电磁场与电磁波习题答案
- 格式:doc
- 大小:1.14 MB
- 文档页数:38
电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。
第一章1.1.,,/)102102cos(1026300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设 --⨯+⨯==ππ解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0x --⨯π+⨯π==++=∴ 矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向;波的幅度 m /V 10E E 3y -==。
s /m 10102102k V ;102k ;MHZ 1HZ 1021022f 826P 266=⨯π⨯π=ω=⨯π===π⨯π=πω=--―――1.2 写出下列时谐变量的复数表示(如果可能的话))3sin()6sin()()6(sin 1)()5()21000cos(10)()4(sin 2cos 3)()3(sin 10)()2()6sin(6)()1(πωπωωππωωωπω++=-=-=-=-=+=t t t U t t D t t C t t t A tt I t t V(1)解: 3/2/6/)(πππϕ-=-=z vj j e V j 3333sin 63cos 66)3(-=-==-∴πππ(2)解:)2cos(10)(πω--=t t I2)(πϕν-=zj eI j 10102=-=-∴π(3)解:)t t t A ωωsin 132cos 133(13)(-=j eA j 2313)2(+==-πθ则(4)解:)21000cos(10)(ππ-=t t CjeC j 10102-==∴π(5)(6)两个分量频率不同,不可用复数表示―――1.3由以下复数写出相应的时谐变量)8.0exp(4)2exp(3)3()2.1exp(4)2(43)1(j jC j C jC +=-=+=π(1)解:tt j t j t t j t j e j t j ωωωωωωωsin 4cos 4sin 3cos 3)sin )(cos 43()43(-++=++=+t t Ce RE t C t j ωωωsin 4cos 3)()(-==∴(2)解:)2.1cos(4)4()()(2.1-===-t e e RE Ce RE t C t j j t j ωωω(3)解:)8.0t (j )2t (j t j 8.0j j t j e 4e3e )e 4e3(Ce 2+ωπ+ωωω+=+=π得:)sin(3)8.0cos(4)8.0cos(4)2cos(3)()(t t t t Ce RE t C tj ωωωπωω-+=+++==―――1.4 写出以下时谐矢量的复矢量表示00000)cos(5.0)3()sin (cos 8)sin 4cos 3()()2()2cos(sin 4cos 3)()1(x t kz H z t t x t t t E z t y t x t t V t ωωωωωπωωω-=-++=+++=(1)解:00043)(z i y j x r V+-=(2)解:00)43cos(28)cos(5)(z t x t t V πωϕω--+=00430)88()43(285)(54arcsinz j x j z e x e r V++-=-==-πϕϕ其中 (3)解:00)]sin()[cos(5.05.0)(x kz j kz x e r H kz-==-―――1.6 ]Re[,)22(,)21(000000**⨯⋅⨯⋅-+-=+++=B A B A B A B A z j y j x B z j y j x A ,,,求:假定解:j B A B A B A B A z z y y x x 35-=++=⋅0000000000000025)()22(12113)22()32()31()61(z y x B A RE jj j j z y x B A jB A z j y j x B z j y j x j B B B A A A z y x B A zyxz y x-+=⨯--+=⨯--=⋅+--=--++++-==⨯****得到:则:――――1.7计算下列标量场的梯度xyzu xyy x u xz yz xy u z y x u z y x u =++=++=-+==)5(2)4()3(2)2()1(22222222(1)解:u u grad ∇=)(22022022022202220222222z z y x y yz x x z xy z zz y x y y z y x x x z y x ++=∂∂+∂∂+∂∂=(2)解:u u grad ∇=)( 000224z z y y x x -+=(3) 解:u u grad ∇=)(000)()()(z x y y z x x z y+++++=(4) 解:u u grad ∇=)(00)22()22(y x y x y x+++=(5) 解:u u grad ∇=)(000z xy y xz x yz ++=第二章――2.1.市话用的平行双导线,测得其分布电路参数为: R ’=0.042Ωm -1; L ’=5×10-7Hm -1; G ’=5×10-10Sm -1; C ’=30.5PFm -1. 求传播常数k 与特征阻抗Z c . 答:))((C j G L j R jk '+''+'=ωω)()(C j G L j R Z c '+''+'=ωω代入数据可得:k =(1.385-1.453i) ×10-5; Z c= (1.52 -1.44i) ×103Ω2.2.传输线的特征阻抗Z c = 50Ω,负载阻抗Z L = 75 +75j Ω,用公式和圆图分别求:(1)与负载阻抗对应的负载导纳; (2)负载处的反射系数;(3)驻波系数与离开负载第一驻波最小点的位置Z L解:(1)Y L =Z L1=1501j -(2)ΓL=Z ZZ Z C LCL+-=j j 751257525++=171(7+6j) (3)70863.0)7/6arctan()0(==ψ rad离开负载第一驻波最小点的位置 d min =))0(1(4πψλ+=0.3064λ 2.3min1max min max min 80,50,5/,/4,/2,3/8,,I ,I L C L Z Z Z V d l V V ρλλλλ===参看图,负载电压,求驻波系数,驻波最小点位置传输线长度处的输入阻抗以及。
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E试求球内外各点的电位。
电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。
电磁学试题库试题4一、填空题(每小题2分,共20分)1、一均匀带电球面,电量为Q,半径为R,在球内离球心R/2处放一电量为q 的点电荷,假定点电荷的引入并不破坏球面上电荷的均匀分布,整个带电系统在球外P点产生的电场强度( )。
2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。
3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势(4、平行板电容器充电后两极板的面电荷密度分别为+σ与-σ,极板上单位面积的受力( )5、一电路如图所示,已知V 121=ε V 92=ε V 83=ε Ω===1321r r rΩ====25431R R R R Ω=32R 则Uab =( )6、两条无限长的平行直导线相距a ,当通以相等同向电流时,则距直导线距离都为a 的一点P 的磁感应强度的大小是( )7、通过回路所圈围的面积的磁通量发生变化时,回路中就产生感应电动势,引起磁通量变化的物理量是( )R R 33r ε54I a Pa a I8、0C C r ε=成立的条件是( )。
9、铁介质的主要特征是( )。
10、麦克斯韦在总结前人电磁学全部成就的基础上,提出了两条假设。
一、选择题(每小题2分,共20分)1、在用试探电荷检测电场时,电场强度的定义为:0q FE =则( )(A )E 与q o 成反比(B )如果没有把试探电荷q o 放在这一点上,则E=0(C )试探电荷的电量q o 应尽可能小,甚至可以小于电子的电量 (D )试探电荷的体积应尽可能小,以致可以检测一点的场强 2、一点电荷q 位于边长为d 的立方体的顶角上,通过与q 相连的三个平面的电通量是( )(A )04εq (B )08εq(C )010εq (D )03、两个平行放置的带电大金属板A 和B ,四个表面电荷面密度为4321σσσσ、、、如图所示,则有( ) (A )3241σ-=σσ=σ,(B )3241σ=σσ=σ, (C )3241σ-=σσ-=σ, (D )3241σ=σσ-=σ,4、如图所示,图中各电阻值均为R ,AB R 为( ) (A )Ω=4AB R (B )Ω=2AB R(C ) R R AB 43=(D ) R R AB 23=5、一圆线圈的半径为R ,载有电流I ,放在均匀外磁场中,如图所示,线圈导线上的张力是:( ) (A )T=2RIB (B )T=IRB (C )T=0(D )T=RIB π26、一个分布在圆柱形体积内的均匀磁场,磁感应强度为B ,方向沿圆柱的轴线,圆柱Q Q 1234A B的半径为R ,B 的量值以κ=dt dB 的恒定速率减小,在磁场中放置一等腰形金属框ABCD (如图所示)已知AB=R ,CD=R/2,线框中总电动势为:( )(A )K R 21633 顺时针方向(B )KR 21633 逆时针方向 (C )KR 243 顺时针方向 (D )KR 243 逆时针方向7、一个介质球其内半径为R ,外半径为R+a ,在球心有一电量为0q 的点电荷,对于R <r <R+a 电场强度为:( )(A )2004r q r επε (B)2004r q πε (C)204r q π (D)2041r q r r πε-ε)(8、在与磁感应强度为B 的均匀恒定磁场垂直的平面内,有一长为L 的直导线ab ,导线绕a 点以匀角速度ω转动,转轴与B 平行,则ab 上的动生电动势为:( )(A )221BL ω=ε(B )2BL ω(C )241BL ω=ε(D )ε=09、放在平滑桌面上的铁钉被一磁铁吸引而运动,其产生的动能是因为消耗了( ) (A )磁场能量; (B )磁场强度; (C )磁场力; (D )磁力线。
11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
电磁波与电磁场第四版答案一、单选题1.垂直于匀强磁场放置一长为1m的通电直导线,导线中电流为2A,所受安培力大小为0.1N,则该磁场的磁感应强度大小为() [单选题] *A.0.05T(正确答案)B.0.1TC.0.2TD.2T2.某一区域的磁感线分布如图所示,M、P为磁场中的两个点,下列说法正确的是()[单选题] *A.M点的磁场方向和P点的磁场方向相反B.M点的磁场方向和P点的磁场方向相同C.M点的磁感应强度小于P点的磁感应强度(正确答案)D.M点的磁感应强度大于P点的磁感应强度3.如图所示,小磁针静止在导线环中。
当导线环通过沿逆时针方向的电流时,忽略地磁场影响,小磁针最后静止时N极所指的方向()[单选题] *A.水平向右B.水平向左C.垂直纸面向里D.垂直纸面向外(正确答案)4.面积为0.75m2的线圈放在匀强磁场中,线圈平面与磁感线垂直,已知穿过线圈平面的磁通量是1.50Wb,那么这个磁场的磁感应强度是() [单选题] *A.0.05T B.1.125T C.2.0T(正确答案)D.0.02T5.首先发现电流的磁效应的物理学家是() [单选题] *A.安培B.法拉第C.奥斯特(正确答案)D.密立根6.某个磁场的磁感线如图所示,如果把一个小磁针放入磁场中,小磁针将()[单选题] *A.顺时针转动(正确答案)B.逆时针转动C.向右移动D.向左移动7.关于定义式(其中B表示磁感应强度,F表示通电导体棒受到的磁场力,I表示通过导体棒的电流强度,L表示导体棒的长度),下列说法正确的是() [单选题] *A.B与F成正比B.I越大,则B越小C.F的方向就是B的方向D.B的大小和方向与IL无关,由磁场本身决定(正确答案)8.如图,通电螺线管轴线上a、b、c三点的磁感应强度大小分别为Ba、Bb、Bc,则()[单选题] *A.Bc>Ba>Bb B.Bb>Bc>BaC.Ba>Bb>Bc(正确答案)D.Ba=Bb=Bc9.下列选项中通电直导线周围磁感线分布正确的是()[单选题] *A.⑴(正确答案)B.⑵ C. ⑶D.⑷10.把螺线管与电源连接,发现小磁针N极向螺线管偏转,静止时所指方向如图所示。
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
第二章2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。
那么,由1222022101244r r r q q r q q =⇒'='πεπε,同时考虑到d r r =+21,求得d r d r 32 ,3121==可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 31。
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204r q πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-3 直接利用式(2-2-14)计算电偶极子的电场强度。
解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离。
再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离。
两个点电荷相距为l ,场点P 的坐标为(r,θ,)。
根据叠加原理,电偶极子在场点P 产生的电场为⎪⎪⎭⎫ ⎝⎛-=311304r rq r rE πε 考虑到r >> l ,1r e = e r ,θcos 1l r r -=,那么上式变为r rr r r r r r qr r r r q e e E ⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛-=2121102122210))((44πεπε式中 ()2122212211cos 211cos 2---⎪⎪⎭⎫ ⎝⎛-+=-+=θθr lr l r rl l r r以rl为变量,并将2122cos 21-⎪⎪⎭⎫ ⎝⎛-+θr l r l 在零点作泰勒展开。
由于r l <<,略去高阶项后,得θθcos 1cos 11211rl r r l r r +=⎪⎭⎫ ⎝⎛+=-利用球坐标系中的散度计算公式,求出电场强度为θr e e E 3030204sin 2cos 1cos 14r ql r ql r r l r q πεθπεθθπε+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∇-⎪⎭⎫ ⎝⎛+∇-=2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-5 通过电位计算有限长线电荷 的电场强度。
习题图2-4解 建立圆柱坐标系。
令先电 荷沿z 轴放置,由于结构以z 轴对称,场强与φ无关。
为了简单起见,令场点位于yz 平面。
设线电荷的长度为L ,密度为l ρ,线电荷的中点位于坐标原点,场点P 的坐标为⎪⎭⎫⎝⎛z r ,2,π。
利用电位叠加原理,求得场点P 的电位为⎰-=22d 4L L lr l περϕ 式中()220r l z r +-=。
故()2222222202222ln 4 ln 4r L z L z r L z L z r l z l z lL Ll+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++=⎥⎦⎤⎢⎣⎡+-+--=-περπερϕ因ϕ-∇=E ,可知电场强度的z 分量为222202222ln 4r L z L z r L z L z zz E l z +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕy习题图2-5⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+-=2222021214r L z r L z l περ ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛-+-⎪⎭⎫ ⎝⎛++-=2202112114r L z r L z r l περ ()()⎪⎪⎭⎫⎝⎛-+-++-=22220224L z r r L z r r r l περ ()120sin sin 4θθπερ-=rl电场强度的r 分量为222202222ln 4r L z L z r L z L z rr E l r +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕ()()⎝⎛-⎪⎭⎫ ⎝⎛++++++-=222202224r L z L z r L z rl περ()()⎪⎪⎪⎪⎭⎫⎪⎭⎫ ⎝⎛+-+-+-2222222r L z L z r L z r- ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++-=2202122114r L z rL z r L z rl περ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-++-⎪⎭⎫ ⎝⎛-+22212211r L z r L z r L z⎝⎛-⎪⎪⎭⎫⎝⎛+++-=121120tan 11tan 1tan 1114θθθπερr l⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫ ⎝⎛+++22222tan 11tan 1tan 111θθθ ()()()210cos 1cos 14θθπερ----=rl()210cos cos 4θθπερ-=rl式中2tanarc ,2tanarc 21Lz r L z r -=+=θθ,那么,合成电强为()()[]r z lre e E 12120cos cos sin sin 4θθθθπερ---=当L时,πθθ→→ ,021,则合成电场强度为r lre E 02περ=可见,这些结果与教材2-2节例4完全相同。
2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-7 已知真空中半径为a 的圆环上均匀地分布的线电荷密度为l ρ,试求通过圆心的轴线上任一点的电位及电场强度。
习题图2-6习题图2-7y解 建立直角坐标,令圆环位于坐标原点,如习题图2-7所示。
那么,点电荷l l d ρ在z 轴上P 点产生的电位为rll 04d περϕ=根据叠加原理,圆环线电荷在P 点产生的合成电位为()220200202d 4d 41za al r l rz l a l al+===⎰⎰ερπερρπεϕππ 因电场强度ϕ-∇=E ,则圆环线电荷在P 点产生的电场强度为()()232202z a az z z l zz+=∂∂-=ερϕe e E 2-8 设宽度为W ,面密度为S ρ的带状电荷位于真空中, 试求空间任一点的电场强度。
解 建立直角坐标,且令带状电荷位于xz 平面内,如习题图2-8所示。
带状电荷可划分为很多条宽度为x 'd 的无限长线电荷,其线密度为x s 'd ρ。
那么,该无限长线电荷习题图2-8yy(a)(b))产生的电场强度与坐标变量z 无关,即r e E rx s 02d d περ'=式中()22y x x r +'-=()[]y x x rr y r x x y x y xr e e e e e +'-=+'-=1得()[]()[]y x x yx x x s yxe e E +'-+'-'=2202d d περ那么()[]()[]y x x yx x x s w w yxe e E +'-+'-'=⎰-220222d περ⎪⎪⎪⎪⎭⎫⎝⎛+---++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛--=y w x y w x yw x yw x s s 2arctan 2arctan 222ln 4022220περπερy x e e2-9 已知均匀分布的带电圆盘半径为a ,面电荷密度 为S ρ,位于z = 0平面,且盘心与原点重合,试求圆盘 轴线上任一点电场强度E 。
解 如图 2-9所示,在圆盘上取一半径为r ,宽度为r d 的圆环,该圆环具有的电荷量为s r r q ρπd 2d =。
由于对称性,该圆环电荷在z 轴上任一点P 产生的电场强度仅的r 有z 分量。
根据习题2-7结果,获知该圆环电荷在P习题图2-9y产生的电场强度的z 分量为()232202d d zr rzr E s z +=ερ那么,整个圆盘电荷在P 产生的电场强度为()⎪⎪⎭⎫ ⎝⎛+-=+=⎰22023222d 2a z zz z r zrzr s zas zερερe e E 2-10 已知电荷密度为S ρ及S ρ-的两块无限大面电荷分别位于x = 0及x = 1平面,试求10 ,1<<>x x 及0<x 区域中的电场强度。
解 无限大平面电荷产生的场强分布一定是均匀的,其电场方向垂直于无限大平面,且分别指向两侧。
因此,位于x = 0平面内的无限大面电荷S ρ,在x < 0区域中产生的电场强度11E x e E -=-,在x > 0区域中产生的电场强度11E x e E =+。
位于x = 1平面内的无限大面电荷S ρ-,在x < 1区域中产生的电场强度22E x e E =+,在x > 1区域中产生的电场强度22E x e E -=-。