PSK的调制解调要点
- 格式:doc
- 大小:534.00 KB
- 文档页数:42
P S K(D P S K)调制与解调实验题目——PSK(DPSK)调制与解调一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。
2、掌握产生PSK(DPSK)信号的方法。
3、掌握PSK(DPSK)信号的频谱特性。
二、实验内容1、观察绝对码和相对码的波形。
2、观察PSK(DPSK)信号波形。
3、观察PSK(DPSK)信号频谱。
4、观察PSK(DPSK)相干解调器各点波形。
三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、20M双踪示波器5、导线若干四、实验原理1、2PSK(2DPSK)调制原理2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。
2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。
如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。
这种现象常称为2PSK 的“倒π”现象,因此,实际中一般不采用2PSK 方式,而采用差分移相(2DPSK )方式。
2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。
如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。
0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形DPSK 波形相对码从图中可以看出,2DPSK 信号波形与2PSK 的不同。
2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。
这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。
只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。
2psk调制解调的原理2PSK调制(2-Phase Shift Keying)是一种基本的数字调制方式。
它通过改变载波的相位来传输数字信号,每个数字比特对应两个不同的相位。
以下将详细解析2PSK调制的原理。
2PSK调制主要涉及到两个过程:调制和解调。
调制过程:1. 文字编码:将要传输的信息进行数字编码,例如使用二进制编码方式,将每个数字比特用0和1代表。
2. 符号分配:每个数字比特对应一个相位,通常选择相位0和相位π来表示0和1。
3. 载波生成:产生一个恒定频率和幅度的正弦波,这个波被称为载波信号。
4. 相位调制:根据编码的数字比特,将相应的相位信息融入到载波信号中。
比如,相位0可以对应载波信号的相位不变,而相位π可以对应载波信号的相位反转。
5. 调制信号生成:得到相位调制后的信号,该信号即为调制信号。
解调过程:1. 接收信号采样:接收到经过信道传输的调制信号,并对信号进行采样。
2. 相位判决:根据接收到的信号的相位信息,进行相位判决以确定每个数字比特的数值。
例如,如果接收到的信号相位为0,则判定为0;如果接收到的信号相位为π,则判定为1。
3. 数字解码:将解调的数字比特翻译回原始的信息字符。
2PSK调制的优点:1. 简单性:2PSK调制的实现比较简单,仅需要改变相位即可。
2. 抗噪声性能:2PSK调制的抗噪声性能较好,因为每个数字比特对应的相位差异明显,相位误差引起的误码率较低。
2PSK调制的局限:1. 带宽效率:2PSK调制一次只能传输一个比特,相比其他复杂调制方式,其带宽利用率较低。
2. 灵活性:2PSK调制只能传输二进制信号,不能传输多元信号。
总结:2PSK调制通过改变载波的相位来传输数字信号。
在调制过程中,信号经过文字编码、符号分配、载波生成和相位调制等步骤。
在解调过程中,信号经过接收信号采样、相位判决和数字解码等步骤。
2PSK调制简单易实现,抗噪声性能好,但带宽利用率相对较低,适用于二进制信号的传输。
信息对抗大作业一、实验目的。
使用MATLAB构成一个加性高斯白噪声情况下的2psk调制解系统,仿真分析使用信道编码纠错和不使用信道编码时,不同信道噪声比情况下的系统误码率。
二、实验原理。
数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。
图1相应的信号波形的示例101作为360180度,也就是反相。
当传输数字信号时,"1"也就带上了信息。
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。
因此,2PSK信号的时域表达式为(t)=Acost+)其中,表示第n个符号的绝对相位:=因此,上式可以改写为图22PSK信号波形解调原理2PSK信号的解调方法是相干解调法。
由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。
下图2-3中给出了一种2PSK信号相干接收设备的原理框图。
图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。
判决器是按极性来判决的。
即正抽样值判为1,负抽样值判为0.2PSK信号相干解调各点时间波形如图3所示.当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错.图32PSK信号相干解调各点时间波形这种现象通常称为"倒π"现象.由于在2PSK 信号的载波恢复过程中存在着180°的相位模糊,所以2PSK 信号的相干解调存在随机的"倒π"现象,从而使得2PSK 方式在实际中很少采用。
1 引言通信按照传统的理解就是信息的传输。
在当今高度信息化的社会,信息和通信已成为现代社会的命脉。
信息作为一种资源,只有通过广泛的传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。
而通信作为传输信息的手段或方式,与传感技术,计算机技术相互融合,已为21世纪国际社会和世界经济发展的强大推动力。
1.1 数字通信系统的模型按照信道中传输的是模拟信号还是数字信号,相应的将通信系统分为模拟通信系统和数字通信系统。
模拟通信系统是利用模拟信号来传递信息的通信系统,模拟信号有时也称连续信号。
而数字通信系统是利用数字信号来传递信息的通信系统。
数字信号有时也称为离散信号。
近年来数字通信的发展远远超过模拟通信,数字通信在各个领域的应用也越来越广泛。
本文讨论的也是数字通信中调制解调原理。
数字通信系统的一般模型如图1所示。
图1 数字通信系统模型其中,信源编码有两个基本功能:一是提高信息传输的有效性,即设法减少码元数目和降低码元速率。
二是完成数/模转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,信源译码是信源编码的逆过程。
信道编码的目的是增强数字信号的抗干扰能力,信道译码是信道编码的逆过程。
加密和解密是为了保证所传信息的安全。
数字调制就是将数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。
图1为数字通信系统的一般化模型,实际的数字通信系统不一定包含图中的所有环节。
模拟信号经过数字编码后也可以在数字通信系统中传输。
1.2 数字通信的特点目前,数字通信在不同的通信业务中都得到了广泛的应用,究其原因也是数字通信相较于模拟同通信具有以下的一些优点。
(1)数字通信系统抗干扰能力强,且噪声不积累。
数字通信系统中传输的是离散取值的数字波形,接受端的目标不是精确的还原被传输的波形,而是从受噪声干扰的信号中判决出发送端所发送的事两个状态总的哪一个即可。
(2)数字通信系统传输差错可控。
通信原理大作业之--psk数字带通调制系统的调制与解调一、实验原理:二进制移相键控(2PSK)在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号. 通常用已调信号载波的0°和180°分别表示二进制数字基带信号的 1 和0. 二进制移相键控信号的时域表达式为e2PSK(t)=an*g(t-nTs)]*cosωct其中, an与2ASK和2FSK时的不同,在2PSK调制中,an应选择双极性,即(2-1-10)(2–1-11)若g(t)是脉宽为Ts, 高度为1的矩形脉冲时,则有e2PSK(t)= cosωct, 发送概率为P-cosωct, 发送概率为1-P由式(2 -1 - 11)可看出,当发送二进制符号1时,已调信号e2PSK(t)取0°相位,发送二进制符号0时,e2PSK(t)取180°相位.若用φn表示第n个符号的绝对相位,则有:φn= 0°, 发送1 符号 180°, 发送0 符号这种以载波的不同相位直接表示相应二进制数字信号的调制方式,称为二进制绝对移相方式。
二进制移相键控信号的典型时间波形如图2 - 11 所示.。
图 2 – 11 二进制移相键控信号的时间波形二进制移相键控信号的调制原理图如图2 - 12 所示. 其中图(a)是采用模拟调制的方法产生2PSK信号,图(b)是采用数字键控的方法产生2PSK信号。
图2- 122PSK信号的调制原理图2PSK信号的解调通常都是采用相干解调, 解调器原理图如图2- 13 所示。
在相干解调过程中需要用到与接收的2PSK信号同频同相的相干载波。
图2- 132PSK信号的解调原理图2PSK信号相干解调各点时间波形如图2 - 14 所示.。
当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错。
实验六2PSK调制与解调一、实验目的1、理解二进制移相键控(Phase Shift Keying,PSK)调制和解调的基本原理;2、了解2PSK调制和解调的实现方法。
二、实验原理一个正弦载波。
如果它被一个双极性比特流按照图6-1所示的方案调制,它的极性将在每一次比特流极性改变时跟着改变。
图6-1对正弦波来说,极性的翻转就等价于反相。
因此,乘法器的输出就是BPSK(2PSK)信号。
二进制移相键控的解调可分两个步骤来考虑。
1、限带信号波形的恢复,使其转化到基带信号;2、从基带的限带波形里重建二进制消息比特流。
在本实验中,实现第一步依靠的是一个“窃取”的本地同步载波。
第二步的抽样判决由定标模块实现,最后还应线性解码,重建原始单极性基带信号。
解调原理如图6-2所示。
图6-2三、实验设备1、主机TIMS-301F2、TIMS基本插入模块(1)TIMS-148音频振荡器(Audio Oscillator)(2)TIMS-150乘法器(Multiplier)或TIMS-425正交模块(Quadrature Utilities),此模块集成了2个乘法器和1个加法器(3)TIMS-151移相器(Phase Shifer)(4)TIMS-153序列产生器(Sequence Generator)(5)TIMS-154可调低通滤波(Tuneable LPF)(6)TIMS-402定标模块(decision-maker module)(7)TIMS-406线性编码器(Line Code Encoder)(8)TIMS-407线性译码器(Line Code Decoder)3、计算机4、Pico虚拟仪器四、实验步骤1、将Tims系统中音频振荡(Audio Oscillator)、移相器(Phase Shifter)、序列码产生器(Sequence Generator)、线性编码器(Line-code Encode)、乘法器(Multiplier)按图6-3连接。
实验 10 PSK 调制解调一、实验目的1.掌握 PSK 调制解调的工作原理及性能要求;2.进行 PSK 调制、解调实验,掌握相干解调原理和载波同步方法;3.理解 PSK 相位模糊的成因,思考解决办法。
二、实验原理1.1 2PSK 调制原理2PSK(二进制相移键控,Phase Shift Keying)信号是用载波相位的变化表征被传输信息状态的,通常规定0 相位载波和π 相位载波分别代表传“1”和传“0”。
1 1 0 0 1NRZ输入PSK调制信号图 10-1 2PSK 调制信号波形PSK 调制由“信道编码与频带调制-A4”模块完成,该模块基于 FPGA 和 DA 芯片,采用软件无线电的方式实现频带调制。
图 10-2 PSK 调制电路原理框图上图中,基带数据和时钟,通过 2P6 和 2TP8 两个铆孔输入到 FPGA 中,FPGA 软件完成PSK 的调制后,再经 DA 数模转换即可输出相位键控信号,调制后的信号从 4TP2 输出。
2.2PSK 解调原理实验中 2PSK 信号的解调采用相干解调法,首先要从调制信号中提取相干载波,在实验中采用数字 costas 环提取相干载波,二相 PSK(DPSK)解调器采用数字科斯塔斯环(Constas 环)解调,其原理如下图所示。
图 10-3 数字科斯塔斯特环原理图设已调信号表达式为 s (t ) = A 1 ⨯cos(ωt +ϕ(t ))(A 1 为调制信号的幅值),经过乘法器与载波信号 A 2 cos ωt (A2 为载波的幅值)相乘,得:e (t ) = 1A A [cos(2ωt + ϕ(t )) + cos ϕ(t )] 02 1 21可知,相乘后包括二倍频分量 2A 1 A 2 cos(2ωt + ϕ(t )) 和cos ϕ(t ) 分量(ϕ(t ) 为时间的函数)。
因此,需经低通滤波器除去高频成分cos(2ωt +ϕ(t )) ,得到包含基带信号的低频信号,然后同向端和正交端两路信号相乘,其差值作为环路滤波器的输入,然后控制 VCO 载波频率和相位,得到和调制信号同频同相的本地载波。
实验四PSK调制与解调实验一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。
2、掌握产生PSK(DPSK)信号的方法。
3、掌握PSK(DPSK)信号的频谱特性。
二、实验内容1、观察绝对码和相对码的波形。
2、观察PSK(DPSK)信号波形。
3、观察PSK(DPSK)信号频谱。
4、观察PSK(DPSK)相干解调器各点波形。
三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、同步提取模块5、双踪示波器五、实验步骤1:PSK调制实验(1)将信号源模块产生的码速率为15.625KHz(即将SW04,SW05拨为00000001 00101000)的周期性NRZ码(所谓周期性例如:00010001 00010001 00010001)送入数字调制模块的信号输入点“PSK(DPSK)基带输入”。
(2)将信号源模块产生的64KHz的正弦波(幅度为3V左右)送入数字调制模块的“PSK(DPSK)载波输入”。
(3)数字调制模块中的拨位开关S01拨到0,用双踪示波器同时观察点“PSK 基带输入”与“PSK调制输出”的波形。
2、PSK解调实验(1)将同步信号提取模块的拨码开关SW01的第一位拨上。
将数字解调模块中的拨位开关S01拨到0,(2)将“PSK调制输出”的输出信号送入数字解调模块的信号输入点“PSK-IN”,将“PSK调制输出”的波形送入同步信号提取模块的信号输入点“S-IN”,使信号输出点“载波输出”能输出提取出的正确的载波信号(方法请参考同步载波提取原理)。
(3)将同步信号提取模块的“载波输出”的输出波形送入数字解调模块的信号输入点“载波输入”,观察信号输出点“PSK-OUT”处的波形,并调节标号为“PSK/DPSK判决电压调节”的电位器,直到在该点观察到稳定的NRZ 码为止。
PSK-OUT:(4)将点“PSK-OUT”输出的波形送入同步信号提取模块的信号输入点“NRZ-IN”,再将同步信号提取模块的信号输出点“位同步输出”输出的波形送入数字解调模块的信号输入点“PSK-BS”。
psk调制及解调实验报告PSK调制及解调实验报告引言调制和解调是无线通信中的重要环节,它们能够将信息信号转化为适合传输的信号,并在接收端恢复出原始信息。
本实验旨在通过实际操作,探究PSK调制和解调的原理和实现方法。
一、实验目的本实验的主要目的是掌握PSK调制和解调的原理,实践PSK调制解调的基本方法,并通过实验结果验证理论分析。
二、实验原理1. PSK调制PSK(Phase Shift Keying)调制是一种基于相位变化的数字调制技术。
在PSK调制中,将不同的离散信息码映射到不同的相位,从而实现信息的传输。
常见的PSK调制方式有BPSK(二进制相移键控)、QPSK(四进制相移键控)等。
2. PSK解调PSK解调是将接收到的PSK信号恢复为原始信息信号的过程。
解调器通过检测相位的变化,将相位差映射回相应的信息码。
三、实验器材1. 信号发生器2. 功率放大器3. 混频器4. 示波器5. 电脑四、实验步骤1. 准备工作连接信号发生器、功率放大器和混频器,设置合适的频率和功率。
将混频器的输出连接至示波器,用于观察调制后的信号。
2. BPSK调制实验设置信号发生器输出为二进制序列,将序列与载波进行相位调制。
观察调制后的信号波形并记录。
3. BPSK解调实验将调制后的信号输入到解调器中,通过相位差检测将信号恢复为二进制序列。
观察解调后的信号波形并记录。
4. QPSK调制实验设置信号发生器输出为四进制序列,将序列与载波进行相位调制。
观察调制后的信号波形并记录。
5. QPSK解调实验将调制后的信号输入到解调器中,通过相位差检测将信号恢复为四进制序列。
观察解调后的信号波形并记录。
六、实验结果与分析通过实验观察和记录,可以得到调制和解调后的信号波形。
根据波形的相位变化,可以判断调制和解调是否成功。
在BPSK调制实验中,观察到信号波形只有两个相位,对应二进制序列的两个状态。
解调实验中,通过相位差检测可以准确地恢复出原始的二进制序列。
实验五 PSK 调制与解调一. 实验目的1 掌握相移键控的原理。
2 运用MATLAB 对PSK 的调制与解调过程进行仿真,记录并分析仿真结果。
二. 实验内容及各个功能模块及流程和工作原理二进制绝对相移键控(2PSK )是用二进制数字信号控制载波的两个相位,这两个相位通常相隔∏弧度,例如用相位0和∏分别表示1和0。
所以这种调制又称二相相移键控。
二进制相移键控信号的时域表达式为:t w nT t g a t s c s n n PSK cos )([)(2-=∑2PSK 信号的调制原理框图如下图所示:三. 软件详细设计、关键技术与难点、测试数据PSK 基于MA TLAB 的程序代码:a=[1 1 0 0 1 1 0 0]I=linspace(0,2*pi,50);f=sin(2*I);t=linspace(0,10*pi,400);out=1:400;b=1:400;d=1:400;c=1:7;w=1:400;for i=1:7if a(i)==0for j=1:50out(j+50*(i-1))=f(j);endelsefor j=1:50out(j+50*(i-1))=-f(j);endendendfor i=1:7for j=1:50m=0;n=0;if out(j+50*(i-1))-f(j)==0m=m+1;endif out(j+50*(i-1))+f(j)==0n=n+1;endendif m>nc(i)=0;elsec(i)=1;endendcfor i=1:7for j=1:50b(j+50*(i-1))=a(i);d(j+50*(i-1))=c(i);w(j+50*(i-1))=f(j);endendsubplot(3,1,1),plot(t,b),axis([0 10*pi -0.2 1.2]),xlabel('t'),ylabel('调制信号'); subplot(3,1,2),plot(t,w),axis([0 10*pi -1.2 1.2]),xlabel('t'),ylabel('载波'); subplot(3,1,3),plot(t,out),axis([0 10*pi -1.2 1.2]),xlabel('t'),ylabel('PSK波形'); 仿真结果如下:五.实习的收获、心得、问题、困难和建议通过实验让我更加深入的掌握了MATLAB然见的使用,在这次实验中,我查阅了很多相关资料,了解了数字调制的基本原理和主要过程,进一步学习了信号的传输的有关内容。
PSK调制解调实验报告PSK调制解调实验报告一、实验目的1. 了解与掌握PSK调制解调的基本原理及特点。
2. 了解PSK调制解调的硬件实现过程。
二、实验原理1. PSK调制PSK调制是在载波的相位上进行调制的一种方法,使用一定数量的离散相位值来体现调制数据。
其调制信号可以表示为s(t)=Acos(ωt+φ)其中,A为振幅,ω为角频率,φ是相位值,即φ=2πfct+2πφm(t)2. PSK解调在接收端,需要对接收信号进行解调。
对于PSK信号,解调过程由相位鉴别器实现。
相位鉴别器输入PSK信号,输出一串数字流,序列反映的是PSK锁定在给定的离散相位之一的时间。
三、实验器材及工具1. 端口配置:操作系统:Windows 7Python:3.5.3Matplotlib:2.0.0Scipy:0.18.1Numpy:1.11.3PyAudio:0.2.72. 设备及电路:信号发生器功率放大器变频器射频滤波器相位锁定环路示波器四、实验步骤1. 使用Python编程语言进行PSK调制解调的设计和实现。
2. 编写一个实时的模拟接收器程序,进行PSK解调并显示结果图像。
3. 装置实验所需的设备及电路,包括信号发生器、功率放大器、变频器、射频滤波器和相位锁定环路。
4. 调节各设备参数,使其符合实验要求,并采集数据。
5. 对采集到的数据进行处理和分析,得出实验结果。
五、实验结果1. 绘制出PSK调制解调的数据流图。
2. 根据所得的实验数据,进一步验证了PSK调制解调技术的正确性和可靠性。
通过反复调节设备参数,在正确的相位值处实现了准确的脉冲恢复。
3. 在相位鉴别器的设计中,应做到准确、高速,同时尽可能的降低误码率和噪声。
六、实验结论本次实验主要使用Python语言对PSK调制解调进行了模拟试验,并通过实验数据验证了PSK调制解调技术的正确性和可靠性。
同时也对相位鉴别器的设计略为进行了概述。
在实际应用中,需要根据具体需求进行优化和处理,以适应各种复杂的情况和环境。
一、概述在无线通信系统中,调制技术起着至关重要的作用。
其中,相位调制(PSK)和差分相位调制(DPSK)是常见的调制方式,它们能够在保持带宽效率的同时提供良好的抗干扰性能。
本文将重点介绍PSK和DPSK调制的工作原理。
二、PSK调制的工作原理1. 基本原理PSK调制是一种将数字信号转换为相位信号的调制方式。
在PSK调制中,数字信号被映射到不同的相位角度上,从而实现信号的调制。
对于二进制数字信号"0"和"1",可以分别映射到相角为0°和180°的两个相位上。
PSK调制可以实现二进制数字信号的传输。
2. 调制过程PSK调制的过程包括相位映射和载波调制两个主要步骤。
数字信号经过映射器将其映射到不同的相位上。
经过调制器与正弦载波相乘,得到调制后的信号。
经过滤波等环节,得到最终的PSK调制信号。
3. 解调过程PSK调制信号在接收端经过解调器解调时,需要进行相位解调。
解调器通过比较接收到的信号与参考信号的相位差来恢复数字信号。
在恢复数字信号的过程中,可以利用差分相位解调(Demodulation)等技术来提高系统的鲁棒性。
三、DPSK调制的工作原理1. 基本原理DPSK调制是相位调制的一种特殊形式,其特点在于仅传输相位变化的信息。
在DPSK调制中,相位调制比较的是连续时间的相位变化,而不是绝对的相位大小。
这种特性使得DPSK调制对于相位偏移和载波漂移具有较好的鲁棒性。
2. 调制过程DPSK调制的过程与PSK调制类似,主要包括映射和调制两个步骤。
不同之处在于,DPSK调制器比较的是相邻信号之间的相位差,而不是绝对的相位角度。
这种方式使得DPSK调制对于载波相位偏移具有一定的免疫能力。
3. 解调过程DPSK调制信号在接收端经过解调器解调时,也需要进行相位解调。
与PSK调制类似,在解调过程中可以利用相位差检测和信号重采样等技术来恢复数字信号,提高系统的性能。
Psk调制解调电路的新原理和过程目录: 1. 引言 2. Psk调制原理 3. Psk解调原理 4. Psk调制解调电路的实现5. 新原理和过程6. 总结1. 引言Psk(相位偏移键控)调制和解调技术是无线通信中常用的调制解调方式之一。
它通过改变载波信号的相位,来传输数字信号。
本文将介绍Psk调制解调电路的基本原理和传统实现方式,同时探讨一些新的原理和过程,以拓宽对这一主题的理解。
2. Psk调制原理Psk调制的基本原理是根据数字信号的码元来调整载波信号的相位。
具体来说,假设二进制数字信号的两种状态为0和1,将0映射到一个特定的相位,如0°,将1映射到另一个相位,如180°。
这样,在传输过程中,根据数字信号的变化,载波信号的相位会相应地改变,从而传输数字信息。
这种方式使得信号在频谱中具有良好的集中性,能够有效地传输数据。
3. Psk解调原理Psk解调的过程是将调制后的Psk信号转换为可供数字系统处理的基带信号。
解调电路需要对Psk信号的相位进行检测,判断每个码元所对应的相位,并将其转化为数字信号。
常见的解调方式有包络检波、相干解调等。
包络检波方法通过检测Psk信号的幅度变化来确定相位,而相干解调则是通过将Psk信号与本地参考信号相乘,再通过低通滤波得到基带信号。
4. Psk调制解调电路的实现传统上,Psk调制解调电路的实现主要基于模拟电路。
调制电路通常由载波产生器和相位调制电路组成,而解调电路则需要相位解调器和解调滤波器。
这些电路在实现上较为复杂,不仅需要精确的设计,而且在制造过程中也容易受到各种噪声和失真的影响。
模拟电路的性能通常会受到工艺、温度等因素的影响,可能无法满足高精度和高速传输的需求。
5. 新原理和过程随着数字电路和信号处理技术的发展,Psk调制解调电路的实现方式也在不断创新。
一种新的原理是将Psk调制解调电路实现在数字领域中,利用现代的低功耗、高速度的数字集成电路,以及数字信号处理器(DSP)的算法。
实验八:PSK/DPSK 调制解调实验一.实验目的1.掌握PSK 调制的工作原理与调整测试方法。
2.掌握PSK 解调的工作原理与调整测试方法。
3.掌握绝对码与相对码互相转换的电路连接及测量方法。
4.掌握DPSK 调制、解调的电路连接与测试。
二.实验仪器1.RZ8621D 实验箱1台 2.20MHZ 双踪示波器1台 3.平口小螺丝刀一个 4.实验电路连接 三.实验电路连接至解调W301图5-1 PSK/DPSK 调制方框图TP711图5-2 PSK/DPSK 解调方框图四.实验预习与测量点说明实验前请预习PSK/DPSK 调制与解调原理。
1、PSK 调制电路原理如图5-3所示,频率为1024KHZ 方波经R324加到U301A 及周边元件组成的低通滤波器。
得到1024KHZ 正弦波。
U303A,U301B 分别为1024KHZ 正弦波的同相放大器和反相放大器。
同相正弦波经C308加到模拟门U302A的输入,反相正弦波经C310加到模拟门U302B。
PSK调制的基带数字信号经薄膜开关和插塞选择后分两路,一路直接加到模拟门U302A控制端。
另一路经非门U305A反相后加到模拟门U302B控制端。
两模拟门工作原理与FSK情况相似,这儿不重复,两模拟门输出经插塞K301连接后并合路在TP305上便可测量到PSK信号。
U304A为跟随器。
U304B为加法器,用以引入信道噪声。
TP306是PSK信号发送输出测量点。
图5-3 PSK调制电路原理图2、PSK解调电路如图5-4所示,该电路采用科斯塔斯特环解调。
科斯塔斯特环电路方框原理如图5-5所示。
图5-4 PSK解调电路原理图图5-5科斯塔斯特环电路方框原理如图下面我们把实验箱电路与科斯塔斯特环方框原理图作一对比,讲述实验箱PSK 解调电路的工作原理。
PSK 已调波经C701加到三极管跟随器输入,采用跟随器的目的是为了隔离调制与解调。
由于跟随器电源电压为5V ,因此PSK 已调波信号幅度不能太大,一般控制在1.5V 左右,否则会产生波形失真(当失真不严重时,一般不影响解调)跟随器输出,连接到模拟门U302C 和U302D ,构成的乘法器,前者为正交载波乘法器,相当于图5-5中的乘法器2,后者为同相载波乘法器,相当于框图中乘法器1,U703A,U703D 为低通滤波器。
psk dpsk调制解调的工作原理-回复PSK (Phase Shift Keying)和DPSK (Differential Phase Shift Keying)是一种常用的数字调制和解调技术。
它们在通信系统中被广泛应用,特别是在无线通信和卫星通信领域。
本文将详细介绍PSK和DPSK调制解调的工作原理,一步一步解释它们是如何实现数据传输的。
首先,我们来了解PSK调制。
PSK调制是一种通过改变信号的相位来表示数字信息的调制技术。
在PSK调制中,每个数字比特(0或1)被映射为一种不同的相位状态。
常见的PSK调制方式有BPSK (Binary Phase Shift Keying)、QPSK (Quadrature Phase Shift Keying)和8PSK等。
以BPSK为例,0对应于一个固定的相位(通常为0度),而1对应于相位反转(通常为180度)。
在调制过程中,要发送的数字比特流通过一个比特周期的持续时间内的相位变化表现出来。
这一相位变化可以通过两个正交信号(正弦和余弦)的合成来实现。
将这两个正交信号分别乘以频率为f的正弦信号和余弦信号,再将它们相加就可以得到一个PSK信号。
在接收端,需要对接收到的信号进行解调以恢复出原始的数字信息。
解调过程基于相位差的检测。
对于BPSK调制来说,一个比特周期内的相位差可以是0度或180度。
这样,在接收到的信号中检测相位差可以判断出发送的是0还是1。
接下来,我们来介绍DPSK调制。
DPSK调制是一种相位差相比相位绝对值更容易检测的调制技术。
与PSK调制不同,DPSK调制不直接改变信号的相位,而是改变两个连续数字比特之间的相位差。
在DPSK调制中,最常见的方式是采用2PSK(也称为D-BPSK)调制。
在2PSK调制中,每两个相邻的数字比特之间的相位差表达了传输的数字信息。
具体来说,对于新的数字比特,相位差可以被设为0度或180度。
如果前一个数字比特是0,那么相位差将保持不变;如果前一个数字比特是1,那么相位差将被反转。
实验4PSK(DPSK)调制解调实验班级通信1403 学号201409732 姓名裴振启指导教师邵军花⽇期实验4 PSK(DPSK)调制解调实验⼀、实验⽬的1. 掌握PSK 调制解调的⼯作原理及性能要求;2. 进⾏PSK 调制、解调实验,掌握电路调整测试⽅法;3. 掌握⼆相绝对码与相对码的码变换⽅法。
⼆、实验仪器1.PSK QPSK调制模块,位号A2.PSK QPSK解调模块,位号C3.时钟与基带数据发⽣模块,位号:G4.噪声模块,位号B5.复接/解复接、同步技术模块,位号I6.20M双踪⽰波器1台7.⼩平⼝螺丝⼑1只8.频率计1台(选⽤)9.信号连接线4根三、实验原理PSK QPSK调制/解调模块,除能完成上述PSK(DPSK)调制/解调全部实验外还能进⾏QPSK、ASK调制/解调等实验。
不同调制⽅式的转換是通过开关4SW02及插塞37K01、37K02、四、PSK(DPSK)调制/解调实验进⾏PSK(DPSK)调制时,⼯作状态预置开关4SW02置于00001, 37K01、37K02①和②位挿⼊挿塞,38K01、38K02均处于1,2位相连(挿塞挿左边)。
相位键控调制在数字通信系统中是⼀种极重要的调制⽅式,它具有优良的抗⼲扰噪声性能及较⾼的频带利⽤率。
在相同的信噪⽐条件下,可获得⽐其他调制⽅式(例如:ASK、FSK)更低的误码率,因⽽⼴泛应⽤在实际通信系统中。
本实验箱采⽤相位选择法实现⼆进制相位调制,绝对移相键控(CPSK或简称PSK)是⽤输⼊的基带信号(绝对码)直接控制选择开关通断,从⽽选择不同相位的载波来实现。
相对移相键控(DPSK)采⽤绝对码与相对码变换后,⽤相对码控制选择开关通断来实现。
1.PSK调制电路⼯作原理⼆相相位键控的载波为1.024MHz,数字基带信号有32Kb/s伪随机码、及其相对码、32KHz ⽅波、外加数字信号等。
相位键控调制电原理框图,如图6-1所⽰。
图6-1 相位键控调制电原理框图1)滤波器、同相放⼤器和反相放⼤器从图6-1看出,1024KHZ的⽅波经37R29加到由运放37UO4A及周边元件组成的低通滤波器,其输出变为l024KHZ正弦波,它通过37U05A同相放⼤和37U05B反相放⼤,从⽽得到l024KHZ的同相和反相正弦载波,电位器37W01可调节反相放⼤器的增益,从⽽使同相载波与反相载波的幅度相等,然后同相和反相正弦载波被送到模拟开关乘法器。
实验九、PSK电路调试解调一、实验目的(1)掌握PSK调制的工作原理及电路组成;(2)了解载频信号的产生方法;二、实验内容利用1.024MHZ的正弦波作为载波,数字基带信号为32Kbit/S伪随机码。
实验要求采用绝对移相键控,通过直接采用调相法来实现调制,即用输入的基带信号直控制载波相位的变化来实现相移键控。
解调要求用相干解调,将基带信号解调出来。
三、实验原理模拟信号1.024MHZ载波输入到载波反相器的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。
对载波的相移键控是用模拟开关电路实现的。
0相载波和π相载波分别加在两个模拟开关的输入端,在数字基带信号的信码中,它的正极性加到模拟开关1的输入控制端,它反极性加到模拟开关2的输入控制端,用来控制两个不同频反相载波的通断。
解调电路主要由乘法器、低通滤波器、放大器、电压比较器以及延时消抖电路组成。
乘法器由4066来实现,主要实现调制信号与同频载波信号相乘,低通滤波器把基带信号滤出来,放大器将由低通滤波器输出的信号放大,电压比较器是将放大信号与最佳比较电压比较,延时消抖电路将电压比较器的输出波形的毛刺消除,得到的波形就是解调出来的基带信号。
实验框图如下:放大器电压比较器延时消抖电路实验电路图如下四、实验元件清单TL082CD4片、4066BD2片、74HC74D4片、LM311H1片、74HC04D1个、74HC10D1个、7486N1个、函数信号发生器2个、电容电阻若干、五、实验结果及分析仿真波形13由仿真波形1可以看出,两路载波相位相差π,符合载波要求。
由仿真波形2可以看出PSK 调制信号的输出与预期的结果相符,反映了基带信号的码元变化情况。
相干解调输出是调制信号与载波信号相乘的结果,反映在波形上就是振幅随基带信号的规律变化。
低通滤波器的输出就是解调出来的基带信号,它的变化直接反映了基带信号的变化情况。
从波形变化情况来看,低通滤波输出波形基本符合基带信号的变化规律。
8PSK信号调制解调模块总结一、8PSK信号发送端的调制对1800Hz单载波进展码元速率恒为2400Bd的8PSK调制,即对于每个码元调制所得的信号长度等于四分之三个载波信号周期。
发送端完整的信号调制框图如下所示:信息的发送是以数据帧的形式进展发送的,每次只发送一个数据帧,而不是连续发送的,这样信息在发送前发送端就不需要先跟接收端建立连接,但同时在对信号进展信源编码,信道编码和前导及探测报头序列的过程中那么降低了信号传送的效率。
数据帧主要包括两局部即前导及探测报头序列和所要传输的数据局部。
调制框图中各个模块的功能如下所示:1、截尾卷积编码一般情况下,卷积编码的时候在输入信息序列输入完毕后都还要再输入一串零比特的数据用于对移位存放器进展复位,这样在一定程度上影响了信源的编码效率。
而截尾卷积编码那么是在每次编码完成后不对移位存放器进展复位操作,而是将上次编码后编码存放器的状态作为下次编码时移位存放器的初始状态。
这样一方面使得信源的编码的码率得到了提高,另一方面也增加了信息的平安性,因为接收端只有知道发送端编码器中的移位存放器的初始状态或者付出比拟大的解码代价的情况下才能对接收到的信号进展解调,否那么解调出来的永远是乱码。
2、交织码元的交织其实是属于信道编码,交织的目的是通过将信息在信道中受到的突发连续过失分散开来,使得接收到的信号中的过失趋向于随机过失,降低接收端信息解调出错的概率,从而提高通信中信息的可靠性。
交织的方法一般是用两个适当大小的矩阵,同一时间一个用于数据的存储另外一个那么用于数据的读取,而且两个矩阵的存取或者输出是交替的。
输入序列按照逐行〔列〕的顺序存储到其中的一个矩阵中,而输出序列那么是按照逐列〔行〕的顺序从另一个矩阵中读取。
通常矩阵越大,那么对于连续性的突发错误的分散效果越好,但是编码的时延也就越大。
3、Walsh码Walsh码是一种同步正交码,在同步传输的情况下,具有良好的自相关特性和处处为零的互相关特性。
1第1章 PSK 调制和解调的基本原理回顾我们这里设计的课题(PSK 调制与解调)涉及到两种:2PSK 和2DPSK 1.1 三种数字调制的比较数字调制就是用载波信号的某些离散状态来表征所传送的信号,在接收端也对载波信号的离散调制参量进行检测。
和模拟信号一样,数字调制也有调幅、调频和调相三种基本形式,即有振幅键控(ASK )、移频键控(FSK )和移相键控(PSK )三种基本形式。
如下图所示:图1-1 三种调制方式图各种调制方式的对比分析。
由于噪声干扰的影响最终表现在收方恢复信码时的误码率性能上,所以系统的抗噪声性能可以用系统平均的误码率来表征。
即用各自系统的平均误码率P e 对广义信噪比ε的曲线来表示系统的抗噪声性能。
ε为输入信号每个码元的平均能量与输入噪声的单边功率谱(双边谱的二倍)密度之比,即称广义信噪比。
在此种条件下,可以用相同ε值或相同P e 去比较误码率P e 或ε的大小,从而合理地比较各种键控方式。
(1)ASK 相干解调 P e =1/2erfc[2ε]ε=A 2T/n 0(2)ASK 非相干解调P e ≈[1+πε21].e-ε/2(3)FSK 相干解调P e =1/2erfc[2ε](4)FSK(5)PSK(6)DPSK的意义.令2PSKe0(t)特性为:a也就是说,在一个码元持续时间T s内,e0(t)为:2cosωc t ,概率为Pe0(t)=-cosωc t ,概率为(1-P)即发送二进制0时(a n取+1)e0(t)取0相位;发送二进制符号1时(a n取-1)e0(t)取π相位。
调制可以采用模拟调制的方式产生2PSK,即2PSK信号可通过乘法器来得到。
也可以采用数字键控的方式产生。
调制原理见下:(a)模拟调制(b) 数字键控调制1-3 2PSK调制原理图1.3 2DPSK调制原理相对移相,就是利用载波相位的相对值来传递信息,也就是利用前后码元载波相位的相对变化来传递信息,所以也称为“差分移相”。
1 引言通信按照传统的理解就是信息的传输。
在当今高度信息化的社会,信息和通信已成为现代社会的命脉。
信息作为一种资源,只有通过广泛的传播与交流,才能产生利用价值,促进社会成员之间的合作,推动社会生产力的发展,创造出巨大的经济效益。
而通信作为传输信息的手段或方式,与传感技术,计算机技术相互融合,已为21世纪国际社会和世界经济发展的强大推动力。
1.1 数字通信系统的模型按照信道中传输的是模拟信号还是数字信号,相应的将通信系统分为模拟通信系统和数字通信系统。
模拟通信系统是利用模拟信号来传递信息的通信系统,模拟信号有时也称连续信号。
而数字通信系统是利用数字信号来传递信息的通信系统。
数字信号有时也称为离散信号。
近年来数字通信的发展远远超过模拟通信,数字通信在各个领域的应用也越来越广泛。
本文讨论的也是数字通信中调制解调原理。
数字通信系统的一般模型如图1所示。
图1 数字通信系统模型其中,信源编码有两个基本功能:一是提高信息传输的有效性,即设法减少码元数目和降低码元速率。
二是完成数/模转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,信源译码是信源编码的逆过程。
信道编码的目的是增强数字信号的抗干扰能力,信道译码是信道编码的逆过程。
加密和解密是为了保证所传信息的安全。
数字调制就是将数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。
图1为数字通信系统的一般化模型,实际的数字通信系统不一定包含图中的所有环节。
模拟信号经过数字编码后也可以在数字通信系统中传输。
1.2 数字通信的特点目前,数字通信在不同的通信业务中都得到了广泛的应用,究其原因也是数字通信相较于模拟同通信具有以下的一些优点。
(1)数字通信系统抗干扰能力强,且噪声不积累。
数字通信系统中传输的是离散取值的数字波形,接受端的目标不是精确的还原被传输的波形,而是从受噪声干扰的信号中判决出发送端所发送的事两个状态总的哪一个即可。
(2)数字通信系统传输差错可控。
在数字通信系统中,可通过信道编码技术进行检错和纠正,降低误码率,提高传输质量。
(3)数字通信系统便于用现代数字信号处理技术对数字信息进行处理、变换、存储。
这种数字处理的灵活性表现为可以将来自不同信源的信号综合到一起传输。
(4)数字通信系统易于集成,使通信设备微型化,重量轻。
(5)数字通信系统易于加密处理,且保密性好。
1.3 数字调制的现状及发展趋势数字通信系统的优势明显,但同时也存在一些缺陷,需要较宽的传输带宽。
在现代通信中,随着大容量和远距离数字通信技术的发展,信道的带宽限制和非线性对传输信号的影响越来越来重要。
于是,新的数字调制方式逐渐出现。
这些调制方式尽量减小信道对所传输信号的影响,以便在有限的带宽资源条件下获得更高的传输速率。
多进制调制是提高谱利用率的有效方法,恒包络技术能适应信道的非线性,并保持较小的频带利用率。
近些年来,新发展的数字调制技术有最小移频键控(MSK),高斯滤波最小移频键控(GMSK),正交幅度调制(QAM),正交频分复用调制(OFDM)等等。
近年来,随着半导体技术和信号处理技术的不断发展,用户对信道资源要求不断提高,移动性能用户也不断增加。
卫星通信技术的发展,军用制导通信技术和深空探测技术的不断发展使高速率的调制技术成为可能。
随着软件无线电技术的加速发展,Doppler频差影响不断加大,数字调制技术将能适应复杂干扰环境下通信方式和更高频段的通信。
2 PSK 的基本原理2.1 2PSK 调制解调的基本原理相移键控是利用载波的不同相位来传递数字信息,而振幅和频率保持不变。
在2PSK 中,通常用初始相位0和π分别表示二进制“0”和“1”。
因此,2PSK 信号的时域表达式为()n c PSK t A t e ϕω+=cos )(2 (1)其中,n ϕ表示第n 个符号的绝对相位:时发送时发送”“”“010n ⎩⎨⎧=πϕ(2)因此,式(2)可以改写为PP tA tA t e c c PSK -⎩⎨⎧-=1cos cos )(2概率为概率为ωω(3)由于表示信号的两种码元的波形相同,极性相反,故2PSK 信号一般可以表述为一个双极性(bipolarity )全占空(100% duty ratio )矩形脉冲序列与一个正弦载波的相乘,即t ct s t PSK e ωcos )()(2= (4)其中∑-=ns n nT t g a t s )()((5)这里,g(t)是脉宽为s T 的单个矩形脉冲,而n a 的统计特性为P P a n -⎩⎨⎧-=111概率为概率为(6)即发送二进制符号“0”时(n a 取+1),)(2t e PSK 取0相位;发送二进制符号“1”时(n a 取-1),取π相位。
这种以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为二进制绝对相移方式。
调制方法有模拟调制和键控法,解调方法通常采用的是相干解调法。
下面是2PSK 的调制解调原理框图。
图2 2PSK 信号的解调原理框图2.2 4PSK 调制解调的基本原理4PSK 即四进制移向键控,又叫QPSK 。
4PSK 是英文Quadrature Phase Shift Keying 的简称,意为正交相移键控,是一种数字调制方式。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
4PSK 利用载波的四种不同相位来表示数字信息,由于每一种载波相位代表两个比特信息,因此每个四进制码元可以用两个二进制码元的组合来表示。
下图为4PSK 的相位矢量图。
(a)模拟调制方法 (b)键控法图3 4PSK 信号相位φn 矢量图在表示每个四进制码元的两个二进制码元中,前一比特用a 表示,后一比特用b 表示。
则双比特ab 与载波相位的关系入下表所示。
表1 双比特ab 与载波相位的关系四进制信号可等效为两个正交载波进行双边带调制所得信号之和。
2.2.1 4PSK 的调制原理4PSK 的调制方法有正交调制方式(双路二相调制合成法或直接调相法)、相位选择法、插入脉冲法等。
本文中采用的是正交调制方式。
下图是正交调制的原理框图。
01 270o图4 4PSK正交调制原理方框图它可以看成是由两个载波正交的2PSK调制器构成的。
图中输入的基带信号是二进制不归零双极性码元,它被“串/并变换”电路变成两路并行码元a和b,每个码元的的持续时间是输入码元的2倍。
然后分别调制到cosωc t和sinωct两个载波上,两路相乘器输出的信号是相互正交的抑制载波的双边带调制(DSB)信号,其相位与各路码元的极性有关,分别由a和b码元决定。
经相加电路后输出两路的合成波形,即是4PSK信号。
图中两个乘法器,其中一个用于产生0o与180o两种相位状态,另一个用于产生90o与270o两种相位状态,相加后就可以得到45o,135o,225o,和315o四种相位。
2.2.2 4PSK的解调原理4PSK信号是两个载波正交的2PSK信号的合成。
所以,可以仿照2PSK相干解调法,用两个正交的相干载波分别检测两个分量 a和b,然后还原成二进制双比特串行数字信号。
这种方法称为极性比较法,其原理框图5所示。
图5 4PSK信号解调器原理方图判决器是按极性来判决的,即正抽样值判为1,负抽样值判为0。
两路抽样判决器输出a、b,经并/串变换器就可将并行数据恢复成串行数据如表2所示。
表2 抽样判决器的判决准则3 PSK在MATLAB中的编译与仿真3.1 MATLAB软件介绍MATLAB 软件是美国 Math Works 公司的产品,MATLAB 是英文 Matrix Laboratory(矩阵实验室)的缩写。
MATLAB软件系列产品是一套高效强大的工程技术数值运算和系统仿真软件,广泛应用于当今的航空航天、汽车制造、半导体制造、电子通信、医学研究、财经研究和高等教育等领域,被誉为“巨人肩膀上的工具”。
研发人员借助MATLAB 软件能迅速测试设想构想,综合评测系统性能,快速设计更好方案来确保更高技术要求。
同时MATLAB也是国家教委重点提倡的一种计算工具。
MATLAB的编程非常简单,它有着比其他任何计算机高级语言更高的编程效率、更好的代码可读性和移植性,以致被誉为“第四代”计算机语言,MATLAB 是所有Math Works公司产品的数值分析和图形基础环境。
此外MATLAB 还拥有强大的2D和3D甚至动态图形的绘制功能,这样用户可以更直观、更迅速的进行多种算法的比较,从中找出最好的方案。
从通信系统分析与设计、滤波器设计、信号处理、小波分析、神经网络到控制系统、模糊控制等方面来看,MATLAB提供了大量的面向专业领域的工具箱。
通过工具箱,以往需要复杂编程的算法开发任务往往只需一个函数就能实现,而且工具箱是开放的可扩展集,用户可以查看或修改其中的算法,甚至开发自己的算法。
3.2 MATLAB中工具箱simulink的简介Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
Simulink是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。
Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。
为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI),这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
Simulink的每一个模块实际上都是一个系统、一个典型的Simulink模块包括输入、状态和输出三个部分:(1) 输入模块,即信号源模块,包括常数信号源、函数信号发生器和用户自定义信号;(2) 状态模块,即被模拟的系统模块,它是Simulink的中心模块,是系统建模的核心和主要部分;(3) 输出模块,即信号显示模块,它能够以图形方式、文件格式进行显示,也可以在MATLAB的工作空间显示,输出模块主要集中在Sinks库目前, MATLAB已经广泛地应用于工程设计的各个领域,如电子、通信等领域;它已成为国际上最流行的计算机仿真软件设计工具。