第3章集成电路制造工艺(1)
- 格式:ppt
- 大小:1.85 MB
- 文档页数:55
集成电路制造工艺第1章绪论1.1 课题背景在过去的的几十年里,一个以计算机、互联网、无线通信和全球定位系统为组成部分的信息社会逐渐形成。
这个信息社会的核心部分是由众多内建于系统中的细小集成电路(IC)芯片支持和构成的。
集成电路广泛应用于生活中的各个领域—诸如消费类产品、家庭用品、汽车、信息技术、电信、媒体、军事和空间应用。
结合纳米技术,持续不断的研究和开发即将使得集成电路更小和更强有力。
在可见的未来,计算机的尺寸将缩小到指甲盖大小,达到集成电路在尺寸、速度、价格及功耗方面实际可能的极限。
1.2 集成电路制造工艺发展概况随着硅平面工艺技术的不断完善和发展,到1958年,诞生了第一块集成电路,也就是小规模集成电路(SSL);到了20世纪60年代中期,出现了中规模集成电路(MSL);20世纪70年代前期,出现了大规模集成电路(LSL);20世纪70年代后期又出现了超大规模集成电路(VLSL);到了20世纪90年代就出现了特大规模集成电路(ULSL)。
集成电路的制造工艺流程十分复杂,而且不同的种类、不同的功能、不同的结构的集成电路,其制造工艺的流程也不一样。
人们常常以最小线宽(特征尺寸)、硅晶圆片的直径和动态随机存取存储器(DRAM)的容量,来评价集成电路制造工艺的发展水平。
在表1-1中列出了从1995年到2010年集成电路的发展情况和展望。
表1-1 集成电路的发展情况和展望年代1995 1998 2001 2004 2007 2010 特征尺寸/um 0.35 0.25 0.18 0.13 0.09 0.065DRAM容量/bit 64M 256M 1G 4G 16G 64G微处理器尺寸/mm²250 300 360 430 520 620DRAM尺寸/mm²190 280 420 640 960 1400 逻辑电路晶体管密度(晶体管数)/个4M 7M 13M 25M 50M 90M 高速缓冲器/(bit/cm²)2M 6M 20M 50M 100M 300M最大硅晶圆片直径/mm 200 200 300 300 400 400第2章半导体集成电路制造工艺流程2.1 概括本章以大量精美的图片、图表及具体详实的数据详细描述了集成电路制造的全过程。
第3章IC 制造工艺⏹IC 制造工艺十分复杂,简单地说,就是在衬底材料上,运用各种方法形成不同的“层”,并在选定的区域掺入杂质,以改变半导体导电性能,形成半导体器件的过程。
⏹这个过程需要许多步骤才能完成,从晶圆片到集成电路成品大约需要经过数百道工序。
关心每一步工艺对器件性能的影响,读懂PDK ,挖掘工艺潜力。
1⏹IC 制造工艺是由多种单项工艺组合而成的,主要的单项工艺通常包括三类:薄膜制备工艺、图形转移工艺、掺杂工艺。
⏹薄膜制备工艺:包括氧化工艺和薄膜淀积工艺。
通过生长或淀积的方法,生成IC 制造过程中所需的各种材料的薄膜,如金属层、绝缘层。
⏹图形转移工艺:包括光刻、刻蚀工艺。
IC 是由许多半导体元器件组合而成的,对应在晶圆上就是半导体、导体及各种不同层上的隔离材料的集合。
IC 制造工艺首先将这些结构以图形的形式制作在光刻掩膜版上,然后通过图形转换工艺最终转移到晶圆上。
⏹掺杂工艺:包括扩散和离子注入工艺,通过这些工艺将各种杂质按照设计要求掺杂到晶圆片的特定位置上,形成晶体管的源漏端及欧姆接触等。
3.1 外延生长3.2掩模版的制作3.3光刻原理与流程3.4 氧化3.5 淀积与刻蚀3.6 掺杂原理与工艺/AMuseum/ic/index_04_03_03.html3.1 外延生长(Epitaxy)⏹尽管有些器件和IC可以直接做在未外延的基片上,但是未外延过的基片性能常常不具备制作器件和电路所需的性能,不能满足要求。
大多数器件和IC都做在经过外延生长的衬底上。
⏹外延的目的是用同质材料形成具有不同的掺杂种类及浓度,因而具有不同性能的晶体层。
⏹在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的单晶层,犹如原来的晶体向外延伸了一段,故称外延生长。
⏹外延生长技术发展于50年代末60年代初。
当时,为了制造高频大功率器件,需要减小集电极串联电阻,又要求材料能耐高压和大电流,因此需要在低阻值衬底上生长一层薄的高阻外延层。
一、教案基本信息1. 教案名称:集成电路制造工艺教案2. 课时安排:共24 课时3. 适用年级:高中物理、化学、信息技术等相关课程4. 教学目标:a. 使学生了解集成电路的基本概念和原理b. 使学生掌握集成电路制造的基本工艺流程c. 使学生了解集成电路的应用领域和发展趋势二、教学内容与步骤1. 第一课时:集成电路概述a. 集成电路的定义和发展历程b. 集成电路的分类和特点c. 集成电路的应用领域2. 第二课时:集成电路的组成与结构a. 集成电路的组成要素b. 集成电路的常见结构类型c. 集成电路的封装与测试3. 第三课时:集成电路制造的基本工艺流程a. 晶圆制造b. 晶圆加工c. 芯片制造d. 芯片封装与测试4. 第四课时:集成电路设计基础a. 数字电路设计原理b. 模拟电路设计原理c. 集成电路设计工具与方法5. 第五课时:集成电路的应用与发展趋势a. 集成电路在电子设备中的应用b. 集成电路技术的最新发展趋势c. 我国集成电路产业的发展现状与展望三、教学方法与手段1. 采用讲授法、问答法、案例分析法等教学方法,引导学生了解和掌握集成电路的相关知识。
2. 使用多媒体教学手段,如PPT、视频等,展示集成电路的制造过程、应用场景等,增强学生的学习兴趣和理解程度。
四、教学评价1. 课后作业:要求学生完成相关的课后练习题,巩固所学知识。
2. 课堂讨论:鼓励学生积极参与课堂讨论,提高学生的思维能力和表达能力。
五、教学资源1. 教材:推荐使用《集成电路设计与制造》等教材,为学生提供系统的学习资料。
2. 参考资料:提供相关的学术论文、新闻报道等,帮助学生了解集成电路的最新发展动态。
3. 网络资源:推荐学生浏览一些集成电路相关的网站,如中国集成电路产业协会官网等,获取更多的行业信息。
六、教学内容与步骤(续)6. 第六课时:集成电路制造的关键技术a. 光刻技术b. 蚀刻技术c. 化学气相沉积d. 物理气相沉积e. 离子注入7. 第七课时:集成电路材料的性质与应用a. 硅晶圆的制备与性质b. 掺杂技术及其对材料性质的影响c. 常见半导体材料的特性与应用8. 第八课时:集成电路设计工具与方法(续)a. 硬件描述语言(HDL)b. 数字集成电路设计流程c. 模拟集成电路设计流程9. 第九课时:集成电路产业的全球化与竞争格局a. 集成电路产业的地域分布b. 主要集成电路制造商及其产品c. 我国集成电路产业的竞争策略与发展策略10. 第十课时:集成电路安全与环保a. 集成电路生产过程中的安全问题b. 集成电路废物的处理与回收c. 集成电路产业的环境保护责任七、教学方法与手段(续)4. 结合实际案例,分析集成电路制造过程中的关键技术及其应用。
集成电路生产工艺流程(一)集成电路生产工艺概述集成电路生产工艺是指将所有电子元件集成在单一芯片上的生产过程。
它被广泛应用于电子设备制造业,如计算机、手机、电视等。
制造流程1.设计–集成电路设计师设计电路–使用EDA软件进行仿真与验证2.掩膜制造–制造掩膜–通过光刻技术将图案转移到硅片上3.投影光刻–使用掩膜将图案投影在硅片上–制造电路的输送4.融合–在高温下将掩膜和硅片融合–形成晶体管5.化学处理–使用化学液体进行蚀刻–将不需要的硅层去除6.金属化–在硅片表面蒸镀金属–形成线路和电极7.包装测试–切割硅片–用陶瓷或塑料封装芯片–测试芯片性能制造技术1.CMOS–基础工艺–低功耗和低噪音2.BJT–晶体管工艺–高频率和高速率3.BCD–模拟与数字工艺结合–适用于汽车、医疗和航空等领域4.MEMS–微电子机械系统–功能丰富的微型机械装置制造挑战1.芯片尺寸缩小–越来越小的芯片尺寸–需要更精密的光刻技术和更高的抗干扰能力2.成本控制–竞争日益激烈–芯片制造成本需要持续降低3.故障排除–单个芯片上有上亿个晶体管–如何排查其中的问题是一个挑战结论集成电路生产工艺是一个非常复杂的过程,需要各个流程相互合作,使用最新的技术和设备。
随着时间的推移,它将继续进化和改进,以满足越来越高的市场需求和更严格的质量控制。
制造趋势1.三维IC制造技术–将多个芯片堆叠在一起,以提高芯片效率和成本效益2.全球晶圆制造技术–分布式制造技术可帮助降低成本–全球晶圆制造可促进产业链的全球化3.自动化技术–机器学习和人工智能将推动制造工艺的自动化–减少人为干扰和错误应用领域1.通信–集成电路的高速率和低功耗等特点十分适合通信应用2.计算机–处理器、内存、存储等都需要集成电路–集成电路的不断进步也推动了计算机性能的提升3.汽车–外部环境复杂,需要集成电路来实现各种功能–集成电路技术适合于汽车电子系统的小型化和高度集成化4.医疗–集成电路技术在医疗成像、生物传感器和仿生器件等方面有广泛应用–提升了医疗设备的精度和可靠性结语随着各种工业领域的发展和需要,集成电路生产工艺将继续前进和改进。
集成电路制造工艺1.集成电路的制作可以分为三个阶段:①硅晶圆片的制作;②集成电路的制作;③集成电路的封装。
2.集成电路的技术发展趋势:是向较大的硅晶圆片及较小的特征尺寸方向发展。
3.多晶硅的制备方法:四氯化硅氢还原法;三氯氢硅氢还原法;硅烷热分解法。
4.多晶硅提纯的方法:精馏法;吸附法;区域提纯法(最有效的方法) 。
5.制备单晶硅的方法:直拉法;悬浮区熔法。
6.单晶硅的直拉法制备方法:⑴清洁处理;⑵装炉;⑶加热熔化;⑷拉晶。
7.拉晶的步骤:①下种:是指下降籽晶与硅熔液面接触进行引晶,下种之前先将温度降到比硅熔点稍低一些的温度。
待温度稳定以后,再开始下降籽晶至离高温面很近处,对籽晶进行2—3min的预热。
注意:温度要控制好,过高,籽晶很容易快速熔断;过低,引起结晶,产生多晶或者位错。
②缩颈:下种后注意观察光圈的变化,当光圈变圆之后,再略等3—5min,略升一些温度,起拉进行缩颈。
也就是说缩颈是使单晶长得比籽晶略细一些,便于消除籽晶中原有位错。
;③放肩:缩颈之后,要略微降温、降速,让晶体逐渐长大到所需的直径。
在这过程中,单晶体的特征逐步显露,单晶体表面将出现明显的对称棱线;④等径生长:当放肩到接近所需要的直径之前,提高温度,则单晶体进入等经生长。
此时要严格控制温度,使得单晶体生长外形均匀、等经,还可以避免各种热应力缺陷产生;⑤收尾拉光:当拉到尾部时,坩埚内液体较少,此时适当提高温度,加速使坩埚内液体全部拉光。
其目的是为了保持石英坩埚完整,否则,残留的石英坩埚中的少量熔硅凝固后会造成石英坩埚破裂。
8.比较直拉法和悬浮区熔法:直拉法,坩埚盛放多晶硅,经过加热变成熔融硅,在上方有机械传动装置,携带籽晶,慢慢的下降,使籽晶与熔融硅的表面接触,控制好温度,然后籽晶慢慢上升,这时候熔体沿着籽晶方向逐渐结晶,该法可以提供大直径的硅单晶锭,产量大,目前85%的单晶硅都采用该法生长:存在碳(C)、氧(O)沾污。
悬浮区熔法:多晶硅锭置于惰性气氛中,籽晶置于底部,利用射频局部加热,自底部缓缓向上移动,由此悬浮区熔法也会扫过整个多晶锭,当熔区上移,再在结晶面长出与籽晶一样的单晶。
第1篇摘要:随着科技的飞速发展,集成电路已成为现代电子设备的核心组成部分。
集成电路制造工艺作为集成电路产业的核心技术,其技术水平直接影响到集成电路的性能、成本和市场份额。
本文将介绍集成电路制造工艺的基本原理、主要流程以及发展趋势。
一、引言集成电路(Integrated Circuit,IC)是一种将多个电子元件集成在一个半导体芯片上的微型电子器件。
自20世纪50年代诞生以来,集成电路技术取得了巨大的发展,为电子设备的小型化、智能化和功能多样化提供了强大的技术支持。
集成电路制造工艺作为集成电路产业的核心技术,其技术水平直接影响到集成电路的性能、成本和市场份额。
二、集成电路制造工艺的基本原理1. 半导体材料集成电路制造工艺的基础是半导体材料。
半导体材料具有介于导体和绝缘体之间的电导率,通过掺杂、氧化、扩散等工艺,可以实现半导体材料的导电和绝缘。
2. 光刻技术光刻技术是集成电路制造工艺中的关键技术,其主要作用是将半导体材料上的电路图案转移到硅片上。
光刻技术包括光刻胶、光刻机、光刻掩模等。
3. 沉积技术沉积技术是将材料沉积在硅片表面,形成电路图案。
沉积技术包括物理气相沉积(PVD)、化学气相沉积(CVD)等。
4. 刻蚀技术刻蚀技术是将硅片表面的材料去除,形成电路图案。
刻蚀技术包括湿法刻蚀、干法刻蚀等。
5. 化学机械抛光(CMP)化学机械抛光技术用于去除硅片表面的微米级缺陷,提高硅片的平整度。
CMP技术包括化学溶液、机械压力和抛光垫等。
6. 封装技术封装技术是将制造好的集成电路芯片封装在封装壳体内,保护芯片免受外界环境的影响。
封装技术包括塑料封装、陶瓷封装等。
三、集成电路制造工艺的主要流程1. 原材料制备首先,制备高纯度的硅材料,经过切割、抛光等工艺,得到硅片。
2. 光刻将光刻掩模与硅片对准,利用光刻胶将电路图案转移到硅片上。
3. 沉积在硅片表面沉积绝缘层、导电层等材料,形成电路图案。
4. 刻蚀利用刻蚀技术去除硅片表面的多余材料,形成电路图案。