线性代数 第二章
- 格式:ppt
- 大小:1.16 MB
- 文档页数:114
第2章对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。
矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。
任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。
通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。
考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。
总而言之,初等变换不会改变矩阵的秩。
因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。
矩阵的秩,同时又可定义为不为零的子式的最高阶数。
满秩矩阵的行列式不等于零。
非满秩矩阵的行列式必为零。
既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。
另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r<n,有无穷多解。
齐次线性方程组的解的结构问题,可以用基础解系来表示。
当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。
通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。
非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。
在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。
矩阵的加法和数乘,与向量的运算类同。
矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。
即可以把一个矩阵看作是一种线性变换在数学上的表述。
矩阵的乘法,反映的是线性变换的叠加。
如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。
线性代数第二章矩阵及其运算$1.矩阵定义1 由m*n个数a_{ij}(i=1,2,3...,n)排成的m行n列的数表称为m行n列矩阵,简称mn矩阵。
为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示,记作这mn个数称为矩阵A的元素,简称为元,数位于矩阵A的第i行第j列,称为矩阵A的(i,j)元。
以数. 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵,本书中的矩阵除特别说明者外,都指实矩阵。
行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
n阶矩阵A也记作An。
只有一行的矩阵 . 只有一列的矩阵称为列矩阵,又称列向量。
两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵。
如果那么就称矩阵A与矩阵B相等,记作 A=B 元素都为零的矩阵称为零矩阵,记作O。
注意不同型的零矩阵是不同的。
矩阵的应用非常广泛,下面仅举几例。
例1工厂三个商店发送四种产品的数量可列成矩阵其中这四种产品的单价及单件重量也可列成矩阵其中。
例2一般的,若干个点之间的单向通道都可以用这样的矩阵表示。
例3n个变量x_1,x_2,...,x_n与m个变量y_1,y_2,...,y_m之间的关系式表示一个从变量给定了线性变换(2),它的系数所构成的矩阵(称为系数矩阵)也就确定。
反之,如果给出一个矩阵作为线性变换的系数矩阵,则线性变换也就确定。
在这个意义上,线性变换和矩阵之间存在着一一对应的关系。
例如线性变换叫做恒等变换,它对应的一个n阶方阵叫做n阶单位矩阵,简称单位阵。
这个方阵的特点是:从左上角到右下角的直线(叫做(主)对角线上的元素都是1,其他元素都是0.即单位阵E的(i,j)元为)又如线性变换对应n阶方阵这个方阵的特点是:不在对角线上的元素都是0.这种方阵为对角矩阵,简称对角阵。
对角阵也记作$2.矩阵的运算一、矩阵的加法定义2 设有两个m*n矩阵A=(a_{ij})和B={b_{ij}},那么矩阵A和B的和记作A+B,规定为应该注意,只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。
线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a 称为m 行n 列矩阵;简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元;说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵; 扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A ; 记作:A n; 行列矩阵:只有一行列的矩阵;也称行列向量; 同型矩阵:两矩阵的行数相等,列数也相等; 相等矩阵:AB 同型,且对应元素相等;记作:A =B 零矩阵:元素都是零的矩阵不同型的零矩阵不同 对角阵:不在主对角线上的元素都是零;单位阵:主对角线上元素都是1,其它元素都是0,记作:E n 不引起混淆时,也可表示为E 课本P29—P31注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同;第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算;课本P33 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-;课本P33数与矩阵相乘,A A A λλλ数与矩阵的乘积记作或规定为111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律设A B 、为m n ⨯矩阵,,λμ为数()()()1A A λμλμ=; ()()2A A A λμλμ+=+;()()3A B A B λλλ+=+;课本P33矩阵相加与数乘矩阵统称为矩阵的线性运算;矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,那么规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫ ⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1;A 与B 能相乘的条件是:A 的列数=B 的行数;2;矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵;3;对于n 阶方阵A 和B,若AB=BA,则称A 与B 是可交换的;矩阵乘法的运算规律()()()1AB C A BC =;()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯== ()5若A 是n 阶方阵,则称 A k 为A 的k 次幂,即kk A A AA =个,并且m k m k A A A +=,()km mk A A =(),m k 为正整数;规定:A 0=E注意 矩阵不满足交换律,即AB BA ≠,()kk k AB A B ≠但也有例外课本P36纯量阵 矩阵0E 0λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为纯量阵,作用是将图形放大λ倍;且有()(E)E A A A λλλ==,A 为n 阶方阵时,有()(E )n n n n n E A A A λλλ==,表明纯量阵与任何同阶方阵都是可交换的;课本P36 转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T ,如122458A ⎛⎫= ⎪⎝⎭,142528T A ⎛⎫⎪= ⎪ ⎪⎝⎭; 转置矩阵的运算性质()()1TT AA =;()()2TT T A B A B +=+;()()3TT A A λλ=;()()4TT T AB B A =;课本P39方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A 或注意矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n 阶行列式则是这些数按一定的运算法则所确定的一个数; 运算性质()1T A A =;()2nA A λλ=;(3)AB A B B A BA ===课本P40对称阵 设A 为n 阶方阵,如果满足A =A T ,即(),1,2,,ij jia a i j n ==那么A 称为对称阵;说明对称阵的元素以主对角线为对称轴对应相等,如果TA A =-则称矩阵A 为反对称的;即反对称矩阵A =a ij 中的元素满足a ij =-a ji ,i ,j =1,2,…n 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵; 性质 AA A A A E **==易忘知识点课本P总结1只有当两个矩阵是同型矩阵时,才能进行加法运算;2只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律;3矩阵的数乘运算与行列式的数乘运算不同;第三节 逆矩阵定义对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得AB =BA =E 则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵;1A A -的逆矩阵记作,1A B -=即;说明1 A ,B 互为逆阵, A = B -12 只对方阵定义逆阵;3.若A 是可逆矩阵,则A 的逆矩阵是唯一的;定理1 矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=重要证明见课本P奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A 称为非奇异矩阵;即0A A A ⇔⇔≠可逆为非奇异矩阵;推论若(A=E)AB E =或B ,则1B A -=证明见课本P求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。