电化学阻抗谱及其数据处理与解析-张鉴清
- 格式:ppt
- 大小:549.00 KB
- 文档页数:78
(完整版)电化学曲线极化曲线阻抗谱分析电化学曲线极化曲线阻抗谱分析⼀、极化曲线1.绘制原理铁在酸溶液中,将不断被溶解,同时产⽣H2,即:Fe + 2H+ = Fe2+ + H2 (a)当电极不与外电路接通时,其净电流I总为零。
在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)I(Fe)的⼤⼩反映Fe在H+中的溶解速率,⽽维持I(Fe),I(H)相等时的电势称为Fe/H+体系的⾃腐蚀电势εcor。
图1是Fe在H+中的阳极极化和阴极极化曲线图。
图2 铜合⾦在海⽔中典型极化曲线当对电极进⾏阳极极化(即加更⼤正电势)时,反应(c)被抑制,反应(b)加快。
此时,电化学过程以Fe的溶解为主要倾向。
通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。
当对电极进⾏阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。
同理,可获得阴极极化曲线rdc。
2.图形分析(1)斜率斜率越⼩,反应阻⼒越⼩,腐蚀速率越⼤,越易腐蚀。
斜率越⼤,反应阻⼒越⼤,腐蚀速率越⼩,越耐腐蚀。
(2)同⼀曲线上各各段形状变化如图2,在section2中,电流随电位升⾼的升⾼反⽽减⼩。
这是因为此次发⽣了钝化现象,产⽣了致密的氧化膜,阻碍了离⼦的扩散,导致腐蚀电流下降。
(3)曲线随时间的变动以7天和0天两曲线为例,对于Y轴,七天后曲线下移(负移),⾃腐蚀电位降低,说明更容易腐蚀。
对于X轴,七天后曲线正移,腐蚀电流增⼤,亦说明更容易腐蚀。
⼆、阻抗谱1.测量原理它是基于测量对体系施加⼩幅度微扰时的电化学响应,在每个测量的频率点的原始数据中,都包含了施加信号电压(或电流)对测得的信号电流(或电压)的相位移及阻抗的幅模值。
从这些数据中可以计算出电化学响应的实部和虚部。
阻抗中涉及的参数有阻抗幅模(| Z |)、阻抗实部(Z,)、阻抗虚部(Z,,)、相位移(θ)、频率(ω)等变量,同时还可以计算出导纳(Y)和电容(C)的实部和虚部,因⽽阻抗谱可以通过多种⽅式表⽰。
【电沉积技术】电化学阻抗谱在电沉积研究中的应用(一)袁国伟(广州市二轻工业科学技术研究所,广东广州 510663)摘 要:介绍了电化学阻抗谱在各种金属及合金的电沉积研究中的应用。
文章分3期连载。
第一部分介绍了电化学阻抗谱的基础知识,包括复数、复阻抗的概念,以及在各种常见条件下电解池的等效电路图。
关键词:电化学阻抗谱;电沉积;复阻抗;等效电路中图分类号:O646.54文献标识码:A文章编号:1004 – 227X (2008) 01 – 0001 – 04Application of electrochemical impedance spectroscopy to the research of electrodeposition—Part I∥ YUAN Guo-weiAbstract: The applications of electrochemical impedance spectroscopy (EIS) to the research of electrodeposition of various metals and alloys were introduced. The article is to be published in three parts. The first part gives some foundational knowledge about EIS, including the concepts of complex number and complex impedance, as well as some equivalent circuits of electrochemical cell under various conventional conditions.Keywords: electrochemical impedance spectroscopy, electrodeposition; complex impedance; equivalent circuit Author’s address: Guangzhou Etsing Plating Research Institute, Guangzhou 510663, China1 前言电化学阻抗法是电化学测量的重要方法之一。
电池测试之电化学阻抗谱的详细资料简介许多研究电池的小伙伴,在最开始接触交流阻抗相关知识时,可能会非常排斥。
因为无论是巴德的《电化学原理与应用》还是曹楚南、张鉴清的《电化学阻抗谱导论》,书中都是通过严谨公式推导来讲述的。
今天,我们将尽量的避开公式,尽可能的分析交流阻抗谱尤其是其在锂电池中的应用。
电化学阻抗谱是一种相对来说比较新的电化学测量技术,它的发展历史不长,但是发展很迅速,目前已经越来越多地应用于电池、燃料电池以及腐蚀与防护等电化学领域。
电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)即给电化学系统施加一个频率不同的小振幅的交流正弦电势波,测量交流电势与电流信号的比值(系统的阻抗)随正弦波频率ω的变化,或者是阻抗的相位角f随ω的变化。
可以更直观的从这个示意图来看,利用波形发生器,产生一个小幅正弦电势信号,通过恒电位仪,施加到电化学系统上,将输出的电流/电势信号,经过转换,再利用锁相放大器或频谱分析仪,输出阻抗及其模量或相位角。
通过改变正弦波的频率,可获得一些列不同频率下的阻抗、阻抗的模量和相位角,作图即得电化学阻抗谱-这种方法就称为电化学阻抗谱法。
由于扰动电信号是交流信号,所以电化学阻抗谱也叫做交流阻抗谱。
利用EIS可以分析电极过程动力学、双电层和扩散等,可以研究电极材料、固体电解质、导电高分子以及腐蚀防护机理等。
基本思路——将电化学系统看成等效电路利用电化学阻抗谱研究一个电化学系统时,它的基本思路是将电化学系统看作是一个等效电路,这个等效电路是由电阻(R)、电容(C)、电感(L)等基本元件按串联或并联等不同方式组合而成。
通过EIS,可以定量的测定这些元件的大小,利用这些元件的电化学含义,来分析电化学系统的结构和电极过程的性质。
我们可以将内部结构未知的电化学系统当作一个黑箱,给黑箱输入一个扰动函数(激励函数),黑箱就会输出一个响应信号。
用来描述扰动与响应之间关系的函数,称为传输函数。
电化学阻抗法的应用2015200507任文栋电化学阻抗法是电化学测量的重要方法之一。
以小振幅的正弦波电势(或电流)为扰动信号,使电极系统产生近似线性关系的响应,测量电极系统在很宽频率范围的阻抗谱,不同的电极在不同频率下的信息不同,以此来研究电极系统的方法就是电化学阻抗谱(Electrochemical Impedance Spectroscopy),又称交流阻抗法(AC Impedance)。
该方法具有以下特点:(1) 由于使用小幅度(一般小于10 mV)对称交流电对电极进行极化,当频率足够高时,每半周期持续时间很短,不会引起严重的浓差极化及表面状态变化。
在电极上交替进行着阴极过程与阳极过程,同样不会引起极化的积累性发展,避免对体系产生过大的影响。
电化学阻抗法作为一种由于以小振幅的电信号对体系扰动,一方面可避免对体系产生大的影响,另一方面也的扰动与体系的相应之间近似呈线性关系,这就使测量结果的数学处理非常简单。
(2) 由于可以在很宽频率范围内测量得到阻抗谱,因而与其它常规的电化学方法相比,能得到更多电极过程动力学信息和电极界面结构信息。
电化学测量技术和仪器的不断进步和飞速发展,使人们可一次性完成一个非常宽的频率范围内(如从104 Hz 到10-3 ~ 10-4Hz)电极体系的电学性质的测量。
通过计算机对数据进行处理,可直接得到电极体系的各种EIS 谱图,如阻抗复平面图、导纳复平面图和Bode图(以相位角或阻抗模的对数为纵坐标,以频率的对数为横坐标的曲线)。
解析这些图谱,可进一步了解影响电极过程的状态变量的情况,还可判断出有无传质过程的影响等。
从图中还可以获得从参比电极到工作电极之间的溶液电阻R L、双电层电容C d以及电极反应电阻R r。
正是通过电化学阻抗谱的分析能得到更多的常规电化学方法得不到的信息,因此它作为一种分析手段,广泛运用到各个重要领域,如在腐蚀过程分析,涂层失效分析,电镀工业等成为一种必不可少的技术。