微粒间作用力与物质的性质-课件
- 格式:ppt
- 大小:801.00 KB
- 文档页数:32
微粒间的相互作用要点:1.了解化学键的定义,了解离子键、共价键的形成。
2.了解离子化合物和共价化合物的结构特征并能初步解释其物理性质一、化学键的含义与类型1.化学键:相邻的两个或多个原子间强烈的相互作用。
注意:(1)化学键定义中的原子是广义上的原子,既包括中性原子,也包括带电原子或原子团(即离子);(2)化学键定义中“相邻”“强烈的相互作用”是指原子间紧密的接触且能产生强烈电子与质子、电子与电子、质子与质子间的电性吸引与排斥平衡作用。
物质内不相邻的原子间产生的弱相互作用不是化学键;(3)化学键的形成是原子间强烈的相互作用的结果。
如果物质内部相邻的两个原子间的作用很弱,如稀有气体原子间的相互作用,就不是化学键。
它们之间的弱相互作用叫做范德华力(或分子间作用力)。
化学键的常见类型:离子键、共价键、金属键。
(一)、共价键1.共价键的概念:原子之间通过共用电子形成的化学键称为共价键。
2.成键元素:通常是非金属元素原子形成的化学键为共价键。
结果是使每个原子都达到8或2个电子的稳定结构,使体系的能量降低,达到稳定状态。
3.形成共价键的条件:同种或不同种的原子相遇时,若原子的最外层电子排布未达到稳定状态,则原子间通过共用电子对形成共价键。
(二)、离子键1.离子键的概念:阴阳离子之间通过静电作用形成的化学键。
2.成键元素:一般存在于金属和非金属之间。
3.形成离子键的条件:成键原子的得、失电子能力差别很大(活泼金属与活泼非金属之间)例如:在氯化钠的形成过程中,由于钠是金属元素很容易失电子,氯是非金属元素很容易得电子,当钠原子和氯原子靠近时,钠原子就失去最外层的一个电子形成钠阳离子,氯原子最外层得到钠的一个电子形成氯阴离子(两者最外层均达到稳定结构),阴、阳离子靠静电作用形成化学键——离子键,构成氯化钠。
由于钠和氯原子之间是完全的得失电子,他们已形成了离子,因此NaCl中的微粒不能再叫原子,而应该叫离子。
【例题1】.下列关于化学键的叙述正确的是()A.化学键既存在于相邻的原子之间,又存在于相邻分子之间B.两个原子之间的相互作用叫做化学键C.化学键通常指的是相邻的两个或多个原子之间的强烈的相互作用D.阴阳离子之间有强烈的吸引作用而没有排斥作用,所以离子键的核间距相当小【例题2】.下列过程中,共价键被破坏的是()A.碘升华B.溴蒸气被木炭吸附C.酒精溶于水D.HCl气体溶于水二、离子化合物与共价化合物1.离子化合物:含有离子键的化合物。
物质变化与微粒间作用力1.分子间作用力(1)定义把分子聚集在一起的作用力,又称范德华力。
(2)特点①分子间作用力比化学键弱得多,它主要影响物质的熔点、沸点等物理性质,而化学键主要影响物质的化学性质。
②分子间作用力存在于由共价键形成的多数共价化合物和绝大多数气态、液态、固态非金属单质分子之间。
但像二氧化硅、金刚石等由共价键形成的物质,微粒之间不存在分子间作用力。
(3)变化规律一般来说,对于组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越大,物质的熔、沸点也越高。
例如,熔、沸点:I2>Br2>Cl2>F2。
2.氢键(1)定义分子间存在的一种比范德华力稍强的相互作用。
(2)形成条件除H外,形成氢键的原子通常有O、F、N。
(3)氢键存在广泛,如蛋白质分子、醇、羧酸分子、H2O、NH3、HF等分子之间。
分子间氢键会使物质的熔点和沸点升高。
3.物质的溶解或熔化与微粒间作用力变化的关系(1)离子化合物的溶解或熔化过程离子化合物溶于水或熔化后均电离成自由移动的阴、阳离子,离子键被破坏。
(2)共价化合物的溶解过程①有些共价化合物溶于水后,能与水反应,生成物发生电离,其分子内共价键被破坏,如CO2、SO2等。
②有些共价化合物溶于水后,发生电离,其分子内的共价键被破坏,如HCl、H2SO4等。
③某些共价化合物溶于水后,其分子内的化学键不被破坏,而破坏分子间作用力,如蔗糖、酒精等。
④某些非金属或共价化合物熔化时破坏分子间作用力或氢键,如I2熔化破坏分子间作用力,而冰融化主要破坏氢键。
(3)单质的溶解过程某些活泼的非金属单质溶于水后,能与水反应,其分子内的共价键被破坏,如Cl 2、F 2等。
1.(2019·武汉调研)下列过程中,共价键被破坏的是( )①碘升华②溴蒸气被炭吸附 ③乙醇溶于水④HCl 气体溶于水 ⑤冰融化⑥NH 4Cl 受热 ⑦氢氧化钠熔化A .①④⑥⑦B .③④⑥C .①②④⑤D .④⑥ 答案 D2.下列化学反应中,既有离子键、极性键、非极性键断裂,又有离子键、极性键、非极性键形成的是( )A .2Na 2O 2+2H 2O===4NaOH +O 2↑B .Mg 3N 2+6H 2O===3Mg(OH)2↓+2NH 3↑C .Cl 2+H 2O HClO +HClD .NH 4Cl +NaOH=====△NaCl +NH 3↑+H 2O答案 A3.下列变化需克服相同类型作用力的是( )A .碘和干冰的升华B .硅和C 60的熔化C .氯化氢和氯化钾的溶解D .溴和汞的汽化答案 A4.下图中每条折线表示元素周期表中第Ⅳ A ~第Ⅶ A 族中的某一族元素氢化物的沸点变化。
第2课时共价晶体学习任务1.能分析共价键的键能与化学反应中能量变化的关系。
2.能根据共价晶体的微观结构预测其性质。
一、共价键键能与化学反应的反应热1.共价键的键参数(1)键能在101 kPa、298 K条件下,1 mol气态AB分子生成气态A原子和B原子的过程中所吸收的能量,称为AB间共价键的键能。
键能的单位是kJ· mol-1。
(2)键长两个原子形成共价键时,两原子核间的平均间距。
(3)共价键的影响因素键长越短,键能越大,共价键就越稳定。
2.键能与化学反应热的关系ΔH=反应物的总键能—生成物的总键能若ΔH>0,则该反应为吸热反应;若ΔH<0,则该反应为放热反应。
1.利用共价键的键参数解释气态氢化物稳定性:HF>HCl>HBr>HI的原因:__________________________________________________________________________________________________________________。
[答案] 键长:H—F<H—Cl<H—Br<H—I,气态氢化物稳定性:HF>HCl>HBr>HI2.甲醇是一种绿色能源。
工业上,H2和CO合成CH3OH的反应为2H2(g)+CO(g)―→CH3OH(g) ΔH(1)已知几种键能数据如下表:化学键H—H C—O C≡O H—O C—HE/(kJ·mol-1) 436 343 1 076 465 413 则2H23-1[解析] (1)反应热等于断裂化学键吸收的总能量与形成化学键放出的总能量之差。
ΔH =(436×2+1 076-413×3-343-465)kJ/mol=-99 kJ·mol-1。
[答案] -99二、共价晶体1.共价晶体简介(1)概念所有原子通过共价键结合,形成空间网状结构的晶体。
《微粒之间的相互作用力》讲义在我们所处的这个奇妙的物质世界中,微粒(原子、分子、离子等)并非孤立存在,它们之间存在着各种各样的相互作用力。
这些相互作用力决定了物质的性质和状态,从坚硬的固体到流动的液体,再到无处不在的气体,无一不是微粒间相互作用的结果。
首先,让我们来了解一下离子键。
当活泼的金属元素(如钠、钾)与活泼的非金属元素(如氯、氟)相遇时,它们之间容易发生电子的转移。
金属原子失去电子形成阳离子,非金属原子得到电子形成阴离子。
由于正负电荷之间的强烈吸引,阳离子和阴离子紧密结合,形成了离子键。
离子键的强度较大,因此由离子键构成的化合物(如氯化钠)通常具有较高的熔点和沸点,在固态时不导电,而在熔融状态或水溶液中能够导电。
与离子键不同,共价键则是原子之间通过共用电子对形成的相互作用。
例如,氢分子中的两个氢原子,它们各自提供一个电子,形成共用电子对,从而将两个氢原子结合在一起。
共价键又分为极性共价键和非极性共价键。
在极性共价键中,成键原子对共用电子对的吸引力不同,导致电子对有所偏移,使得分子呈现极性;而非极性共价键中,成键原子对共用电子对的吸引力相同,电子对不偏移,分子呈非极性。
金属键是存在于金属单质或合金中的一种特殊的相互作用力。
在金属晶体中,金属原子的部分或全部外层电子会脱离原子,形成“自由电子”,这些自由电子在整个金属晶体中自由运动,将金属原子或离子“胶合”在一起。
金属键没有方向性和饱和性,这使得金属具有良好的延展性、导电性和导热性。
除了上述三种主要的化学键,微粒之间还存在着分子间作用力。
分子间作用力包括范德华力和氢键。
范德华力普遍存在于分子之间,其强度相对较弱。
一般来说,随着分子相对质量的增大,范德华力也会增大,物质的熔沸点也会相应升高。
氢键则是一种特殊的分子间作用力,它比范德华力要强一些。
当氢原子与电负性大、半径小的原子(如氮、氧、氟)结合时,氢原子与另一个电负性大的原子之间会产生一种较强的相互作用,这就是氢键。
1.共价键的判断及分类(1)共价键的分类(2)共价键类型的判断①根据成键元素判断:同种元素的原子之间形成的是非极性键,不同元素的原子之间形成的是极性键。
①根据原子间共用电子对数目判断单键、双键或三键。
①根据共价键规律判断σ键、π键及其个数;原子间形成单键,则为σ键;形成双键,则含有一个σ键和一个π键;形成三键,则含有一个σ键和两个π键。
2.范德华力、氢键及共价键的比较范德华力氢键共价键概念物质分子之间普遍存在的一种相互作用力由已经与电负性很大的原子形成共价键的氢原子与另一个电负性很大的原子之间的作用力原子间通过共用电子对所形成的相互作用作用微粒分子或原子(稀有气体)氢原子、电负性很大的原子原子强度比较共价键>氢键>范德华力影响强度的因素①随着分子极性的增大而增大;①组成和结构相似的物质,相对分子质量越大,范德华力越大对于A—H…B—,A、B的电负性越大,B原子的半径越小,作用力越大成键原子半径越小,键长越短,键能越大,共价键越稳定对物质性质的影响①影响物质的熔点、沸点、溶解度等物理性质;①组成和结构相似的物质,随相对分子质量的增大,物质的熔、沸点升高,如熔、沸点:F2<Cl2<Br2<I2,分子间氢键的存在,使物质的熔、沸点升高,在水中的溶解度增大,如熔、沸点:H2O>H2S,HF>HCl,NH3>PH3①影响分子的热稳定性;①共价键的键能越大,分子的热稳定性越强跟踪训练1.下表是元素周期表中的一部分,下列有关说法错误的是族① A① A① A① A① A① A① A周期2c d3a b e fA.d的氢化物比e的氢化物稳定B.第三周期主族元素的最高正化合价等于其所在的族序数C.f的最高价氧化物对应水化物的酸性明显强于cD.a、f两种元素形成的化合物为共价化合物2.下列有关化学用语表示正确的是P B.Na+的结构示意图:A.中子数为16的磷原子:1615C.氯化钙的电子式:D.乙烯的结构简式:CH2CH23.一种由短周期主族元素组成的化合物(如图所示),可用于制备各种高性能防腐蚀材料。