变量之间的相关关系_公开课课件
- 格式:ppt
- 大小:1.60 MB
- 文档页数:53
2.3 变量间的相关关系一、学习目标:1.理解两个变量的相关关系的概念2.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观判断两个变量之间是否具有相关关系;3. 知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
二、学习重点、难点:1重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程。
2.难点:对最小二乘法的理解。
三、学习方法:探究、合作、交流 四、学习过程:〖创设情境〗1、函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一 定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系2、在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问 题。
”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成 绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?3、“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的 教学水平之间的关系是函数关系吗? (一).相关关系(1)定义:如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的________性,那么这两个变量之间的关系,叫做相关关系.(2)两类特殊的相关关系:如果散点图中点的分布是从________角到________角的区域,那么这两个变量的相关关系称为正相关,如果散点图中点的分布是从________角到________角的区域,那么这两个变量的相关关系称为负相关.[归纳总结] 两个变量间的关系分为三类:一类是确定性的函数关系,如正方形的边长与面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,这种关系就是相关关系,例如,某位同学的“物理成绩”与“数学成绩”之间的关系,我们称它们为相关关系;再一类是不相关,即两个变量间没有任何关系. (二).线性相关(1)定义:如果两个变量散点图中点的分布从整体上看大致在一条________附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做_________.(2)最小二乘法:求线性回归直线方程y ^=b ^x +a ^时,使得样本数据的点到它的________________最小的方法叫做最小二乘法,其中a ,b 的值由以下公式给出:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.,)())((1221121x b y a x n x yx n yx x x y y x x b ni i ni iini i ni i i其中x =n1∑=ni i x 1,y =n1∑=ni iy1,a 为回归方程的斜率,b 为截距。
变量间的相互关系是指两个或两个以上变量之间相联系的性质,主要有两种类型。
(1)因果关系:是指在两个有关系的变量中,因为一个变量的变化而引起另一个变量的变化。
应注意三点:第一,在两个变量中,只能一个是因,另一个是果,而不能互为因果。
第二,原因变量一定出现在结果变量之前。
第三,两者之间的变化关系是必然的,否则就不是因果关系。
社会现象的因果关系十分复杂,有一因一果、一果多因、一因多果以及多因多果等。
在社会调查研究中,调查者应注意区别事物之间因果关系的类型,对一果多因、一因多果以及多因多果等复杂的因果关系要仔细分析,逐一明确,这样才能清楚地认识社会现象和事物发展变化的规律。
(2)相关关系:是指变量的变化之间存在着非因果关系的一定联系和一定关系。
社会调查研究运用相关这一概念,其目的是了解社会现象和事物之间关系的密切程度,从中探寻其规律性。
变量之间的相关关系从变化的方向来看,可以分为正相关与负相关;从变化的表现形式来看,可以分为直线相关和曲线相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生同方向的变化,这种相关关系是正相关,也叫直接相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生反方向的变化,这种相关关系是负相关,也叫逆相关。
在社会调查研究中,掌握变量关系的正相关与负相关的概念,有利于了解社会现象和事物的发展方向和趋势。
当一个变量的数值发生变动(增加或减少),另一个变量的数值随着发生大致均等的变动时,这种关系称为直线相关;当一个变量的数值发生变动,另一个变量的数值随之发生不均等的变动时,这种关系称为曲线相关。