实验10、PSK调制解调
- 格式:docx
- 大小:2.60 MB
- 文档页数:9
psk调制与解调实验报告Title: PSK Modulation and Demodulation Experiment ReportIntroductionIn the field of communication, modulation and demodulation are essential processes for transmitting and receiving signals. Phase Shift Keying (PSK) is a popular modulation technique that is widely used in various communication systems. In this experiment, we aimed to understand the principles of PSK modulation and demodulation and to demonstrate its application in a practical setting.Experimental SetupThe experimental setup consisted of a signal generator, a PSK modulator, a transmission medium, a PSK demodulator, and an oscilloscope. The signal generator was used to generate the carrier signal, while the PSK modulator was used to modulate the input data onto the carrier signal using phase shift keying. The modulated signal was then transmitted through the transmission medium, and the demodulator was used to recover the original data from the received signal. The oscilloscope was used to visualize and analyze the modulated and demodulated signals.Experimental ProcedureFirst, we set up the signal generator to produce a carrier signal at a specific frequency. We then connected the output of the signal generator to the input of the PSK modulator. Next, we inputted a digital data stream into the modulator,which modulated the data onto the carrier signal using PSK. The modulated signal was then transmitted through the transmission medium to the PSK demodulator. The demodulator recovered the original data from the received signal using PSK demodulation. The modulated and demodulated signals were observed and analyzed using the oscilloscope.Results and AnalysisThe experiment successfully demonstrated the process of PSK modulation and demodulation. The modulated signal exhibited distinct phase shifts corresponding to the input data, which was clearly visible on the oscilloscope. The demodulator was able to accurately recover the original data from the received signal, confirming the effectiveness of PSK demodulation. The experiment also highlighted the robustness of PSK modulation and demodulation in the presence of noise and interference, as the demodulator was able to reliably recover the data even under adverse conditions. ConclusionIn conclusion, the PSK modulation and demodulation experiment provided valuable insights into the principles and applications of phase shift keying in communication systems. The experiment demonstrated the effectiveness of PSK modulation and demodulation in transmitting and recovering digital data, and highlighted its robustness in noisy environments. Overall, the experiment was a success in achieving its objectives and deepening our understanding of PSK modulation and demodulation.。
P S K(D P S K)调制与解调实验题目——PSK(DPSK)调制与解调一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。
2、掌握产生PSK(DPSK)信号的方法。
3、掌握PSK(DPSK)信号的频谱特性。
二、实验内容1、观察绝对码和相对码的波形。
2、观察PSK(DPSK)信号波形。
3、观察PSK(DPSK)信号频谱。
4、观察PSK(DPSK)相干解调器各点波形。
三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、20M双踪示波器5、导线若干四、实验原理1、2PSK(2DPSK)调制原理2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。
2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。
如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。
这种现象常称为2PSK 的“倒π”现象,因此,实际中一般不采用2PSK 方式,而采用差分移相(2DPSK )方式。
2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。
如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。
0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形DPSK 波形相对码从图中可以看出,2DPSK 信号波形与2PSK 的不同。
2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。
这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。
只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。
.1前言通讯依据传统的理解就是信息的传输。
在此刻高度信息化的社会,信息和通讯已成为现代社会的命脉。
信息作为一种资源,只有经过宽泛的流传与沟通,才能产生利用价值,促使社会成员之间的合作,推进社会生产力的发展,创立出巨大的经济效益。
而通讯作为传输信息的手段或方式,与传感技术,计算机技术互相交融,已为21 世纪国际社会和世界经济发展的强盛推进力。
数字通讯系统的模型依据信道中传输的是模拟信号仍是数字信号,相应的将通讯系统分为模拟通讯系统和数字通讯系统。
模拟通讯系统是利用模拟信号来传达信息的通讯系统,模拟信号有时也称连续信号。
而数字通讯系统是利用数字信号来传达信息的通讯系统。
数字信号有时也称为失散信号。
最近几年来数字通讯的发展远远超出模拟通讯,数字通讯在各个领域的应用也愈来愈宽泛。
本文议论的也是数字通信中调制解调原理。
数字通讯系统的一般模型如图 1 所示。
信信信数信道源加道字息编密编调源码码制躁声源数信信受字道解源信解译密译者调码码图 1 数字通讯系统模型此中,信源编码有两个基本功能:一是提升信息传输的有效性,即想法减少码元数量和降低码元速率。
二是达成数 / 模变换,即当信息源给出的是模拟信号时,信源编码器将其变换成数字信号,信源译码是信源编码的逆过程。
信道编码的目的是加强数字信号的抗扰乱能力,信道译码是信道编码的逆过程。
加密和解密是为了保证所传信息的安全。
数字调制就是将数字基带信号的频谱搬移到高频处,形成合适在信道中传输的带通讯号。
图 1 为数字通讯系统的一般化模型,实质的数字通讯系统不必定包含图中的全部环节。
模拟信号经过数字编码后也能够在数字通讯系统中传输。
数字通讯的特色当前,数字通讯在不一样的通讯业务中都获取了宽泛的应用,究其原由也是数字通讯相较于模拟同通讯拥有以下的一些长处。
(1)数字通讯系统抗扰乱能力强,且噪声不累积。
数字通讯系统中传输的是失散取值的数字波形,接受端的目标不是精准的复原被传输的波形,而是从受噪声扰乱的信号中裁决出发送端所发送的事两个状态总的哪一个即可。
psk调制解调实验报告PSK调制解调实验报告引言:在现代通信系统中,调制解调是一项重要的技术,它能够将数字信号转化为模拟信号以便在信道中传输,并在接收端将模拟信号恢复为数字信号。
相位移键控(Phase Shift Keying,PSK)调制解调技术是一种常用的数字调制技术,本实验旨在通过实际操作,加深对PSK调制解调原理的理解。
实验目的:1. 了解PSK调制解调原理;2. 掌握PSK调制解调的实验操作;3. 分析调制解调过程中的误码率。
实验装置:1. 信号发生器;2. 调制解调器;3. 示波器;4. 计算机。
实验步骤:1. 搭建实验装置,将信号发生器与调制解调器相连,调制解调器再与示波器相连;2. 设置信号发生器的频率和幅度,选择合适的PSK调制方式;3. 通过调制解调器将数字信号转化为模拟信号,并通过示波器观察调制后的波形;4. 将调制后的信号输入到解调器中,通过示波器观察解调后的波形;5. 通过计算机对解调后的信号进行误码率分析。
实验结果:在实验中,我们选择了二进制相位键控(Binary Phase Shift Keying,BPSK)调制方式进行实验。
通过调制解调器将数字信号转化为模拟信号后,我们观察到示波器上出现了两种不同相位的波形,即0°和180°相位差。
这符合BPSK调制的特点,即将二进制数字0和1分别映射为不同的相位。
在解调过程中,我们将调制后的信号输入到解调器中,通过示波器观察到解调后的波形与原始数字信号一致。
这表明解调器能够正确恢复出原始的数字信号。
通过计算机对解调后的信号进行误码率分析,我们发现在理想情况下,误码率为0。
然而,在实际通信系统中,由于信道噪声等因素的影响,误码率往往不为0。
因此,我们需要采取一定的纠错编码技术来提高系统的可靠性。
实验结论:本实验通过实际操作,加深了对PSK调制解调原理的理解。
通过观察调制解调过程中的波形变化和分析误码率,我们了解到PSK调制解调技术在数字通信系统中的重要性。
psk调制与解调实验报告PSK调制与解调实验报告引言:调制与解调是通信领域中非常重要的技术,它们被广泛应用于无线通信、卫星通信、光纤通信等领域。
相位移键控调制(Phase Shift Keying, PSK)是一种常见的数字调制技术,本实验旨在通过实践,深入了解PSK调制与解调的原理和实际应用。
一、实验目的本实验的主要目的是掌握PSK调制与解调的基本原理,熟悉其实际应用,并通过实验验证理论知识的正确性。
二、实验器材1. 信号发生器2. 频谱分析仪3. 示波器4. 电脑及相关软件三、实验原理1. PSK调制PSK调制是利用不同相位表示数字信号的一种调制技术。
常见的PSK调制方式有二进制相移键控调制(Binary Phase Shift Keying, BPSK)和四进制相移键控调制(Quadrature Phase Shift Keying, QPSK)等。
BPSK调制将0和1分别映射为相位为0和π的两种状态,而QPSK调制则将00、01、10和11分别映射为相位为0、π/2、π和3π/2的四种状态。
2. PSK解调PSK解调是将接收到的PSK信号转化为数字信号的过程。
解调的关键是从接收到的信号中提取出相位信息。
常用的解调方法有相干解调和非相干解调。
相干解调需要与发送信号保持相位同步,而非相干解调则不需要。
四、实验步骤1. 设置信号发生器的频率和幅度,选择合适的PSK调制方式。
2. 连接信号发生器和频谱分析仪,观察并记录调制后的信号频谱。
3. 将调制后的信号输入到示波器中,观察并记录波形。
4. 通过解调器将接收到的信号转化为数字信号。
5. 使用电脑及相关软件进行信号解调的仿真实验,比较实验结果与理论分析的差异。
五、实验结果与分析1. 调制实验结果根据实验步骤中的设置,我们可以通过频谱分析仪观察到调制后的信号频谱。
根据不同的PSK调制方式,频谱图上会出现不同的频率成分。
通过观察波形,我们可以看到相位的变化对应着信号的变化。
PSK调制解调实验报告范文PSK调制解调实验报告范文一、实验目的1. 掌握二相绝对码与相对码的码变换方法;2. 掌握二相相位键控调制解调的工作原理及性能测试;3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。
二、实验仪器1.时钟与基带数据发生模块,位号:G2.PSK 调制模块,位号A3.PSK 解调模块,位号C4.噪声模块,位号B5.复接/解复接、同步技术模块,位号I6.20M 双踪示波器1 台7.小平口螺丝刀1 只8.频率计1 台(选用)9.信号连接线4 根三、实验原理相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。
在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。
本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。
相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。
(一) PSK 调制电路工作原理二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。
相位键控调制解调电原理框图,如图6-1 所示。
1.载波倒相器模拟信号的倒相通常采用运放来实现。
来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。
为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。
2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。
0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。
psk调制及解调实验报告PSK调制及解调实验报告引言调制和解调是无线通信中的重要环节,它们能够将信息信号转化为适合传输的信号,并在接收端恢复出原始信息。
本实验旨在通过实际操作,探究PSK调制和解调的原理和实现方法。
一、实验目的本实验的主要目的是掌握PSK调制和解调的原理,实践PSK调制解调的基本方法,并通过实验结果验证理论分析。
二、实验原理1. PSK调制PSK(Phase Shift Keying)调制是一种基于相位变化的数字调制技术。
在PSK调制中,将不同的离散信息码映射到不同的相位,从而实现信息的传输。
常见的PSK调制方式有BPSK(二进制相移键控)、QPSK(四进制相移键控)等。
2. PSK解调PSK解调是将接收到的PSK信号恢复为原始信息信号的过程。
解调器通过检测相位的变化,将相位差映射回相应的信息码。
三、实验器材1. 信号发生器2. 功率放大器3. 混频器4. 示波器5. 电脑四、实验步骤1. 准备工作连接信号发生器、功率放大器和混频器,设置合适的频率和功率。
将混频器的输出连接至示波器,用于观察调制后的信号。
2. BPSK调制实验设置信号发生器输出为二进制序列,将序列与载波进行相位调制。
观察调制后的信号波形并记录。
3. BPSK解调实验将调制后的信号输入到解调器中,通过相位差检测将信号恢复为二进制序列。
观察解调后的信号波形并记录。
4. QPSK调制实验设置信号发生器输出为四进制序列,将序列与载波进行相位调制。
观察调制后的信号波形并记录。
5. QPSK解调实验将调制后的信号输入到解调器中,通过相位差检测将信号恢复为四进制序列。
观察解调后的信号波形并记录。
六、实验结果与分析通过实验观察和记录,可以得到调制和解调后的信号波形。
根据波形的相位变化,可以判断调制和解调是否成功。
在BPSK调制实验中,观察到信号波形只有两个相位,对应二进制序列的两个状态。
解调实验中,通过相位差检测可以准确地恢复出原始的二进制序列。
PSK调制解调实验报告PSK调制解调实验报告一、实验目的1. 了解与掌握PSK调制解调的基本原理及特点。
2. 了解PSK调制解调的硬件实现过程。
二、实验原理1. PSK调制PSK调制是在载波的相位上进行调制的一种方法,使用一定数量的离散相位值来体现调制数据。
其调制信号可以表示为s(t)=Acos(ωt+φ)其中,A为振幅,ω为角频率,φ是相位值,即φ=2πfct+2πφm(t)2. PSK解调在接收端,需要对接收信号进行解调。
对于PSK信号,解调过程由相位鉴别器实现。
相位鉴别器输入PSK信号,输出一串数字流,序列反映的是PSK锁定在给定的离散相位之一的时间。
三、实验器材及工具1. 端口配置:操作系统:Windows 7Python:3.5.3Matplotlib:2.0.0Scipy:0.18.1Numpy:1.11.3PyAudio:0.2.72. 设备及电路:信号发生器功率放大器变频器射频滤波器相位锁定环路示波器四、实验步骤1. 使用Python编程语言进行PSK调制解调的设计和实现。
2. 编写一个实时的模拟接收器程序,进行PSK解调并显示结果图像。
3. 装置实验所需的设备及电路,包括信号发生器、功率放大器、变频器、射频滤波器和相位锁定环路。
4. 调节各设备参数,使其符合实验要求,并采集数据。
5. 对采集到的数据进行处理和分析,得出实验结果。
五、实验结果1. 绘制出PSK调制解调的数据流图。
2. 根据所得的实验数据,进一步验证了PSK调制解调技术的正确性和可靠性。
通过反复调节设备参数,在正确的相位值处实现了准确的脉冲恢复。
3. 在相位鉴别器的设计中,应做到准确、高速,同时尽可能的降低误码率和噪声。
六、实验结论本次实验主要使用Python语言对PSK调制解调进行了模拟试验,并通过实验数据验证了PSK调制解调技术的正确性和可靠性。
同时也对相位鉴别器的设计略为进行了概述。
在实际应用中,需要根据具体需求进行优化和处理,以适应各种复杂的情况和环境。
电子信息学院实验报告书课程名:《通信原理》题目:PSK(DPSK)调制与解调实验评语:成绩:指导教师:杨宇批阅时间:年月日1、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。
2、掌握产生PSK(DPSK)信号的方法。
3、掌握PSK(DPSK)信号的频谱特性。
2、实验内容1、观察绝对码和相对码的波形。
2、观察PSK(DPSK)信号波形。
3、观察PSK(DPSK)信号频谱。
4、观察PSK(DPSK)相干解调器各点波形。
3、实验原理1、2PSK(2DPSK)调制原理2PSK 信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图13-1所示。
设二进制单极性码为a n ,其对应的双极性二进制码为b n ,则2PSK 信号的一般时域数学表达式为: t nT t g b t S c n s n PSK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑(13-1)其中: ⎩⎨⎧=-=P a Pa b n n n -时,概率为=当+时,概率为当11101则(13-1)式可变为:()()⎪⎪⎩⎪⎪⎨⎧=+⎥⎦⎤⎢⎣⎡-=+⎥⎦⎤⎢⎣⎡-∑∑10cos )(0cos )(2n c ns n c n s PSK a t nT t g a t nT t g t S 当当)=(ωπω (13-2) 图13-1 2PSK 信号的时域波形示意图由(13-1)式可见,2PSK 信号是一种双边带信号,其双边功率谱表达式与2ASK 的几乎相同,即为: +⎥⎦⎤⎢⎣⎡-++-=222)()()1()(c f f G c f f G P P f f P s PSK [])()()0()1(41222c c s f f f f G P f -++-ζζ (13-3)2PSK 信号的谱零点带宽与2ASK 的相同,即 s s s c s c PSK T R R f R f B /22)()(2==--+=(Hz ) (13-4)我们知道,2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。
一、概述在无线通信系统中,调制技术起着至关重要的作用。
其中,相位调制(PSK)和差分相位调制(DPSK)是常见的调制方式,它们能够在保持带宽效率的同时提供良好的抗干扰性能。
本文将重点介绍PSK和DPSK调制的工作原理。
二、PSK调制的工作原理1. 基本原理PSK调制是一种将数字信号转换为相位信号的调制方式。
在PSK调制中,数字信号被映射到不同的相位角度上,从而实现信号的调制。
对于二进制数字信号"0"和"1",可以分别映射到相角为0°和180°的两个相位上。
PSK调制可以实现二进制数字信号的传输。
2. 调制过程PSK调制的过程包括相位映射和载波调制两个主要步骤。
数字信号经过映射器将其映射到不同的相位上。
经过调制器与正弦载波相乘,得到调制后的信号。
经过滤波等环节,得到最终的PSK调制信号。
3. 解调过程PSK调制信号在接收端经过解调器解调时,需要进行相位解调。
解调器通过比较接收到的信号与参考信号的相位差来恢复数字信号。
在恢复数字信号的过程中,可以利用差分相位解调(Demodulation)等技术来提高系统的鲁棒性。
三、DPSK调制的工作原理1. 基本原理DPSK调制是相位调制的一种特殊形式,其特点在于仅传输相位变化的信息。
在DPSK调制中,相位调制比较的是连续时间的相位变化,而不是绝对的相位大小。
这种特性使得DPSK调制对于相位偏移和载波漂移具有较好的鲁棒性。
2. 调制过程DPSK调制的过程与PSK调制类似,主要包括映射和调制两个步骤。
不同之处在于,DPSK调制器比较的是相邻信号之间的相位差,而不是绝对的相位角度。
这种方式使得DPSK调制对于载波相位偏移具有一定的免疫能力。
3. 解调过程DPSK调制信号在接收端经过解调器解调时,也需要进行相位解调。
与PSK调制类似,在解调过程中可以利用相位差检测和信号重采样等技术来恢复数字信号,提高系统的性能。
通信原理实验报告学院:电子信息学院班级08041102班实验日期:2014年 05月 27日(3)2ASK信号解调----2ASK属于100%的AM调制①包络检波法②相干检测法:2、FSK的调制与解调(1)定义:频移键控(FSK)属于数字频率调制,是用载波的频率不同来传送数字消息,即用所传送的数字消息控制载波的频率。
(2) 2FSK信号的产生方法(调制方法)--模拟法;键控法。
2FSK信号的实现方法核心思想:一路2FSK视为两路2ASK信号的合成(3)数字调频信号的解调方法很多,如:相干检测法、包络检波法、鉴频法、过零检测法、差分检测法①包络检波法②相干解调法③鉴频法思路:与FM的鉴频解调方法类似。
原理:鉴频器输出电压与输入信号瞬时频偏成正比。
3、PSK的调制与解调(1)定义:相移键控属于数字相位调制,是利用高频载波相位的变化来传送数字信息的。
二进制相移键控记作2PSK。
(2)2PSK信号的调制方框图(3)2PSK信号的解调----DSB信号,只可相干解调,不可包检。
五波形与数据……………………………………………………………第 4 页此次实验所用学号为“2011302009”,转换为二进制为“1010 1100 0111 0100 0111 1001”1、数字解调模块的ASK-IN和频谱2、信号源模块的FS、数字解调模块的ASK-OUT3、数字解调模块的FSK-IN和频谱4、数字解调模块的FSK-OUT5、数字调制模块的“PSK 调制输出”和频谱六 结论……………………………………………………………………第 6 页讨论ASK 、FSK 、PSK 的时域特性和频谱特性。
① 时域:2ASK 信号时域表达式:2()()cos ASK c S t s t w t =,s(t)为单极性NRZ 矩形脉冲序列2ASK 信号时域表达式:212()()cos()()cos()FSK n n S t s t w t s t w t ϕϕ=+++,s(t)为单极性NRZ 矩形脉冲序列2ASK 信号时域表达式:2()()cos PSK c S t s t w t = s(t)为单极性NRZ 矩形脉冲序列ASK 信号用载波的幅值来携带调制信号,FSK 信号用载波的不同频率来携带调制信号,PSK 信号用载波的不同相位来携带调制信号。
1第1章 PSK 调制和解调的基本原理回顾我们这里设计的课题(PSK 调制与解调)涉及到两种:2PSK 和2DPSK 1.1 三种数字调制的比较数字调制就是用载波信号的某些离散状态来表征所传送的信号,在接收端也对载波信号的离散调制参量进行检测。
和模拟信号一样,数字调制也有调幅、调频和调相三种基本形式,即有振幅键控(ASK )、移频键控(FSK )和移相键控(PSK )三种基本形式。
如下图所示:图1-1 三种调制方式图各种调制方式的对比分析。
由于噪声干扰的影响最终表现在收方恢复信码时的误码率性能上,所以系统的抗噪声性能可以用系统平均的误码率来表征。
即用各自系统的平均误码率P e 对广义信噪比ε的曲线来表示系统的抗噪声性能。
ε为输入信号每个码元的平均能量与输入噪声的单边功率谱(双边谱的二倍)密度之比,即称广义信噪比。
在此种条件下,可以用相同ε值或相同P e 去比较误码率P e 或ε的大小,从而合理地比较各种键控方式。
(1)ASK 相干解调 P e =1/2erfc[2ε]ε=A 2T/n 0(2)ASK 非相干解调P e ≈[1+πε21].e-ε/2(3)FSK 相干解调P e =1/2erfc[2ε](4)FSK(5)PSK(6)DPSK的意义.令2PSKe0(t)特性为:a也就是说,在一个码元持续时间T s内,e0(t)为:2cosωc t ,概率为Pe0(t)=-cosωc t ,概率为(1-P)即发送二进制0时(a n取+1)e0(t)取0相位;发送二进制符号1时(a n取-1)e0(t)取π相位。
调制可以采用模拟调制的方式产生2PSK,即2PSK信号可通过乘法器来得到。
也可以采用数字键控的方式产生。
调制原理见下:(a)模拟调制(b) 数字键控调制1-3 2PSK调制原理图1.3 2DPSK调制原理相对移相,就是利用载波相位的相对值来传递信息,也就是利用前后码元载波相位的相对变化来传递信息,所以也称为“差分移相”。
实验 10 PSK 调制解调一、实验目的1.掌握 PSK 调制解调的工作原理及性能要求;2.进行 PSK 调制、解调实验,掌握相干解调原理和载波同步方法;3.理解 PSK 相位模糊的成因,思考解决办法。
二、实验原理1.1 2PSK 调制原理2PSK(二进制相移键控,Phase Shift Keying)信号是用载波相位的变化表征被传输信息状态的,通常规定0 相位载波和π 相位载波分别代表传“1”和传“0”。
1 1 0 0 1NRZ输入PSK调制信号图 10-1 2PSK 调制信号波形PSK 调制由“信道编码与频带调制-A4”模块完成,该模块基于 FPGA 和 DA 芯片,采用软件无线电的方式实现频带调制。
图 10-2 PSK 调制电路原理框图上图中,基带数据和时钟,通过 2P6 和 2TP8 两个铆孔输入到 FPGA 中,FPGA 软件完成PSK 的调制后,再经 DA 数模转换即可输出相位键控信号,调制后的信号从 4TP2 输出。
2.2PSK 解调原理实验中 2PSK 信号的解调采用相干解调法,首先要从调制信号中提取相干载波,在实验中采用数字 costas 环提取相干载波,二相 PSK(DPSK)解调器采用数字科斯塔斯环(Constas 环)解调,其原理如下图所示。
图 10-3 数字科斯塔斯特环原理图设已调信号表达式为 s (t ) = A 1 ⨯cos(ωt +ϕ(t ))(A 1 为调制信号的幅值),经过乘法器与载波信号 A 2 cos ωt (A2 为载波的幅值)相乘,得:e (t ) = 1A A [cos(2ωt + ϕ(t )) + cos ϕ(t )] 02 1 21可知,相乘后包括二倍频分量 2A 1 A 2 cos(2ωt + ϕ(t )) 和cos ϕ(t ) 分量(ϕ(t ) 为时间的函数)。
因此,需经低通滤波器除去高频成分cos(2ωt +ϕ(t )) ,得到包含基带信号的低频信号,然后同向端和正交端两路信号相乘,其差值作为环路滤波器的输入,然后控制 VCO 载波频率和相位,得到和调制信号同频同相的本地载波。
第1篇一、实验目的及意义本次数字解调实验旨在通过实际操作,加深对数字信号解调原理和方法的理解,掌握不同调制方式下的解调技术,并验证其性能。
实验过程中,我们学习了数字信号解调的基本原理,通过对比不同调制方式下的解调效果,了解了各种解调方法在实际通信系统中的应用。
二、实验原理数字解调是数字通信过程中的重要环节,其目的是将接收到的模拟信号还原为原始的数字信号。
本实验主要研究了以下几种调制方式的解调原理:1. 按照调制载波的不同,数字调制可分为模拟调制和数字调制。
模拟调制包括调幅(AM)、调频(FM)和调相(PM)等,而数字调制则包括幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)等。
2. 数字解调方法主要有以下几种:(1)包络检波法:通过提取信号包络来实现解调。
(2)同步检波法:利用与接收信号同频同相的本地载波与接收信号相乘,再进行低通滤波,以实现解调。
(3)相关解调法:利用接收信号与本地信号的互相关函数,通过查找最大值来确定解调信号。
(4)差分解调法:通过比较相邻两个信号的状态,实现解调。
三、实验内容及结果分析1. ASK调制解调实验实验中,我们采用包络检波法对ASK调制信号进行解调。
实验结果显示,当信噪比(S/N)较高时,解调效果较好;当S/N较低时,解调效果较差,误码率增加。
2. FSK调制解调实验实验中,我们采用同步检波法对FSK调制信号进行解调。
实验结果显示,当S/N较高时,解调效果较好;当S/N较低时,解调效果较差,误码率增加。
3. PSK调制解调实验实验中,我们采用同步检波法对PSK调制信号进行解调。
实验结果显示,当S/N较高时,解调效果较好;当S/N较低时,解调效果较差,误码率增加。
4. BPSK调制解调实验实验中,我们采用同步检波法对BPSK调制信号进行解调。
实验结果显示,当S/N 较高时,解调效果较好;当S/N较低时,解调效果较差,误码率增加。
四、实验结论1. 数字解调技术在实际通信系统中具有重要的应用价值。
PSK调制解调实验报告范文以下是一篇关于PSK调制解调实验的报告范文:实验名称:PSK调制解调实验实验目的:通过实验,了解和掌握PSK调制解调的基本原理和方法,掌握相关的仪器操作和数据分析能力。
实验器材和软件:信号发生器、示波器、PSK解调器、计算机、MATLAB软件等。
实验原理:PSK(Phase Shift Keying)调制是一种数字调制技术,将数字信号直接调制成离散相位的连续信号。
PSK调制主要有BPSK(Binary Phase Shift Keying)和QPSK(Quadrature Phase Shift Keying)两种方式。
BPSK将每个数字比特表示为一个相位值,QPSK则将两个比特表示为一个相位值。
PSK解调则是将调制信号恢复为原始数字信号的过程。
实验步骤:1. 连接实验器材:将信号发生器的输出信号连接到PSK调制器的输入端,将PSK解调器的输出信号连接到示波器和计算机的输入端。
2. 设置信号发生器:根据实验要求设置信号发生器的频率、幅值和相位等参数。
3. 进行调制实验:利用MATLAB软件生成一组数字信号,并通过信号发生器将其调制成PSK信号。
通过示波器观察调制信号的波形,并记录相关数据。
4. 进行解调实验:将调制信号输入到PSK解调器中,利用示波器观察解调信号的波形,并记录相关数据。
5. 数据分析:利用MATLAB软件对实验数据进行处理和分析,比较解调信号与原始信号的差异,评估调制解调系统的性能。
实验结果:根据实验数据和分析,可以得出PSK调制解调系统的性能评估,包括误码率、信噪比等指标。
实验结论:通过实验,我们成功地进行了PSK调制解调实验,并获得了有关系统性能的数据。
实验结果表明,PSK调制解调是一种有效的数字调制技术,可以用于数字通信系统中,具有较高的传输效率和抗干扰能力。
实验心得:通过这次实验,我深入了解了PSK调制解调的基本原理和方法,掌握了相关的仪器操作和数据分析能力。
实验报告课程名称:通信原理综合设计实验指导老师:学生姓名:学号:专业班级:2016年06月16 日实验一 7位伪随机码1110010设计一、实验目的1、了解数字信号的波形特点2、掌握D触发器延时设计数字电路的原理及方;3、熟悉Multisim 13.0软件的使用二、设计要求设计7位伪随机码1110010,要求输出波形没有毛刺和抖动,波形稳定效果较好,可用于后续的综合设计实验。
三、实验原理与仿真电路及结果要求产生7位伪随机码,根据M=2n-1=7,所以n=3,需要3个D触发器,在32KHz正弦波或方波的时钟信号触发下,第三个D触发器输出端产生1110010的7位伪随机绝对码。
仿真电路及波形结果如下:图一、7位伪随机码1110010产生电路图二、7位伪随机码1110010波形观察结果波形发现,伪随机码波形频率较之信号源波形(32KHz)减小了,但幅值不变仍为5v.四、实验心得与体会本实验原理较为简单,在大二上学期的《数字电路与逻辑设计》课程中已经学习过,且实验前老师也给出了电路,故完成实验只需要简单的搭建仿真电路即可,产生正确的随机码波形也为后两个设计实验做好准备。
通过本次设计实验,我重新复习了数字电路逻辑设计中的D触发器产生特定数字序列的知识,同时也熟练了Multisim软件的使用,为后续综合设计实验打下基础。
实验二 2FSK调制、解调电路综合设计一、实验目的1、掌握2FSK调制和解调的工作原理及电路组成2、学会低通滤波器和放大器的设计3、掌握LM311设计抽样判决器的方法、判决门限的合理设定4、进一步熟悉Multisim13.0的使用二、设计要求设计2FSK调制解调电路,载波f1=128KHz,f2=256KHz,基带信号位7位伪随机绝对码(1110010)要求调制的信号波形失真小,不会被解调电路影响,并且解调出来的基带信号尽量延时小、判决准确。
三、实验电路与结果➢实验总电路图图一、FSK调制、解调总电路➢调制电路1)实验所用的128KHz和256KHz载波正弦信号由对应频率的方波通过高低通滤波得到,子电路如下:图二、128KHz正弦载波信号生成电路图三、256KHz正弦载波信号生成电路2)实验基带信号7位伪随机码子电路(同实验一)如下:图四、基带信号1110010生成子电路3)128KHz、256KHz载波信号、基带信号、已调信号波形:图五、载波、基带及已调信号波形➢解调电路1)解调部分电路如下:图六、FSK解调电路以上电路中,解调运用的仍是4066芯片的开关特性来实现:将已调信号接入4066中并分别用128 KHz 、256KHz的信号源方波“识别”出已调信号中的128 KHz 和256KHz 频率的正弦信号,然后经过两个相同的32KHz(生成伪随机码的信号源频率)的低通滤波器,滤出含有基带信号的“混合”波形,最后将这两路信号接入LM311比较器,根据课本知识,这一步实现的是两路信号的比较,谁大输出谁,最终输出解调信号。
实验八:PSK/DPSK 调制解调实验
一.实验目的
1.掌握PSK 调制的工作原理与调整测试方法。
2.掌握PSK 解调的工作原理与调整测试方法。
3.掌握绝对码与相对码互相转换的电路连接及测量方法。
4.掌握DPSK 调制、解调的电路连接与测试。
二.实验仪器
1.RZ8621D 实验箱1台 2.20MHZ 双踪示波器1台 3.平口小螺丝刀一个 4.实验电路连接 三.实验电路连接
至解调
W301
图5-1 PSK/DPSK 调制方框图
TP711
图5-2 PSK/DPSK 解调方框图
四.实验预习与测量点说明
实验前请预习PSK/DPSK 调制与解调原理。
1、PSK 调制电路原理如图5-3所示,频率为1024KHZ 方波经R324加到U301A 及周边元件组成的低通滤波器。
得到1024KHZ 正弦波。
U303A,U301B 分别为1024KHZ 正弦波的同相放大器。
实验 10 PSK 调制解调一、实验目的1.掌握 PSK 调制解调的工作原理及性能要求;2.进行 PSK 调制、解调实验,掌握相干解调原理和载波同步方法;3.理解 PSK 相位模糊的成因,思考解决办法。
二、实验原理1.1 2PSK 调制原理2PSK(二进制相移键控,Phase Shift Keying)信号是用载波相位的变化表征被传输信息状态的,通常规定0 相位载波和π 相位载波分别代表传“1”和传“0”。
1 1 0 0 1NRZ输入PSK调制信号图 10-1 2PSK 调制信号波形PSK 调制由“信道编码与频带调制-A4”模块完成,该模块基于 FPGA 和 DA 芯片,采用软件无线电的方式实现频带调制。
图 10-2 PSK 调制电路原理框图上图中,基带数据和时钟,通过 2P6 和 2TP8 两个铆孔输入到 FPGA 中,FPGA 软件完成PSK 的调制后,再经 DA 数模转换即可输出相位键控信号,调制后的信号从 4TP2 输出。
2.2PSK 解调原理实验中 2PSK 信号的解调采用相干解调法,首先要从调制信号中提取相干载波,在实验中采用数字 costas 环提取相干载波,二相 PSK(DPSK)解调器采用数字科斯塔斯环(Constas 环)解调,其原理如下图所示。
图 10-3 数字科斯塔斯特环原理图设已调信号表达式为 s (t ) = A 1 ⨯cos(ωt +ϕ(t ))(A 1 为调制信号的幅值),经过乘法器与载波信号 A 2 cos ωt (A2 为载波的幅值)相乘,得:e (t ) = 1A A [cos(2ωt + ϕ(t )) + cos ϕ(t )] 02 1 21可知,相乘后包括二倍频分量 2A 1 A 2 cos(2ωt + ϕ(t )) 和cos ϕ(t ) 分量(ϕ(t ) 为时间的函数)。
因此,需经低通滤波器除去高频成分cos(2ωt +ϕ(t )) ,得到包含基带信号的低频信号,然后同向端和正交端两路信号相乘,其差值作为环路滤波器的输入,然后控制 VCO 载波频率和相位,得到和调制信号同频同相的本地载波。
I 路输出(即同相端)滤波输出包含基带信号,因此进行抽样判决和基带同步后,即可解调出基带信号。
图 10-4 2PSK 解调各测试点波形3. 实验框图及功能说明实验框图说明图 10-5 PSK 调制解调框图本实验中需要用到以下 2 个功能单元:(1)基带信号产生:基带信号从 2P6 输入,从 2TP8 输入时钟;点击框图中“基带设置”按钮,可以修改基带信号码型和速率;(2)数字调制单元-A4:完成 PSK 调制,基带信号和基带时钟分别从 2P6 和 2TP8 输入,调制后信号从 4TP2 输出。
调制载波频率默认为 128K,通过“载波频率”旋钮可修改,修改范围为 0-4MHZ;(3)数字解调单元-A5:完成 PSK 解调,解调采用相干解调法。
其中载波提取采用了数字 costas 环,costas 环 VCO 中心频率可自动锁定,costas 环各个部分均有输出可以测量;注:在流程图中,可以通过框图上的按钮修改实验中输出的参数:解调输出选择:PSK 科斯塔斯特环中只有 PSK 和本地载波同相或反相的那路才能解出基带数据,正交的那路不能解出基带数据,实验时我们可以用鼠标点击环路左侧的两个乘号选择进入抽样判决电路的信号;相位模糊观测:鼠标点击“VCO”按钮,相干载波会反相,输出数据也会反相;4.测量点说明★2P6:基带数据输出;★2TP8:基带时钟输出;★4VT11:0 相信载波输出;★4VT12:∏相载波输出;★4TP2:PSK 调制输出;★5TP1:解调信号输入;★5VT13:本地载波输出;★5VT11:I 路相干输出;★5VT12:Q 路相干输出;★5TP7:I 或Q 路滤波输出(鼠标点击环路左侧的两个乘号时,5TP7 跟着切换);★5TP6:判决电平输出★5TP3:解调数据输出;5VT15:恢复时钟输出;三、实验任务1.PSK 调制观测;2.PSK 解调分析;3.PSK 系统性能分析;四、实验步骤1.实验准备(1)获得实验权限,从浏览器进入在线实验平台;(2)选择实验内容使用鼠标在通信原理实验目录选择:PSK 调制解调实验,进入到 PSK 实验页面。
2.PSK 调制观测(1)基带数据设置及时域观测使用双踪示波器分别观察 2P6 和 2PT8,使用鼠标点击“基带设置”按钮,设置基带数据为“15-PN”,速率“64K”。
观察示波器波形的变化,理解并掌握基带数据设置的基本方法。
(2)基带数据频域观测打开示波器的 FFT 功能,观测分析 2P6 的频谱特性。
思考将信号进行 PSK 调制频谱会有什么变化?(3)PSK 调制信号时域观测用示波器通道 1 观测2P6,通道 2 观测 PSK 调制信号 4TP2,分析 PSK 调制后,基带信号和载波相位对应关系;(4)PSK 调制信号频谱观测打开示波器的 FFT 功能,观测分析 PSK 调制信号 4TP2 的频谱特性;点击“载波频率”按钮,修改载波频率,观察频谱特性的变化。
修改基带信号时钟速率的设置,设置为 64K,128K,观测调制信号的频谱变化。
和基带信号频谱结合,分析基带信号经 PSK 调制后,频谱的变化情况。
分析 PSK 调制信号的带宽与基带信号速率、载波频率的关系。
载波频率128K:基带信号时钟速率为16bit,64k 基带信号时钟速率为16bit,128k载波频率256K:基带信号时钟速率为16bit,64k 基带信号时钟速率为16bit,128k修改基带信号时钟速率,调制信号的频谱幅度和频率会一起变化。
基带信号时钟速率越大,信号频率越小。
传送速率与信道带宽成正比,载波频率越高,能容纳的信号带宽越大。
3.PSK 解调观测(1)Costas 环载波输出观测用示波器通道 1 观测调制端载波 4VT11,作为同步通道;通道 2 观测 costas 环载波输出5VT13;观察当前本地载波频率为多少,是否已经锁定?(2)判决前信号观测在 PSK 解调时,Costas 环中只有和载波同相的那路才能解出基带数据,正交的那路不能解出基带数据,用鼠标点击环路左侧的两个乘号,可以分别选择进入判决电路的信号为同相端或正交端;用示波器通道1 观测基带时钟2TP8,作为同步通道;通道2 观测costa 环判决前信号5TP7,分析判决前信号是否正确;通过点击同向端和正交端按钮,切换两路信号。
(3)PSK 判决后观测用示波器一个通道观测基带数据 2P6,作为同步通道;另一个通道观测 COSTAS 环同相端判决后信号 5TP3,分析判决后信号是否正确(如信号反向,也视为相同)。
用鼠标调节判决电平,观察判决输出的变化,将判决输出调节到最佳状态。
(4)PSK 相位模糊观察PSK 解调时如果本地载波和调制信号载波反相,则输出的基带数据也会反相,这就是相位模糊(前面步骤中应该有部分同学会观察到该现象),实验中我们用两种方法观测相位模糊的现象。
系统增加了人为修改载波相位的功能,通过框图中“VCO”按钮,可以人为的修改将载波相位反向(调整 180 度),可以切换正常状态和相位模糊状态。
4.PSK 系统性分析5.噪声对PSK 信道影响(环路滤波器参数、判决电平一定,注意系统误码测试时不能有相位模糊)注:载波幅度测量:不加噪时用示波器测得的载波幅度;噪声幅度测量:示波器测量噪声源输出点。
6.实验结束实验结束,从浏览器退出在线实验平台。
五、实验报告要求1.完成实验步骤,记录实验中相关数据及波形。
2.叙述科斯塔斯特环(costas 环)工作原理。
科斯塔斯环(Costas)法又称同相正交环法或边环法。
他仍然利用锁相环提取载频,但是不需要对接收信号作平方运算就能得到载频输出。
误差信号是由两路相乘及低通滤波器提供的。
压控振荡器输出信号直接供给一路相乘器,供给另一路的则是压控振荡器输出的正交的信号。
两路信号输出均含有调制信号,两者相乘后可以消除调制信号的影响,经环路滤波器后得到仅与压控振荡器输出和理想载波之间相位差有关的控制电压,从而准确地对压控振荡器进行调整。
3.定性画出科斯塔斯特环流程图中各点波形;4.定性描述载波频率、基带速率、环路滤波器参数间关系;六、思考题1.什么是相位模糊?PSK 解调为什么会有相位模糊,如何解决相位模糊的问题?相位模糊:从2PSK提取的载波信号存在两种可能的相位,即0相和π相,解调结果与发端的基带信号同相或反相,这就是2PSK系统的相位模糊现象。
相位模糊产生的原因:2PSK的信号频谱中没有载频分量,所以在接复收端要进行载波提取,最常用的方法是制平方bai环载波提取。
平方环载波提取电路中有一个部件是二分频器。
二分频器由D触发器构成,D触发器的方程为Qn+1 = D。
由以上的二分频器原理图可知,du分频器的输出电压的相位取决于Q反的初始状态(0或1),而这个状态是zhi随机的。
这也就是2PSK解调相位模糊的根本原dao因,也说明了这种模糊性是无法克服的,所以一般不用2PSK,而使用2DPSK。
解决方法:采用2DPSK方法克制2.如何通过编程完成 PSK 调制算法?七、实验注意1.基带要低于 512k;2.判决电平 128 左右;3.环路滤波器设置为 245(默认);4.载波频率>=两倍基带频率;5.PSK 系统误码测试时,要确保系统不能有相位模糊;八、实验心得通过本次实验我掌握了PSK 调制解调的工作原理及性能要求,进行了 PSK 调制、解调实验,掌握相干解调原理和载波同步方法,明白了 PSK 相位模糊的成因,思考解决办法,并找到了相位模糊的解决方法,虽然实验难且繁琐,但是动手操作让我对课程的兴趣加深,能更好的学习知识。