为高分子化合物,化学性能稳定,耐腐蚀效果强,密封性好,且有较高的润滑不粘性,同时在电绝缘性和抗老化能力方面表现优异,也正因如此聚四氟乙烯在工程塑料领域中被广泛应用。
本文深入探索与分析聚四氟乙烯的改性及应用,希望能够对当前聚四氟乙烯的应用领域拓展提供必要的参考。
关键词:聚四氟乙烯;改性;应用引言:聚四氟乙烯(PTFE)于1936年发明,随后被投入到工业化生产之中,聚四氟乙烯性质优良,被广泛应用于航空、化工、电子、机械、医药等工业领域中,同时也逐渐深入到人民群众的日常生活中。
为了进一步提高聚四氟乙烯复合改性技术的研究水平,本文针对聚四氟乙烯的改性及应用进行深入的研究与分析,希望能够有效推动聚四氟乙烯改性技术的发展和进步。
1 聚四氟乙烯改性分析1.1 表面改性分析由于聚四氟乙烯的分子链结构呈现对称性,同时也体现出电中性,使得材料的表面张力较低,仅仅为19mN/m左右,表面低张力也限制了聚四氟乙烯与其它材料之间的复合性应用,特别是聚四氟乙烯薄膜与其它骨架材料的粘结效果相对较差,因此需要对基于四氟乙烯材料进行表面改性,以进一步焕发材料表面活性。
在实施表面改性时可以提前做好预处理,让聚四氟乙烯材料表面进行去氟处理之后接枝聚合物,以进一步提高表面的粘接性。
此外也可以在聚四氟乙烯材料表面包裹张力较高、粘接性更好的聚合物,让聚四氟乙烯材料与其他材料之间的粘接效果更强。
在实施表面改性技术时,可以综合应用钠-萘络合物化学改性、高温熔融改性技术等方法,此种方法最基本的思路在于对聚四氟乙烯材料引入极性基团,以进一步增加材料的结合力或单纯消除聚四氟乙烯相对年轻向角落的界面层已形成,粘接效果更强的表面层,在不同类型的表面改性技术中钠-萘络合物化合物改性方法,操作水平和操作工艺更加简单,投入成本较低,但是改性效果更好,也正如此,该技术成为了对聚四氟乙烯材料进行改性的经典方法之一。
除了此类化学方法以外,也可以应用物理化处理方法对聚四氟乙烯材料表面进行改性,例如可以应用离子束注入技术等对聚四氟乙烯表面进行改性,随后开展接枝处理。
综述CHINA SYNTHETIC RESIN AND PLASTICS合 成 树 脂 及 塑 料 , 2022, 39(4): 70随着现代科技的飞速发展,对高性能材料的需求日益增加,聚四氟乙烯(PTFE)作为一种性能优良的工程塑料,在许多领域具有广泛的应用[1-2]。
PTFE是由单体四氟乙烯聚合而成[3],分子结构为一种螺旋构象,即C—C骨架全部被周围的F原子包裹。
同时由于C—F的键能很高不易断裂,使PTFE可以抵抗强酸、强碱、油脂、纯氧化剂和有机溶剂等的腐蚀,但缺点是强度较低,不利于成型加工,机械磨损率高,特别是在受外力作用下会产生严重的蠕变现象,极大地限制了PTFE 的应用。
因此对PTFE的改性显得尤为重要[2]。
目前,PTFE的改性方法主要有表面改性、填充改性和共混改性。
本文详细阐述了PTFE改性的几种方法,并研究了改性方法对PTFE复合材料力学性能、摩擦性能和介电性能的影响。
DOI:10.19825/j.issn.1002-1396.2022.04.15 *1 PTFE的改性1.1 表面改性由于PTFE表面结合能较小,不易与其他化合物和小分子反应,同时其他填料也很难附着在PTFE表面。
采用物理化学法对PTFE表面进行处理,可以在PTFE表面产生反应位点同时提高表面的粗糙程度,改善PTFE表面的疏水性、亲核性和防污性能。
常见的处理方法主要有等离子体处理法、电子辐照处理法、偶联剂处理法[4]。
聚四氟乙烯改性现状及研究进展左 程1,肖 伟2*(1. 江苏扬建集团有限公司 扬州华正建筑工程质量检测有限公司,江苏 扬州 202105;2. 上海工程技术大学 数理与统计学院,上海 201620)摘要:综述了近几年国内外聚四氟乙烯(PTFE)改性的研究进展,并总结了表面改性、填充改性和共混改性的优缺点,着重分析了填料对PTFE力学性能、摩擦性能和介电性能的影响。
最后对PTFE改性工艺的发展趋势和前景进行了展望。
表⾯改性聚四氟⼄烯(PTFE)1. PTFE性能的结构分析:在PTFE中,氟原⼦取代聚⼄烯中的氢原⼦。
由于氟原⼦的半径(0.064nm)⼤于氢原⼦的半径(0.028nm),因此碳 - 碳链由聚⼄烯的平坦,完全延伸的曲折构象,该构象逐渐逆转为PTFE的螺旋构象。
螺旋构象位于PTFE的碳链⾻架之外,易受化学侵蚀,形成紧密的完全“氟化”保护层,因此PTFE⾻架不受任何外部试剂的影响,使PTFE与其他材料⽆法匹敌。
耐溶剂性,化学稳定性和低内聚能密度; 同时,碳 - 氟键极强,其键能⾼达460.2kJ / mol,远远超过碳 - 氢键(410 kJ / mol)和碳 - 碳键(372 kJ / mol)⾼,使PTFE具有更好的热稳定性和化学惰性。
此外,氟原⼦的电负性⾮常⼤,四氟⼄烯单体具有完美的对称性,因此PTFE分⼦与表⾯能之间的吸引⼒低,因此PTFE具有⾮常低的表⾯摩擦系数和良好的性能。
温度低。
可扩展性; 同时,PTFE的抗蠕变性差,容易发⽣冷流。
PTFE的⾮⽀化对称主链结构也使其⾼度结晶,因此加⼯困难。
2.聚四氟⼄烯表⾯改性⽅法:萘溶液置换法))还原剂法((钠 - 萘溶液置换法2.1还原剂法在各种已知的改性⽅法中,钠 - 萘溶液置换⽅法是有效且⼴泛使⽤的。
原理如下:Na将最外层的电⼦转移到萘的空轨道,形成阴离⼦基团; 然后与Na形成离⼦对,释放出⼤量的共振能,并形成深绿⾊⾦属有机化合物的混合溶液。
这些化合物具有⾼反应性。
当与PTFE接触时,钠可以破坏CF键,撕掉PTFE表⾯上的⼀些氟原⼦,在表⾯上留下碳化层和-CH,-CO,C = C,-COOH和其他基团。
极地组; 碳化层深度约为0.05~1µm,PTFE表⾯张⼒为18.5×10-3N /m,表⾯能量⾼。
除了钠 - 萘四氢呋喃蚀刻溶液之外,诸如钠 - 联苯⼆恶烷和钠 - 萘⼆甲醇⼆甲醚的处理液也具有良好的效果。
2.2⾼温熔化法该⽅法的优点是与其他⽅法相⽐,耐候性和耐湿热性显着,适合长期户外使⽤; 缺点是PTFE在⾼温烧结过程中会释放出有毒物质,并且PTFE膜的形状难以保持。
PTFE改性技术及其性能优化研究进展1. 内容综述随着材料科学的日新月异,聚四氟乙烯(PTFE)作为一种卓越的工程塑料,已经在众多领域得到了广泛的应用。
PTFE本身存在一些固有的性能限制,如较低的机械强度、耐磨性以及耐化学腐蚀性等,这在一定程度上限制了其应用范围。
为了克服这些挑战,研究者们对PTFE进行了广泛的改性研究,旨在提升其综合性能,从而拓宽其在各个领域的应用潜力。
PTFE改性技术主要涵盖了填充改性、表面改性以及共混改性等多种方法。
填充改性是通过向PTFE中引入其他高硬度、高强度的材料颗粒,如碳纤维、玻璃纤维等,以达到增强其力学性能的目的。
表面改性则主要通过在大分子链上引入极性基团或纳米颗粒,改善PTFE 与其它材料的界面相容性,进而提高其粘接性能和耐腐蚀性。
共混改性则是将PTFE与其他聚合物进行混合,通过控制两者的相容性和分散性,制备出具有优异性能的新型复合材料。
在众多改性技术中,纳米技术的应用为PTFE的性能优化带来了革命性的突破。
纳米材料具有独特的物理化学性质,如高比表面积、良好的尺寸效应和优异的力学性能等,这些特性使得纳米粒子在PTFE改性中能够发挥重要作用。
通过在PTFE中加入纳米SiO2颗粒,不仅可以显著提高其耐磨性和抗划伤性能,还能增强其耐高温和耐腐蚀性能。
纳米填料还可以改善PTFE的热稳定性,提高其加工流动性,并降低其成本。
除了纳米技术外,超临界流体技术也在PTFE改性中发挥着越来越重要的作用。
超临界流体具有接近液体和气体的双重特性,如良好的溶解能力和扩散性能,这使得它成为一种理想的溶剂和改性剂。
通过将超临界流体应用于PTFE的改性过程,可以在较低的温度和压力条件下实现对PTFE的高效改性,同时提高其环保性和可持续性。
PTFE改性技术及其性能优化研究已经取得了显著的进展。
通过采用不同的改性方法和纳米材料及超临界流体的应用,不仅可以显著提高PTFE的力学性能、耐磨性、耐腐蚀性以及加工流动性等关键指标,还能拓展其在航空航天、汽车制造、建筑装饰等高科技领域的应用空间。
聚四氟乙烯的六大表面改性技术PTFE具有化学惰性和低表面能,难以和其他材料粘接,因此必须对PTFE材料进行一定的表面改性,以提高其表面活性。
PTFE常用的表面改性技术有:表面改性技术一:钠 - 萘溶液置换法钠 - 萘溶液置换法是目前已知中效果较好的一种改性方法。
原理是:Na将最外层电子转移到萘的空轨道上,形成阴离子自由基;再与Na+形成离子对,释放出大量的共振能,生成了深绿色金属有机化合物的混合溶液。
这些化合物混合溶液活性很高,与 PTFE发生化学反应,破坏 C - F 键,扯掉表面上的部分氟原子,在表面留下了碳化层和引入某些如-CO、C=C、-CH、-COOH 等极性基团。
这些极性基团使得聚合物表面能增大、接触角变小、浸润性提高,从而由难粘变为可粘。
此法也存在一些明显缺点。
比如:被粘物表面变暗或变黑、在高温环境下表面电阻降低、长期暴露在光照下胶接性能将大大下降等。
对此,bellas等利用重氮盐接枝改性PTFE 的表面性能。
处理方法首先将PTFE表面用砂纸打磨、丙酮清洗 5min,放置于80℃的炉子烘干,再用Pt电极插入PTFE表面(10μm),局部还原试样表面,使之碳化。
然后,在N₂或Ar₂氛围下,将试样置于硝基苯和溴代苯各半的重氮盐的四氟硼酸盐电介质中反应5 ~ 10min, 接着在甲醇溶液中磁性搅拌12h。
循环伏安法和荧光 X - 射线实验表明,硝基苯和溴代苯共价交联接枝在 PTFE的表面,只有磨损才能使之剥离。
此改性方法对样品的表面处理范围更具选择性,这是传统的钠 - 萘法不可比拟的,更具有研究意义。
表面改性技术二:等离子处理技术等离子处理技术是将试样置于特定的离子处理装置里面,通过离子轰击或注入聚合物的表面,使其发生碳 -氟键和碳 -碳键的断裂,生成大量自由基,同时也可引入活性基团,增加 PTFE 的表面自由能,改善其润湿性和粘接性的一种改性方法。
目前已报道的等离子气体有:CF4、C2F6、CF3H 、CF3Cl、CF3Br、NH3、N2、NO、O2、H2O、CO2、SO2、H2/N2、CF4/O2、O2/He、空气、He、Ar、Kr、Ne等。
PTFE聚四氟乙烯-氟塑料表面处理方法一、PTFE表面改性处理方法:低温等离子体处理法低温等离子体是指低气压放电(辉光、电晕、高频、微波)产生的电离气体。
在电场作用下,气体中的自由电子从电场中获得能量,成为高能电子,这些高能量电子与气体中的原子、分子碰撞,如果电子的能量大于分子或原子的激发能,就能产生激发分子和激发原子、自由基、离子和具有不同能量的射线。
低温等离子体中的活性粒子具有的能量一般接近或超过碳―碳或其他含碳键的键能,因而能与导入系统的气体或固体表面发生化学或物理的相互作用。
如果采用反应型的氧等离子体,则能与高分子表面发生化学反应而引入大量的含氧基团,使其表面分子链上产生极性,表面张力明显提高,改变其表面活性,即使是采用非反应型的Ar等离子体,也能通过表面的交联和蚀刻作用引起的表面物理变化而明显地改善聚合物表面的接触角和表面能。
湘樟塑化对低温等离子体处理氟塑料进行了长期的研究工作,取得了很好的效果,处理后的氟塑料接触角平均降低20º~30º,粘接剪切强度提高2~10倍。
二、PTFE表面无须特殊处理的粘接方法聚四氟乙烯(PTFE)-表面无须特殊处理的粘接方法:对于不特别重要的PTFE工件的粘接多采用上海市有机氟研究所生产的FS-203A有机硅压敏粘合剂进行粘接。
对于不特别重要的PTFE工件的粘接多采用上海市有机氟研究所生产的FS-203A有机硅压敏粘合剂进行粘接。
FS-203A胶为水基型、单组分溶剂胶,耐水性好,耐高、低温,粘接力强,对PTFE与PTFE的粘接,其剪切强度可高达6~12kg/cm2,可用于各种不经表面处理的氟塑料自身粘接及与其他材料的粘接。
粘接工艺为:1.先将PTFE与被粘物粘接表面用丙酮或乙醇溶液擦洗干净,自然晾干.2.将FS-203A在两粘接表面均匀刷涂2遍,每次晾10~15min,以胶面不粘手为宜.3.在胶液晾干后,于100~150℃的烘箱中烘15min,取出趁热粘合装配,室温固化24h;(4)做高、低温试验(550℃、4h,-40℃、4h)及潮湿试验(湿度90%、48h)后,粘接处无脱落、松动现象为合格.三、PTFE表面改性处理方法:新型粘接剂用于PTFE粘接的粘接剂主要有两类:无氟粘接剂和含氟粘接剂。
聚四氟乙烯表面改性及粘接聚四氟乙烯(PTFE)具有宽广的使用温度,优异的化学稳定性、电绝缘性、自润滑性、耐老化性等性能,已广泛应用于航空航天、石油化工、电子电器等诸多领域。
但由于聚四氟乙烯材料表面润湿性差,不易粘接,从而限制了其在某些特殊场合的使用。
1 PTFE难粘的原因关于聚四氟乙烯难粘性的原因,粘接理论能够从不同角度给出解释:①吸附理论认为,胶粘剂粘附是来自界面上分子的作用力,包括偶极力、诱导力和色散力,聚四氟乙烯是非极性高分子,其表面只能形成较弱的色散力,因而粘附性能较差。
②扩散理论认为,由于PTFE的结晶度大,化学稳定性好,它的溶胀和溶解都比非结晶高分子困难,当与溶剂型胶粘剂粘接时,很难发生高聚物分子链的扩散和相互缠结,不能形成很强的粘附力。
③表面自由能理论认为,由于PTFE的表面能特别低,水对其接触角为114°,是所有材料中最大的。
对粘接来说,润湿接触是粘接的首要条件,接触角越大,润湿能力就差,因而胶粘剂不能很好地粘附在PTFE上。
④配位键理论认为,聚四氟乙烯的大分子只具有单纯的给电子能力,对那些大多数也只具有单纯的给电子能力而接受电子能力很弱的粘合剂具有很强的排斥性,难以同这些物质在界面上生成配位键而产生有效的粘附作用。
为了使PTFE更容易粘接从而获得更广泛的应用,必须对它的表面进行改性,以提高其粘合性能,另一方面,应致力于合成新型胶粘剂。
2 表面改性方法2.1 化学改性法PTFE经过化学品处理可以改善其表面活性,这些化学品包括钠-萘四氢呋喃溶液、金属钠的氨溶液、碱金属汞齐液等。
化学法处理主要是通过腐蚀液与PTFE发生反应,破坏表面C-F键,使其脱去表面上的部分氟原子,在PTFE表面形成了碳化层和一些极性基团。
红外光谱表明,改性后的PTFE表面引入了羰基、碳碳双键及羧基等极性基团,使表面能增大,接触角变小,湿润性提高,改善了PTFE表面的粘接性能。
钠-萘络合物化学改性是目前表面改性方法中处理效果较好的。
材料表⾯改性技术聚四氟⼄烯等离⼦体表⾯改性1、前⾔1938 年美国杜邦公司的研究⼈员Roy Plunkett 在尝试制作新的氟化合物制冷剂时意外发现了聚四氟⼄烯[1]。
聚四氟⼄烯(PTFE)是⼀种具有优异综合性能的特种⼯程塑料,有“塑料王”的美誉。
聚四氟⼄烯(PTFE)分⼦结构中,以碳原⼦为⾻架,周围被氟原⼦覆盖。
由于C-F 键的键能很⼤,⽽且分⼦结构⼜完全对称,这使其具有极好的耐热、耐寒性(使⽤温度-250~260℃);极好的耐化学腐蚀性,不溶解或溶胀于任何已知溶剂中,即使在⾼温下王⽔对其也不能起作⽤;优异的电绝缘性;突出的不粘性,⼏乎所有的黏性物质都不能黏附在其表⾯;独特的⾃润滑性及低摩擦系数等⼀系列优异的综合性能[2]。
聚四氟⼄烯因为其独特的性能在军事领域得到重要应⽤,然后⼜逐渐拓展到⽣产和⽣活领域。
⽬前已经在航空航天、⽯油化⼯、建筑、轻纺、机械、电⼦、环保、医学等领域得到普遍应⽤,并⽇益深⼊到⼈们的⽇常⽣活中[3]。
虽然聚四氟⼄烯有诸多的优点,但是由于该材料表⾯能很低(临界表⾯张⼒1.8 mN/m),表⾯疏⽔性极⾼(与⽔的接触⾓超过100°)。
这种极低的表⾯活性和不粘性严重影响了PTFE在粘接、印染、⽣物相容等⽅⾯的应⽤,特别是限制了聚四氟⼄烯薄膜与其他材料的复合[4]。
为了提⾼聚四氟⼄烯的表⾯润湿性能,使它可与其他材料粘接、复合,必须对PTFE进⾏表⾯亲⽔改性。
⽬前,对聚四氟⼄烯改性的⽅法主要有聚四氟⼄烯、等离⼦法、辐射接枝法、激光处理法、离⼦束注⼊法、⾼温熔融法、电解还原法、⼒化学处理法等,本⽂主要介绍等离⼦法改性技术。
2、聚四氟⼄烯表⾯能低的原因聚四氟⼄烯表⾯能低主要有以下⼏⽅⾯的原因:(1)碳氟键稳定性好,其键能可达485.3kJ/mol;(2)分⼦结构⾼度对称,结晶度⾼;(3)不含活性基团,导致材料表⾯疏⽔性极⾼;(4)PTFE的溶度参数很⼩,与其他物质的黏附性也很⼩。
聚四氟乙烯的六大表面改性技术
PTFE具有化学惰性和低表面能,难以和其他材料粘接,因此必须对PTFE材料进行一定的表面改性,以提高其表面活性。
PTFE常用的表面改性技术有:
表面改性技术一:
钠 - 萘溶液置换法
钠 - 萘溶液置换法是目前已知中效果较好的一种改性方法。
原理是:Na将最外层电子转移到萘的空轨道上,形成阴离子自由基;再与Na+形成离子对,释放出大量的共振能,生成了深绿色金属有机化合物的混合溶液。
这些化合物混合溶液活性很高,与 PTFE发生化学反应,破坏 C - F 键,扯掉表面上的部分氟原子,在表面留下了碳化层和引入某些如-CO、C=C、-CH、-COOH 等极性基团。
这些极性基团使得聚合物表面能增大、接触角变小、浸润性提高,从而由难粘变为可粘。
此法也存在一些明显缺点。
比如:被粘物表面变暗或变黑、在高温环境下表面电阻降低、长期暴露在光照下胶接性能将大大下降等。
对此,bellas等利用重氮盐接枝改性PTFE 的表面性能。
处理方法
首先将PTFE表面用砂纸打磨、丙酮清洗 5min,放置于80℃的炉子烘干,再用Pt电极插入PTFE表面(10μm),局部还原试样表面,使之碳化。
然后,在N₂或Ar₂氛围下,将试样置于硝基苯和溴代苯各半的重氮盐的四氟硼酸盐电介质中反应5 ~ 10min, 接着在甲醇溶液中磁性搅拌12h。
循环伏安法和荧光 X - 射线实验表明,硝基苯和溴代苯共价交联接枝在 PTFE的表面,只有磨损才能使之剥离。
此改性方法对样品的表面处理范围更具选择性,这是传统的钠 - 萘法不可比拟的,更具有研究意义。
表面改性技术二:
等离子处理技术
等离子处理技术是将试样置于特定的离子处理装置里面,通过离子轰击或注入聚合物的表面,使其发生碳 -氟键和碳 -碳键的断裂,生成大量自由基,同时也可引入活性基团,增加 PTFE 的表面自由能,改善其润湿性和粘接性的一种改性方法。
目前已报道的等离子气体有:CF4、C2F6、CF3H 、CF3Cl、CF3Br、NH3、N2、NO、O2、H2O、CO2、SO2、H2/N2、CF4/O2、O2/He、空气、He、Ar、Kr、Ne等。
J.X.Chena等在6.7×10000Pa下,利用He等离子体产生的真空紫外辐射源对PTFE进行表面光刻蚀处理,表面氧原子含量增加,氟原子含量降低,从而使水接触角从110°下降到43°(见表1)。
Zhang E C等进行了在高电场/气体密度比条件下PTFE与铝金属间粘附的实验,其结果为:高电场/气体密度比条件下改性得到的PTFE与Al之间的粘附力是常规条件下的7倍。
目前,国外利用最新等离子装置Plasmodul和Planartron进行PTFE的表面处理,已取得了卓越成效。
然而,等离子处理的聚合物表面耐久性不稳定。
因此,等离子体处理后的表面应用,如涂敷和粘接等应尽快进行。
此外,也由于表面结构的重组,不可能长时间地保持处理后表面的亲水性能不下降。
表面改性技术三:
准分子激光处理
准分子激光处理相对于钠 - 萘金属溶液和射频等离子体处理具有较好的选择性和耐久性。
因此,最近几年来成为众多学者研究的热点。
准分子激光处理又有以下三种方法:
一种是采用 ArF、KrF或 XeCl等激光器对处于某气态物质氛围中的PTFE进行照射,气态物质(N2H4)发生光分解,产生的活性原子或基团(H,NH2,N2H3和NH)攻击 PTFE的表面而使其发生脱氟反应,从而使 PTFE表面的氟原子含量降低,表面能和亲水性增加。
另一种是 ArF激光器引发PTFE及放置在PTFE表面的液体试剂发生光反应,引入活性官能团而达到PTFE表面化学改性的目的。
第三种方法是在激元灯的直接照射下进行,不需任何介质且反应器不用抽真空。
开始时接触角随着脉冲能量增加而降低,但当激光脉冲达到某一值时接触角变化已经不明显(图2)。
这说明对于各种样品都有相对应的脉冲能量使之获得最佳表面处理效果,这需要通过实验一一确定。
B.Hoppp等对比了ArF激光器和Xe激元灯对PTFE的表面改性,结果表明激元灯比激光器有更多优势:
(1)激元灯只需要 Xe,是“清洁”的处理过程;
(2)适用大面积试样处理,有更多的发展优势。
表面改性技术四:
力化学粘接法
力化学粘接,即对涂有胶粘剂的聚合物表面进行摩擦,通过力化学作用,使聚合物表面产生力降解而形成大分子游离基,再与胶粘剂分子形成一定数量的共价键,产生牢固的结合界面,从而大大提高了接头的粘接强度,这已为电子自旋共振谱(ESR)和内反射红外光谱(ATRIR)研究所证实。
力化学粘接工程流程:首先将胶粘剂涂在已脱脂的聚合物表面,用砂纸或直接往胶中混入适量磨料粒子对被粘接表面进行研磨使其发生力化学作用,然后再按固体化工艺进行固化。
力化学处理设备采用普通的固体表面机械加工设备即可,如抛光机、刷子、磁性研磨机等。
因此力化学粘接法具有成本低、简便易行、胶粘强度高和耐久性好等特点。
力化学处理的工艺参数(压力、转速和时间等)对于不同的胶粘剂 - 粘物体系是不尽相同的,需要一一通过实验来优化确定。
一般研磨处理压力为0.2~0.6MPa,转速为0.6~1.0m/s,时间为10~30s。
表面改性技术五:
激光辐射法
将PTFE置于一些可聚合的单体如苯乙烯、反丁烯二酸、甲基丙烯酸酯等中,用Co - 60辐射,使单体在PTFE的表面发生化学接枝聚合,在表面形成一层易于粘接的接枝聚合物,且接枝后表面变粗糙,粘接表面积增大,粘接强度提高。
这种方法的优点是操作简单、处理时间短、速度快,但改性后的表面耐久性差,且辐射源对人体伤害较大。
表面改性技术六:
高温熔融法
此法的基本原理是:在高温下,使PTFE表面的结晶形态发生变化,嵌入一些表面能高、易粘合的物质如SiO2、Al粉等;这样冷却后就会在PTFE表面形成一层嵌有可粘物质的改性层。
由于易粘物质的分子已进入 PTFE表层分子中,破坏它相当于分子间破坏,所以,粘接强度很高。
此法的优点是耐候性、耐湿热性比其它方法显著,适于长期户外使用;不足之处在于高温烧结时 PTFE会放出一种有毒物质,且PTFE膜形状不易保持。
聚四氟乙烯表面改性能有效解除其惰性,使其成为最佳的防腐蚀密封材料,被广泛应用到环境恶劣的防腐蚀密封场所。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。