专题7圆的切线的判定与性质-重难点题型(举一反三)
- 格式:docx
- 大小:182.49 KB
- 文档页数:6
圆的切线性质与判定的经典题型总结切线的判定辅助线:圆心与切点的半径证明思路:证平行得垂直分两角,转移为求两角和为 90 °已知一条切线证另一条切线用全等换位思考间接证垂直不忘点到直线距离等于半径证平行得垂直例 11 、如图,在△ ABC 中, AB=AC ,以 A B 为直径作⊙ O 交 BC 于点 D ,过点 D 作 FE⊥A C 于点 E ,交 A B 的延长线于点 F 。
求证: EF 与⊙ O 相切;分两角,转移为求两角和为90°例 1 2 、已知:如图, AB 是⊙ O 的直径, AC 是⊙ O 的弦, M 为 AB 上一点,过点 M 作 DM⊥AB ,交弦 AC 于点 E ,交⊙ O 于点,且 DC = DE .求证: DC 是⊙ O 的切线;例 13 、如图,△ABC 中,E 是AC 上一点, ∠CAB=2∠EBC ,AE=AB ,以 AB 为直径的⊙ O 交AC 于点 D ,交 EB 于点 F 。
求证: BC 与⊙ O 相切;证明:已知一条切线证另一条切线用全等例1 4 、如图, C 是以 AB 为直径的⊙ O 上一点,过 O 作 OE ⊥AC 于点 E ,过点 A 作⊙ O 的切线交 OE 的延长线于点 F ,连结 CF 并延长交 BA 的延长线于点 P 。
求证: PC 是⊙ O 的切线 .换位思考,间接证垂直例1 5 、 如图,在 Rt △ ABC 中, ∠ C=90 ° ,点 D 是 AC 的中点,且 ∠ A+ ∠CDB=90 ° ,过点 A , D 作 ⊙ O ,使圆心 O 在 AB 上, ⊙ O 与 AB 交于点 E .( 1 )求证:直线 BD 与 ⊙ O 相切;( 2 )若 AD : AE= , BC=6 ,求切线 BD 的长.A不忘点到直线距离等于半径例16、已知:如图,△ ABC 为等腰三角形, O 是底边 BC 的中点,⊙ O 与腰 AB 相切于点 D 。
(苏科版)九年级上册数学《第2章对称图形---圆》专题证明圆的切线的常用的方法★★★方法指引:证明一条直线是圆的切线的方法及辅助线作法:1、有交点:连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称:“有交点,连半径,证垂直”.2、无交点:作垂直、证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称:“无交点,作垂直,证半径”.类型一:有公共点:连半径,证垂直●●【典例一】(2022•雁塔区校级模拟)如图,AB 是⊙O 的直径,点D 在直径AB 上(D 与A ,B 不重合),CD ⊥AB ,且CD =AB ,连接CB ,与⊙O 交于点F ,在CD 上取一点E ,使得EF =EC .求证:EF 是⊙O 的切线;【分析】连接OF ,根据垂直定义可得∠CDB =90°,从而可得∠B +∠C =90°,然后利用等腰三角形的性质可得∠B =∠OFB ,∠C =∠EFC ,从而可得∠OFB +∠EFC =90°,最后利用平角定义可得∠OFE =90°,即可解答;【解答】证明:连接OF ,∵CD ⊥AB ,∴∠CDB =90°,∴∠B +∠C =90°,∵OB =OF ,EF =EC ,∴∠B =∠OFB ,∠C =∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣(∠OFB+∠EFC)=90°,∵OF是⊙O的半径,∴EF是⊙O的切线:【点评】本题考查了切线的判定与性质,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式1-1】(2022•澄城县三模)如图,AB是△ABC外接圆⊙O的直径,过⊙O外一点D作BC的平行线分别交AC,AB于点G,E,交⊙O于点F,连接DB,CF,∠BAC=∠D.求证:BD是⊙O的切线;【分析】证明∠ABD=90°,根据切线的判定可得BD与⊙O相切;【解答】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DG∥BC,∴∠AGE=∠ACB=90°,∴∠A+∠AEG=90°,又∵∠A=∠D,∠AEG=∠DEB,∴∠D+∠DEB=90°,∴∠DBE=90°,∴AB⊥BD,∵AB为直径,∴BD与⊙O相切;【点评】此题考查了切线的判定,垂径定理,解答本题需要我们熟练掌握切线的判定.【变式1-2】如图,AB是⊙O的直径,点C是圆上一点,CD⊥AB于点D,点E是圆外一点,CA平分∠ECD.求证:CE是⊙O的切线.【分析】利用切线的判定定理证明∠OCE=90°即可得出结论.【解答】证明:∵CA平分∠ECD,∴∠ECA=∠DCA.∵CD⊥AB,∴∠CAD+∠DCA=90°,∴∠ECA+∠CAD=90°.∵OA=OC,∴∠CAD=∠ACO,∴∠ECA+∠ACO=90°,即∠OCE=90°,∴OC⊥EC,∵OC是⊙O的半径,∴CE是⊙O的切线.【点评】本题主要考查了圆的切线的判定,熟练应用圆的切线的判定定理是解题的关键.【变式1-3】(2022秋•阳谷县校级期末)如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线.(2)求证:FD=FG.【分析】(1)欲证明MN是半圆的切线,只需证得∠MAB=90°,即MA⊥AB即可;(2)根据圆周角定理推论得到∠ACB=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°,∠3+∠4=90°,又D是弧AC的中点,即弧CD=弧DA,得到∠3=∠5,于是∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG.【解答】证明:(1)如图,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.又∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即∠MAB=90°,∴MA⊥AB.∴MN是半圆的切线.(2)∵AB为直径,∴∠ACB=90°,而DE⊥AB,∴∠DEB=90°,∴∠1+∠5=90°,∠3+∠4=90°,∵D是弧AC的中点,即弧CD=弧DA,∴∠3=∠5,∴∠1=∠4,而∠2=∠4,∴∠1=∠2,∴FD=FG.【点评】本题考查了切线的判定:经过半径的外端点,并且与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论、三角形外角的性质以及等腰三角形的判定.【变式1-4】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)求⊙O的半径.(3)连接BE,求BE的长.【分析】(1)由已知角相等及直角三角形的性质得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB =6,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.(3)延长PB、DE相交于点F,证明△PED≌△PEF(ASA),由全等三角形的性质得出PD=PF=10,DE =EF,求出DF的长,则可得出答案.【解答】(1)证明:∵DE⊥PE,∴∠DEO=90°,∵∠EDB=∠EPB,∠BOE=∠EDB+∠DEO,∠BOE=∠EPB+∠OBP,∴∠OBP=∠DEO=90°,∴OB⊥PB,∴PB为⊙O的切线;(2)解:在Rt△PBD中,PB=6,DB=8,根据勾股定理得:PD=10,∵PD与PB都为⊙O的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4;在Rt△CDO中,设OC=r,则有OD=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.(3)延长PB、DE相交于点F,∵PD与PB都为⊙O的切线,∴OP平分∠CPB,∴∠DPE=∠FPE,∵PE⊥DF,∴∠PED=∠PEF=90°,又∵PE=PE,∴△PED ≌△PEF (ASA ),∴PD =PF =10,DE =EF ,∴BF =PF ﹣PB =10﹣6=4,在Rt △DBF 中,DF==∴BE =12DF =【点评】本题考查了切线的判定和性质,勾股定理,平行线的性质,全等三角形的判定和性质,熟练掌握性质定理是解题的关键.●●【典例二】 如图,△ABC 是直角三角形,点O 是线段AC 上的一点,以点O 为圆心,OA 为半径作圆.O 交线段AB 于点D ,作线段BD 的垂直平分线EF ,EF 交线段BC 于点.(1)若∠B =30°,求∠COD 的度数;(2)证明:ED 是⊙O 的切线.【分析】(1)根据三角形的内角和定理得到∠A =60°,根据等腰三角形的性质得到∠ODA =∠A =60°,于是得到∠COD =∠ODA +∠A =120°;(2)根据线段垂直平分线的性质得到∠EDB =∠B =30°,求得ED ⊥DO ,根据切线的判定定理即可得到结论.【解答】(1)解:∵∠C =90°,∠B =30°,∴∠A =60°,∵OD =OA,∴∠COD=∠ODA+∠A=120°;(2)证明:∵EF垂直平分BD,∴∠EDB=∠B=30°,∴∠EDO=180°﹣∠EDB﹣∠ODA=180°﹣30°﹣60°=90°,∴ED⊥DO,∵OD是⊙O的半径,∴ED是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,线段垂直平分线的性质,熟练掌握切线的判定定理是解题的关键.【变式2-1】如图,AB为⊙O的直径,点C,D在⊙O上,AC=CD=DB,DE⊥AC.求证:DE是⊙O的切线.【分析】连接OD,根据已知条件得到∠BOD=13×180°=60°,求得∠EAD=∠DAB=12∠BOD=30°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,求得∠EDA=60°,根据切线的判定定理即可得到结论.【解答】证明:连接OD,∵AC=CD=DB,∴∠BOD=13×180°=60°,∵CD=DB,∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,正确的作出辅助线是解题的关键.【变式2-2】如图,AC是⊙O的直径,B在⊙O上,BD平分∠ABC交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.求证:DE是⊙O的切线.【分析】连接OD,根据圆周角定理的推论得到∠ABC=90°,根据角平分线的性质求出∠DBE=45°,根据圆周角定理得到∠DOC,根据平行线的性质求出∠ODE=90°,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBE=45°,∴∠DOC=2∠DBE=90°,∵DE∥AC,∴∠ODE=∠DOC=90°,∴DE是⊙O的切线;【点评】本题考查的是切线的判定定理、圆周角定理以及正方形的判定和性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.【变式2-3】(2023•鼓楼区校级模拟)如图,在⊙O中,AB为⊙O的直径,AC为弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)在图(1)中,P为直径BA的延长线上一点,且S△PAC=PC为⊙O的切线;【分析】(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,则∠AOC=60°;(2)由等边三角形的性质以及勾股定理得出CD的长,再利用三角形外角的性质以及等腰三角形的性质得出∠PCA=30°,进而得出答案;【解答】(1)解:在△OAC中,∵OA=OC=4,∠OAC=60°,∴△OAC是等边三角形,∴∠AOC=60°;(2)证明:过点C作CD⊥AO于点D,∵△AOC是等边三角形,CD⊥AO,∴AD=DO=12OA=2,∠ACO=60°,∴CD∵S △PAC =∴12PA •CD =∴PA =4,∴PA =AC ,∴∠P =∠PCA =12∠OAC =30°,∴∠PCO =∠PCA +∠ACO =30°+60°=90°,∴OC ⊥PC ,∵OC 是⊙O 的半径,∴PC 为⊙O 的切线.【点评】本题考查了等边三角形的判定和性质,切线的判定,熟练掌握相关的性质和判定是解决问题的关键.【变式2-4】(2023•门头沟区二模)如图,AB 是⊙O 直径,弦CD ⊥AB 于E ,点F 在CD 上,且AF =DF ,连接AD ,BC .(1)求证:∠FAD =∠B(2)延长FA 到P ,使FP =FC ,作直线CP .如果AF ∥BC .求证:直线CP 为⊙O 的切线.【分析】(1)根据垂径定理、圆周角定理可得∠ACD =∠ACD =∠B ,根据等腰三角形的性质可得∠FAD=∠FDA,进而可得∠FAD=∠B;(2)根据平行线的性质以及三角形内角和定理可得∠FAB=∠FAD=∠FDA=30°,进而得到∠CFP=60°,再利用等边三角形的性质可得∠PCO=60°+30°=90°,由切线的判定方法可得结论.【解答】证明:(1)如图,连接AC,∵AB是⊙O直径,弦CD⊥AB,∴AC=AD,∴∠ACD=∠ACD=∠B,∵AF=FD,∴∠FAD=∠FDA,∴∠FAD=∠B;(2)如图,连接OC,∵AF∥BC,∴∠FAB=∠B,∴∠FAB=∠FAD=∠FDA,∵∠AED=90°,∴∠FAB=∠FAD=∠FDA=30°,∴∠CFP=60°,∵FP=FC,∴△CFP是等边三角形,∴∠PCF=60°,∵OB=OC,∴∠B=∠OCB=30°,∴∠OCD=30°,∴∠PCO=60°+30°=90°,即OC⊥PC,∵OC是半径,∴PC是⊙O的切线.【点评】本题考查切线的判定,圆周角定理、平行线的性质以及三角形内角和定理,掌握切线的判定方法,圆周角定理是正确解答的前提.●●【典例三】如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C 作CE ⊥AD 交AD 的延长线于点E ,延长EC ,AB 交于点F ,∠ECD =∠BCF .求证:CE 为⊙O 的切线;【分析】连接OC ,BD ,可推出EF ∥BD ,进而可证CD =BC ,进而得出CE 为⊙O 的切线;【解答】证明:如图1,连接OC ,BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵CE ⊥AE,∴∠E=∠ADB,∴EF∥BD,∴∠ECD=∠CDB,∠BCF=∠CBD,∵∠ECD=∠BCF,∴∠CDB=∠CBD,∴CD=BC,∴半径OC⊥EF,∴CE为⊙O的切线;【点评】本题考查了圆周角定理及其推论,圆的切线判定,解决问题的关键是作合适的辅助线.【变式3-1】(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【分析】连接OD,根据OA=OB,CD=BD,得出OD∥AC,∠ODE=∠CED,再根据DE⊥AC,即可证出OD⊥DE,从而得出答案.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定与性质,解决本题的关键是掌握圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.【变式3-2】已知,如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论.【分析】(1)连接CD,如图,根据圆周角定理,由BC为直径得到∠BDC=90°,然后根据等腰三角形的性质得AD=BD;(2)连接OD,先得到OD为△ABC的中位线,再根据三角形中位线性质得OD∥AC,而DE⊥AC,则DE⊥OD,然后根据切线的判定定理可得DE为⊙O的切线.【解答】(1)证明:连接CD,如图,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,即点D是AB的中点;(2)解:DE与⊙O相切.理由如下:连接OD,∵AD=BD,OC=OB,∴OD为△ABC的中位线,∴OD∥AC,而DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.【变式3-3】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=【解答】(1)证明:连接OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC==在Rt△ABC中,∠B=30°,∴AB=2AC=【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.【变式3-4】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.【点评】此题主要考查了切线的判定,角平分线的性质,含30°的直角三角形的性质,勾股定理,矩形的判定和性质,构造出直角三角形是解本题的关键,是一道中等难度的中考常考题.●●【典例四】(2022•城关区一模)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为6,PB=4,PC=8.求证:PC是⊙O的切线;【分析】可以证明OC2+PC2=OP2得△OCP是直角三角形,即OC⊥PC,PC是⊙O的切线;【解答】解:如图,连接OC、BC,∵⊙O的半径为6,PB=4,PC=8.∴OC=OB=6,OP=OB+BP=6+4=10,∴OC2+PC2=62+82=100,OP2=102=100,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线;【点评】本题考查圆的切线的判定和勾股定理逆定理,利用勾股定理的逆定理证明垂直是解决问题的关键.【变式4-1】如图,AD, BD是⊙O的弦,AD⊥BD,且BD=2AD=8 ,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先由勾股定理的逆定理证明垂直,再由切线的判断进行解答即可.【解答】证明:连接AB,∵AD⊥BD,且BD=2AD=8 ,∴AB为直径,AB2 =82+42 =80,∵CD=2,AD=4 ,∴AC2 =22 +42=20,∵CD=2,BD=8,∴BC=102=100,∴AC2+AB2=CB2,∴∠BAC=90° ,∴AC是⊙O的切线【点评】本题考查切线的判定,圆周角定理的推论,勾股定理的逆定理,解题关键是作出辅助线构造直角三角形.【变式4-2】如图,AD,BD是⊙O的弦,AD⊥BD,且BD=2AD=8,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先根据圆周角定理得到AB为⊙O的直径,再利用勾股定理计算出AB、AC,接着利用勾股定理的逆定理证明△ABC为直角三角形,∠BAC=90°,所以AC⊥AB,然后根据切线的判定定理得到结论.【解答】证明:∵AD⊥BD,∴∠ADB=90°,∴AB为⊙O的直径,∵BD =2AD =8,∴AD =4,在Rt △ADB 中,AB 2=AD 2+BD 2=42+82=80,在Rt △ADC 中,AC 2=AD 2+CD 2=42+22=20,∵BC 2=(2+8)2=10,∴AC 2+AB 2=BC 2,∴△ABC 为直角三角形,∠BAC =90°,∴AC ⊥AB ,∵AB 为直径,∴AC 是⊙O 的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理和勾股定理的逆定理.●●【典例五】(2022•鄞州区校级开学)如图,AB 为⊙O 的直径,点C 和点D 是⊙O 上的两点,连接BC ,DC ,BC =CD ,CE ⊥DA 交DA 的延长线于点E .求证:CE 是⊙O 的切线;【分析】连接OD ,OC ,证得△COD ≌△COB ,可得∠OCD =∠BCO ,从而得到∠ADC =∠DCO ,进而得到DA ∥CO ,利用切线的判定定理即可求证;【解答】证明:连接OD ,OC,如图,在△COD和△COB中,OD=OBOC=OC,CD=CB∴△COD≌△COB(SSS),∴∠OCD=∠BCO,∵CO=BO,∴∠B=∠BCO,∵∠B=∠ADC,∴∠ADC=∠DCO.∴DA∥CO,∴∠E+∠ECO=180°.∵CE⊥EA,∴∠E=90°.∴∠ECO=90°,∴EC⊥CO,∵CO是⊙O的半径,∴EC是⊙O的切线;【点评】本题主要考查了切线的判定,圆周角定理等知识,熟练掌握切线的判定,相似三角形的判定和性质,圆周角定理等知识是解题的关键.【变式5-1】如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.求证:CD是⊙O的切线;【分析】连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC 为直角,即可得证;【解答】证明:如图,连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB,在△COD和△COB中,OC=OC∠COD=∠COB,OD=OB∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线;【点评】此题考查了切线的判定和性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.【变式5-2】(2022秋•新抚区期末)如图,AB为⊙O的直径,四边形OBCD是矩形,连接AD,延长AD 交⊙O于E,连接CE.求证:CE为⊙O的切线.【分析】连接OC、BE,根据矩形性质和圆半径相等,推出∠CDE=∠AEO,进而得到OP=CP,然后根据OB∥CD,可以推出∠COE=∠BOC,最后通过证明△BOC≌△EOC即可求解.【解答】证明:如图:连接OC、BE,OE,CD交于点P,∵四边形OBCD是矩形,∴OB∥CD,∠OBC=90°,OB=CD,∵OB∥CD,∴∠A=∠CDE,∵在⊙O中,OA=OB=OE,∴OE=CD,∵OA=OE,∴∠A=∠AEO,∴∠CDE=∠AEO,∴DP=PE,∵OE=CD,∴OP=CP,∴∠COE=∠DCO,∵OB∥CD,∴∠DCO=∠BOC,∴∠COE=∠BOC,在△BOC和△EOC中,OB=OECO=CO,∠BOC=∠COE∴△BOC≌△EOC(SAS),∴∠CEO=∠OBC=90°,∴CE⊥OE,又∵OE为⊙O的半径,∴CE为⊙O的切线.【点评】本题考查圆周角定理,全等三角形的判定和性质,矩形的性质等众多知识点,熟悉掌握以上知识点是解题关键.【变式5-3】(2022•建邺区二模)如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若AP BF=1,求⊙O的半径.【分析】(1)连接AF,根据菱形的性质得到∠ACF=∠ACE,根据全等三角形的性质得到∠AFC=∠AEC,推出OA⊥AE,根据切线的判定定理即可得到结论;(2)连接BP,根据圆周角定理得到∠APB=90°,求得AC=2AP=【解答】(1)证明:连接AF,∵四边形ABCD为菱形,∴∠ACF=∠ACE,在△ACF与△ACE中,CF=CE∠ACF=∠ACEAC=AC,∴△ACF≌△ACE(SAS),∴∠AFC=∠AEC,∵AB是⊙O的直径,∴∠AFB=∠AFC=90°,∴∠AEC=90°,∵AB∥DC,∴∠BAE+∠AEC=90°,∴∠BAE=90°,∴OA⊥AE,∵OA是⊙O的半径,∴AE是⊙O的切线;(2)解:连接BP,∵AB是⊙O的直径,∴∠APB=90°,∵AB=CB,AP=∴AC=2AP=设⊙O的半径为R,∵AC2﹣CF2=AF2,AB2﹣BF2=AF2,∴2−(2R−1)2=(2R)2−12,∴R=32(负值舍去),∴⊙O的半径为3 2.【点评】本题考查了切线的判定和性质,圆周角定理,菱形的性质,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题.类型二:无公共点:作垂直,证半径●●【典例六】如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【分析】过点O作OE⊥AC于点E,连接OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【解答】证明:过点O作OE⊥AC于点E,连接OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵圆心到直线的距离等于半径,∴AC是⊙O的切线.【点评】本题考查了切线的判定和性质,等腰三角形的性质,角平分线的性质,熟练掌握性质定理是解题的关键.【变式6-1】如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.【分析】利用正方形的性质得出AC平分角∠BCD,再利用角平分线的性质得出OM=ON,即可得出答案.【解答】证明:如图所示,连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴ON为⊙O的半径,∴CD与⊙O相切.【点评】此题主要考查了正方形的性质以及角平分线的性质,得出OM=ON是解题关键.【变式6-2】如图,OC平分∠AOB,D是OC上任意一点,⊙D和OA相切于点E,连接CE.(1)求证:OB与⊙D相切;(2)若OE=4,⊙D的半径为3,求CE的长.【分析】(1)过点D作DF⊥OB于点F,先由切线的性质得DE⊥OA,则由角平分线的性质得DF=DE,即可证得结论;(2)过E作EG⊥OD于G,先由勾股定理求出OD=5,再由面积法求出EG=125,然后由勾股定理求出DG=95,最后由勾股定理求出CE即可.【解答】(1)证明:连接DE,过点D作DF⊥OB于点F,如图所示:∵⊙D与OA相切于点E,∴DE⊥OA,∵OC平分∠AOB,∴DF=DE,又∵DF⊥OB,∴OB与⊙D相切;(2)解:过E作EG⊥OD于G,如图所示:由(1)得:DE⊥OA,∴∠OED=90°,∵OE=4,DE=3,∴OD=5,∵EG⊥OD,∴12OD×EG=12OE×DE,∴EG=OE×DEOD=4×35=125,∴DG===9 5,∴CG=CD+DG=3+95=245,∴CE=【点评】此题考查了切线的判定与性质、勾股定理以及角平分线的性质等知识,解题的关键是准确作出辅助线.【变式6-3】如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.【分析】(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论.(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,继而在Rt△DFC中利用勾股定理可得出DF的长,继而可得出半径.【解答】(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,又∵DO平分∠ADC,∴OE=OA,∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,∴CD是⊙O的切线.(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,∴四边形ABFD是矩形,∴AD=BF,AB=DF,又∵AD=4,BC=9,∴FC=9﹣4=5,∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,∴DC=AD+BC=4+9=13,在Rt△DFC中,DC2=DF2+FC2,∴DF=12,∴AB=12,∴⊙O的半径R是6.【点评】此题考查了切线的性质、角平分线的性质及勾股定理的知识,证明第一问关键是掌握切线的判定定理,解答第二问关键是熟练切线的性质.【变式6-4】(2022秋•清原县期末)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O 经过点C 且与AB 边相切于点E ,∠FAC =12∠BDC .(1)求证:AF 是⊙O 的切线;(2)若BC =6,AB =10,求⊙O 的半径长.【分析】(1)作OH ⊥FA ,垂足为点H ,连接OE ,证明AC 是∠FAB 的平分线,进而根据OH =OE ,OE ⊥AB ,可得AF 是⊙O 的切线;(2)勾股定理得出AC ,设⊙O 的半径为r ,则OC =OE =r ,进而根据切线的性质,在Rt △OEA 中,勾股定理即可求解.【解答】(1)证明:如图,作OH ⊥FA ,垂足为点H ,连接OE ,∵∠ACB =90°,D 是AB 的中点,∴CD =AD =12AB ,∴∠CAD =∠ACD ,∵∠BDC =∠CAD +∠ACD =2∠CAD ,又∵∠FAC =12∠BDC ,∴∠FAC =∠CAD ,即AC 是∠FAB 的平分线,∵点O 在AC 上,⊙O 与AB 相切于点E ,∴OE ⊥AB ,且OE 是⊙O 的半径,∴OH =OE ,OH 是⊙O 的半径,∴AF 是⊙O 的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,AB=10,∴AC==8,∵BE,BC是⊙O的切线,∴BC=BE=6,∴AE=10﹣6=4设⊙O的半径为r,则OC=OE=r,在Rt△OEA中,由勾股定理得:OE2+AE2=OA2,∴16+r2=(8﹣r)2,∴r=3.∴⊙O的半径长为3.【点评】本题考查了切线的性质与判定,勾股定理,熟练掌握切线的性质与判定是解题的关键.1.如图,已知AB是⊙O的直径,AB=BE,点P在BA的延长线上,连接AE交⊙O于点D,过点D作PC⊥BE垂足为点C.求证:PC与⊙O相切;【分析】连接OD,根据等腰三角形的性质得到∠BAE=∠BEA,∠BAE=∠ODA,等量代换得到∠ODA=∠BEA,证明OD∥BE,根据平行线的性质得到PC⊥OD,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AB=BE,∴∠BAE=∠BEA,∵OA=OD,∴∠BAE=∠ODA,∴∠ODA=∠BEA,∴OD∥BE,∵PC⊥BE,∴PC⊥OD,∵OD是⊙O的半径,∴PC与⊙O相切;【点评】本题考查的是切线的判定、解直角三角形,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.2.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是BC的中点,DE∥BC交AC的延长线于点E.(1)求证:直线DE与⊙O相切;(2)若⊙O的直径是10,∠A=45°,求CE的长.【分析】(1)连接OD,如图,先利用垂径定理得到OD⊥BC,再根据平行线的性质得到OD⊥DE,然后根据切线的判定方法得到结论;(2)先根据圆周角定理得到∠B=90°,则∠ACB=45°,再根据平行线的性质得到∠E=45°,则可判断△ODE 为等腰直角三角形,于是可求出OE,然后计算OE﹣OC即可.【解答】(1)证明:连接OD,如图,∵点D是BC的中点,∴OD⊥BC,∵DE∥BC,∴OD⊥DE,∴直线DE与⊙O相切;(2)解:∵AC是⊙O的直径,∴∠B=90°,∵∠A=45°,∴∠ACB=45°,∵BC∥DE,∴∠E=45°,而∠ODE=90°,∴△ODE为等腰直角三角形,∴OE==∴CE=OE﹣OC=5.【点评】本题考查了切线的性质与判定:圆的切线垂直于经过切点的半径.也考查了垂径定理、圆周角定理和等腰直角三角形的性质.3.(2023•东城区校级模拟)如图,⊙O的半径OC与弦AB垂直于点D,连接BC,OB.(1)求证:2∠ABC+∠OBA=90°;(2)分别延长BO、CO交⊙O于点E、F,连接AF,交BE于G,过点A作AM⊥BC,交BC延长线于点M,若G是AF的中点,求证:AM是⊙O的切线.【分析】(1)先根据垂径定理得到AC=BC,再根据圆周角定理得到∠BOC=2∠ABC,然后利用互余关系得∠BOD+∠OBD=90°,从而得到结论;(2)如图,连接OA,根据垂径定理得到BE⊥AF,再根据圆周角定理得到∠CAF=90°,则可判断BE ∥AC,所以∠ABE=∠BAC,接着证明∠BAO=∠CBA得到OA∥BC,根据平行线的性质得到AM⊥OA,然后根据切线的判断方法得到结论.【解答】证明:(1)∵OD⊥AB,∴AC=BC,∠ODB=90°,∴∠BOC=2∠ABC,∵∠BOD+∠OBD=90°,∴2∠ABC+∠OBA=90°;(2)如图,连接OA,∵G是AF的中点,∴BE⊥AF,∵CF为直径,∴∠CAF=90°,∴CA⊥AF,∴BE∥AC,∴∠ABE=∠BAC,∴AC=BC,∴∠CAB=∠CBA,∵OA=OB,∴∠BAO=∠ABO,∴∠BAO=∠CBA,∴OA∥BC,∵AM⊥BC,∴AM⊥OA,而OA为⊙O的半径,∴AM是⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、垂径定理.4.(2022•思明区校级二模)如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,BE∥AD交DC 延长线于点E,若BC平分∠ACE.(1)求证:BE是⊙O的切线;(2)若BE=3,CD=2,求⊙O的半径.【分析】(1)连接OB,由条件可以证明OB∥DE,从而证明OB⊥BE;(2)由垂径定理求出AD长,从而由勾股定理可求AC长.【解答】(1)证明:连接OB,∵″OB=OC,∴∠OBC=∠OCB,∵∠BCE=∠OCB,∴∠OBC=∠BCE,∴OB∥DE,∵AC是⊙O直径,∴AD⊥DE,∵BE∥AD,∴BE⊥DE,∴OB⊥BE,∵OB是⊙O半径,∴BE是⊙O切线;(2)解:延长BO交AD于F,∵∠D=∠DEB=∠EBF=90°,∴四边形BEDF是矩形,∴BF⊥AD,DF=BE=3,∴AD=2DF=6,∵AC2=AD2+CD2,∴AC2=62+22=40,∴AC=∴⊙O【点评】本题考查切线的判定,矩形的判定和性质,垂径定理,勾股定理,用到的知识点较多,关键是熟练掌握知识点,并能灵活应用.5.(2023•封开县一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.【分析】(1)连接OD,由AC=AB,根据等边对等角得到一对角相等,再由OD=OB,根据等边对等角得到又一对角相等,等量代换可得一对同位角相等,根据同位角相等两直线平行可得OD与AC平行,又EF垂直于AC,根据垂直于两平行线中的一条,与另一条也垂直,得到EF与OD也垂直,可得EF为圆O的切线;(2)连接AD,由AB为圆的直径,根据直径所对的圆周角为直角可得∠ADB=90°,即AD与BC垂直,又AC=AB,根据三线合一得到D为BC中点,由BC求出CD的长,再由AC的长,利用勾股定理求出AD的长,三角形ACD的面积有两种求法,AC乘以DE除以2,或CD乘以AD除以2,列出两个关系式,两关系式相等可求出DE的长.【解答】(1)证明:连接OD,∵AB=AC,∴∠C=∠OBD,∵OD=OB,∴∠1=∠OBD,∴∠1=∠C,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;(2)连接AD,∵AB为⊙O的直径,∴∠ADB=90°,又∵AB=AC,且BC=6,∴CD=BD=12BC=3,在Rt△ACD中,AC=AB=5,CD=3,根据勾股定理得:AD=4,又S△ACD =12AC•ED=12AD•CD,即12×5×ED=12×4×3,∴ED=12 5.【点评】此题考查了等腰三角形的性质,圆周角定理,平行线的性质,勾股定理,三角形面积的求法,以及切线的判定,其中证明切线的方法为:有点连接圆心与此点,证垂直;无点过圆心作垂线,证明垂线段长等于圆的半径.本题利用的是第一种方法.6.(2023•宁德模拟)如图,OM 为⊙O 的半径,且OM =3,点G 为OM 的中点,过点G 作AB ⊥OM 交⊙O 于点A ,B ,点D 在优弧AB 上运动,将AB 沿AD 方向平移得到DC ;连接BD ,BC .(1)求∠ADB 的度数;(2)如图2,当点D 在MO 延长线上时,求证:BC 是⊙O 的切线.【分析】(1)连接AO ,BO ,先根据特殊角的正弦值可得∠OAG =30°,再根据等腰三角形的性质可得∠OAG =∠OBG =30°,从而可得∠AOB =120°,然后根据圆周角定理即可得;(2)连接AO ,BO ,CO ,先证出四边形ABCD 是平行四边形,再根据等边三角形的判定与性质可得AB =AD ,根据菱形的判定可得四边形ABCD 是菱形,根据菱形的性质可得CB =CD ,然后根据SSS 定理证出△COB ≌△COD ,根据全等三角形的性质可得∠OBC =∠ODC =90°,最后根据圆的切线的判定即可得证.【解答】(1)解:如图1,连接AO ,BO .∵点G 为OM 的中点,且OM =3,∴OG =12OM =32,OA =OB =OM =3,∵AB ⊥OM ,在Rt △AOG 中,OG =12OA .∴∠OAG =30°,又∵OA =OB ,∴∠OAG=∠OBG=30°,∴∠AOB=120°,∴∠ADB=12∠AOB=60°.(2)证明:如图2,连接AO,BO,CO,由平移得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∵OM⊥AB,点D在MO延长线上,∴DM⊥CD,∵OA=OB,AB⊥OM,∴AG=BG,∴DM垂直平分AB,∴AD=BD,∵∠ADB=60°,∴△ABD为等边三角形,∴AB=AD,∴平行四边形ABCD是菱形,∴CB=CD,在△COB和△COD中,CB=CDOB=ODOC=OC,∴△COB≌△COD(SSS),∴∠OBC=∠ODC=90°,又∵OB是⊙O的半径,。
专题24.7 圆的切线的判定与性质--重难点题型【人教版】【例1】(2021•新兴县一模)如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,连接BD,∠DAB=∠B=30°,求证:直线BD是⊙O的切线.【变式1-1】(2020秋•思明区校级期末)如图,AB是圆O的一条弦,点E是劣弧AB的中点,直线CD经过点E且与直线AB平行,证明:直线CD是圆O的切线.【变式1-2】(2020秋•福州期末)如图,AB是⊙O的直径,C为半圆O上一点,直线l经过点C,过点A作AD⊥l于点D,连接AC,当AC平分∠DAB时,求证:直线l是⊙O 的切线.【变式1-3】(2021•芜湖模拟)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF =AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线.【题型2 切线判定(作垂直,证半径)】【例2】(2020秋•原州区期末)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.【变式2-1】(2020秋•北京期末)如图,以点O为圆心作圆,所得的圆与直线a相切的是()A.以OA为半径的圆B.以OB为半径的圆C.以OC为半径的圆D.以OD为半径的圆【变式2-2】(2020秋•曲靖期末)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC边于点D、F.过点D作DE⊥CF于点E.求证:DE是⊙O的切线;【变式2-3】(2021•南平模拟)如图,在△ABC中,D为BC边上的一点,过A,C,D三点的圆O交AB于点E,已知,BD=AD,∠BAD=2∠DAC=36°.(1)求证:AD是圆O的直径;(2)过点E作EF⊥BC于点F,求证:EF与圆O相切.【题型3 切线判定(定义法)】【例3】(2020秋•北塘区期中)给出下列说法:(1)与圆只有一个公共点的直线是圆的切线;(2)与圆心的距离等于半径的直线是圆的切线;(3)垂直于圆的半径的直线是圆的切线;(4)过圆的半径的外端的直线是圆的切线.其中正确的说法个数为()A.1B.2C.3D.4【变式3-1】(2020秋•锡山区校级月考)下列直线是圆的切线的是()A.与圆有公共点的直线B.到圆心的距离等于半径的直线C.到圆心的距离大于半径的直线D.到圆心的距离小于半径的直线【变式3-2】给出下列说法:①与圆只有一个公共点的直线是圆的切线;②与圆心的距离等于半径的直线是圆的切线;③垂直于圆的半径的直线是圆的切线;④过圆的半径的外端的直线是圆的切线;⑤经过圆心和切点的直线垂直于这条切线.其中正确的是.(填序号)【变式3-3】(2020•龙川县二模)如图,P A和⊙O相切于A点,PB和⊙O有公共点B,且P A=PB,求证:PB是⊙O的切线.【例4】(2020秋•衢江区期末)如图,直线AB 与⊙O 相切于点C ,OA 交⊙O 于点D ,连结CD .已知OD =CD =5,求AC 的长.【变式4-1】(2021•温州三模)在等腰三角形ABC 中,AC =BC =2,D 是AB 边上一点,以AD 为直径的⊙O 恰好与BC 相切于点C ,则BD 的长为( )A .1B .2√33C .2D .2√55【变式4-2】(2021•湖州一模)如图,以△ABC 的边AB 为直径作⊙O ,交BC 于点D ,过点D 的切线DE ⊥AC 于点E .(1)求证:AB =AC ;(2)若AB =10,BD =8,求DE 的长.【变式4-3】(2021•陕西模拟)如图,AB是⊙O的直径,C是⊙O上的一点,连接BC,F 为BC的中点,连接FO并延长交⊙O于点D,过点D的切线与CA的延长线交于点E.(1)求证:四边形CEDF是矩形;(2)若AC=OA=2,求AE的长.【题型5 切线的性质(求半径问题)】【例5】(2020秋•市中区期末)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=28°,求∠C的度数;(2)若AC=2√3,CE=2,求⊙O半径的长.【变式5-1】(2020秋•沂水县期末)如图,已知⊙O 上三点A ,B ,C ,∠ABC =15°,切线P A 交OC 延长线于点P ,AP =√3,则⊙O 的半径为( )A .√33B .√32C .√3D .3【变式5-2】(2021•河南模拟)如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,作OF ⊥AD 于点E ,交CD 于点F .(1)在不增加辅助线的情况下,请直接写出图中一对相等的角,并证明;(2)若BD =8,EF =2,求⊙O 的半径.【变式5-3】(2021•贵池区模拟)已知:在⊙O 中,AB 为直径,P 为射线AB 上一点,过点P 作⊙O 的切线,切点为点C ,D 为弧AC 上一点,连接BD 、BC 、DC .(1)如图1,求证:∠D =∠PCB ;(2)如图2,若四边形CDBP 为平行四边形,BC =5,求⊙O 的半径.【题型6 切线的性质(求角度问题)】【例6】(2021•红桥区三模)在△ABC 中,以AB 为直径的⊙O 分别与边AC ,BC 交于点D ,E,且DE=BE.(Ⅰ)如图①,若∠CAB=38°,求∠C的大小;(Ⅱ)如图②,过点E作⊙O的切线,交AB的延长线于点F,交AC于点G,若∠CAB =52°,求∠BEF的大小.【变式6-1】(2021•三明模拟)从⊙O外一点A作⊙O的切线AB,AC,切点分别为B,C,D是⊙O上不同于B,C的点,∠BAC=60°,∠BDC的度数是()A.120°B.60°C.90°或120°D.60°或120°【变式6-2】(2021•北辰区二模)如图,在⊙O中,直径AB与弦CD相交于点E,∠ABC =58°.(Ⅰ)如图①,若∠AEC=85°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线DF,与AB的延长线相交于点F,求∠F的大小.【变式6-3】(2021•天津)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O 上一点.(Ⅰ)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(Ⅱ)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.。
切线的判定与性质及切线长定理(答案版)切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:切线的判定方法:(1)定义:直线和圆有唯一公共点时这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点二是直线与过交点的半径垂直缺一不可).题型1:切线的判定-连半径证垂直1.如图AB为⊙O的直径AC平分∠BAD交⊙O于点C CD⊥AD垂足为点D.求证:CD是⊙O 的切线.【答案】证明:连接OC∵AC平分∠DAB∴∠DAC=∠BAC∵OC=OA∴∠BAC=∠ACO∴∠DAC=∠ACO∴OC∠AD∵CD∠AD∴OC∠DC∵OC过圆心O∴CD是∠O的切线.【解析】【分析】连接OC 根据角平分线的定义和等腰三角形的性质得出∠DAC=∠BAC 根据平行线的判定得出OC∠AD 根据平行线的性质得出OC∠DC 再根据切线的判定得出结论。
【变式1-1】如图在∠O中AB为直径BP为∠O的弦AC与BP的延长线交于点C 且AB=AC PE⊥AC于点E 求证:PE是∠O的切线.【答案】解:连接AP OP∵AB为∠O直径∴∠APB=90°即AP⊥BC又∵AB=AC∴点P是BC的中点又∵O是AB的中点∴OP是△ABC的中位线∴OP∠AC∴∠OPE=∠PEC又∵PE⊥AC∴∠PEC=90°∴∠OPE=90°∴OP⊥PE.∴PE是∠O的切线.【解析】【分析】连接AP OP 由AB为直径可知AP⊥BC结合AB=AC可得点P为BC的中点而O是AB的中点可得OP是△ABC的中位线可知OP∠AC 进而∠OPE=∠PEC 然后结合PE⊥AC可得OP⊥PE即可得到结论。
【变式1-2】如图D为∠O上一点点C在直径BA的延长线上且∠CDA=∠CBD.求证:CD是∠O 的切线.【答案】证明:连接OD∵AB为直径∴∠ADO+∠BDO=90°又∵∠CDA=∠CBD∴∠CDA=∠BDO∴∠ADC+∠ADO=90°∴OD⊥CD∴CD是∠O的切线.【解析】【分析】连接OD 由圆周角定理可得∠ADO+∠BDO=90° 由已知条件以及等腰三角形的性质可得∠CDA=∠BDO 进而得到∠ADC+∠ADO=90° 据此证明.题型2:切线的判定-作垂直证半径2.ΔABC为等腰三角形O为底边BC的中点腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【答案】证明:过点O作OE∠AC于点E 连结OD OA∵AB与O相切于点D∴AB∠OD∵∠ABC为等腰三角形O是底边BC的中点∴AO是∠BAC的平分线∴OE=OD 即OE是O的半径∵AC经过O的半径OE的外端点且垂直于OE∴AC是O的切线。
圆的切线的判定与性质一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.例2如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切.二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例3 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.例3已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.求证:CD是⊙O的切线.练习题1.如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.3(2008黄冈市)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.求证:DE是⊙O的切线.4. 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.5.如图,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC 的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.6.如图,已知⊙O1与⊙O2交于A,B,⊙O1的半径为17,⊙O 2的半径为10,O 1O 2=21,求AB 的长.7.如图,已知⊙O 1与⊙O 2交于A ,B 两点,过A 的直线交两圆于C ,D 两点,•G•为CD 的中点,BG 及其延长线交⊙O 1,⊙O 2于E ,F ,连结DF ,CE ,求证:CE=DF .8.某人用如下方法测一钢管的内径:将一小段钢管竖直放在平台上,向内放入两个半径为5cm 的钢球,测得上面一个钢球顶部高DC=16cm(钢管的轴截面如图所示), 求钢管的内直径AD 的长9.如图,⊙O 1和⊙O 2交于A 、B ,⊙O 1弦交⊙O 2于E ,⊙O 2弦AD 交⊙O 1于F ,若∠CAB=∠DAB ,求证:CE=DF 。
专题2.6 切线的判定和性质【九大题型】【苏科版】【题型1 有关切线的说法辨析】 (1)【题型2 判断或补全使直线为切线的条件】 (2)【题型3 证明某直线是圆的切线(连半径证垂直)】 (3)【题型4 证明某直线是圆的切线(作垂直证半径)】 (4)【题型5 利用切线的性质求线段长度】 (6)【题型6 利用切线的性质求角度大小】 (7)【题型7 利用切线的性质证明】 (8)【题型8 切线的判定与性质的综合运用】 (9)【题型9 过圆外一点作圆的切线】 (11)【知识点切线的判定】(1)切线判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线②和圆只有一个公共点的直线是圆的切线(定义法)③如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线(2)切线判定常用的证明方法:②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.【题型1 有关切线的说法辨析】【例1】(2023春·山东日照·九年级统考期中)如图,点B在⊙A上,点C在⊙A外,以下条件不能判定BC 是⊙A切线的是()A.∠A=50°,∠C=40°B.∠B﹣∠C=∠AC.AB2+BC2=AC2D.⊙A与AC的交点是AC中点【变式1-1】(2023春·九年级课时练习)下列直线中可以判定为圆的切线的是()A.与圆有公共点的直线B.经过半径外端的直线C.垂直于圆的半径的直线D.与圆心的距离等于半径的直线【变式1-2】(2023春·西藏拉萨·九年级校考期末)下列四个选项中的表述,一定正确的是()A.经过半径上一点且垂直于这条半径的直线是圆的切线B.经过半径的端点且垂直于这条半径的直线是圆的切线C.经过半径的外端且垂直于这条半径的直线是圆的切线D.经过一条弦的外端且垂直于这条弦的直线是圆的切线【变式1-3】(2011秋·湖北黄冈·九年级统考期末)如图,已知、分别为的直径和弦,为的中点,垂直于的延长线于,连接,若,,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点【题型2 判断或补全使直线为切线的条件】【例2】(2023春·北京·九年级统考期末)在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是.(写一个条件即可)【变式2-1】(2023春·山东德州·九年级统考期中)如图,A、B是⊙O上的两点,AC是过A点的一条直线,如果∠AOB=120°,那么当∠CAB的度数等于度时,AC才能成为⊙O的切线.【变式2-2】(2023春·河南信阳·九年级统考期中)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB 于D 点,连接CD .(1)求证:∠A=∠BCD ;(2)若M 为线段BC 上一点,试问当点M 在什么位置时,直线DM 与⊙O 相切?并说明理由.【题型3 证明某直线是圆的切线(连半径证垂直)】【例3】(2023春·江西宜春·九年级江西省丰城中学校考开学考试)如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O 分别交AB ,AC 于点E ,F .(1)求证:BC 是O 的切线;(2)若8AF =,=1CF ,求O 的半径.【变式3-1】(2023春·全国·九年级专题练习)如图,Rt ABC △中,90A ∠=︒,以AB 为直径的O 交BC 于点D ,点E 在O 上CE CA =,AB ,CE 的延长线交于点F .(1)求证:CE 与O 相切;(2)若O 的半径为3,4EF =,求CE 的长.【变式3-2】(2023春·江西九江·九年级校考期中)如图,AB 为O 的直径,C 为O 上一点,P 为BC 延长线上的一点,使得PAC B ∠=∠.(1)求证:AP 是O 的切线.(2)F 为O 上一点,且OC 经过AF 的中点E .①求证:B CAE ∠=∠;②若2AE CE =,AC =O 的半径长.【变式3-3】(2023春·江苏无锡·九年级统考期中)如图,已知半径为5的M 经过x 轴上一点C ,与y 轴交于A 、B 两点,连接AM 、AC ,AC 平分OAM ∠,6AO CO +=.(1)判断M 与x 轴的位置关系,并说明理由;(2)求AB 的长.【题型4 证明某直线是圆的切线(作垂直证半径)】【例4】(2023春·山东日照·九年级日照市新营中学校考期中)如图,在四边形ABCD 中,∠ABC =90°,AD ∥BC ,CB =CD ,连接BD ,以点B 为圆心,BA 长为半径作⊙B ,交BD 于点E .(1)试判断CD 与⊙B 的位置关系,并说明理由.(2)若AB =6,∠BDC =60°,求图中阴影部分的面积.【变式4-1】(2023·江西南昌·九年级期末)如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的O与BC相切于点M.(1)求证:CD与O相切.(2)若正方形ABCD的边长为1,求半径OA的长.【变式4-2】(2023•武汉模拟)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB 上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.【变式4-3】(2023•椒江区一模)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【知识点2 切线的性质】(1)切线性质定理:圆的切线垂直于过切点的半径(2)切线性质的推论:①经过圆心且垂直于切线的直线必经过切点②经过切点且垂直于切线的直线必经过圆心【题型5 利用切线的性质求线段长度】【例5】(2023春·河南·九年级校联考期末)如图,为的直径,,是上不同于,的两点,过点的切线垂直于交的延长线于点,连接.(1)求证:;(2)若,,则的长为__________.【变式5-1】(2023春·北京西城·九年级北师大实验中学校考开学考试)如图,是的直径,点C在上,过点C作的切线l,过点B作于点D.(1)求证:平分;(2)连接,若,,求的长.【变式5-2】(2023春·广东韶关·九年级校考期末)如图,已知△内接于⊙O,是⊙O的直径,点F在⊙O上,且点C是弧的中点,过点C作⊙O的切线交的延长线于D点,交的延长线于E点.(1)求证:;(2)若,,求的长.【变式5-3】(2023春·广东汕头·九年级统考期末)如图,是的直径,点C是上一点,与过点C的切线垂直,垂足为点D,直线与的延长线相交于点P,G是△的内心,连接并延长,交于E,交于点F,连接.(1)求证:平分;(2)连接,判断△的形状,并说明理由;(3)若,,求线段的长.【题型6 利用切线的性质求角度大小】【例6】(2023春·重庆南岸·九年级重庆市珊瑚初级中学校校考期中)如图,是的直径,,是的弦,是的切线,为切点,与交于点.若点为的中点,,则的度数为()A.B.C.D.【变式6-1】(2023春·河南信阳·九年级校联考期末)如图,是的直径,点是外一点,交于点,连接,.若,且与相切,则此时等于()A.B.C.D.(2023春·广东梅州·九年级校考开学考试)如图:P是的直径的延长线上一点,是的切【变式6-2】线,A为切点,,则.【变式6-3】(2023春·江西宜春·九年级江西省丰城中学校考期末)如图,点A,B在圆O上,且=,点P 是射线上一动点(不与点O重合),连接,将△沿折叠得到△,当△的边所在的直线与圆O相切时,的度数为.【题型7 利用切线的性质证明】【例7】(2023春·河北邢台·九年级校联考期末)如图,BD是的直径,是的弦,过点A的切线交的延长线于点C,.求证:△ △.【变式7-1】(2023春·河南驻马店·九年级统考期中)如图所示,是的直径,点为线段上一点(不与,重合),作,交于点,垂足为点,作直径,过点的切线交的延长线于点,于点,连接试证明:(1)是的角平分线;(2).【变式7-2】(2023春·广东江门·九年级统考期末)如图,点A、B、C在O上,直线与O相切于点A.(1)试问:与有怎样的大小关系?证明你的结论;(2)如果我们把形如这样的角称为“弦切角”,请你用文字表述你在(1)中得出的结论.(2023·安徽·九年级统考期中)已知:如图,点是外一点,过点分别作的切线、,切点【变式7-3】为点、,连接,过点作交于点,过点作于.(1)求证:四边形是矩形;(2)若,的半径为,试证明四边形的周长等于.【题型8 切线的判定与性质的综合运用】【例8】(2023春·湖北·九年级期末)AB为⊙O的直径,P A为⊙O的切线,BC OP交⊙O于C,PO交⊙O 于D,(1)求证:PC为⊙O的切线;(2)过点D作DE⊥AB于E,交AC于F,PO交AC于H,BD交AC于G,DF=FG,DF=5,CG=6,求⊙O的半径.【变式8-1】(2023春·湖北随州·九年级统考期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是AB 上一点,以CE为直径的⊙O交BC于点F,连接DO,且∠DOC=90°.(1)求证:AB是⊙O的切线;(2)若DF=2,DC=6,求BE的长.【变式8-2】(2023春·河南周口·九年级淮阳第一高级中学校考期末)如图,,点是线段的一个三等分点,以点为圆心,为半径的圆交于点,交于点,连接(1)求证:是的切线;(2)点为上的一动点,连接.①当时,四边形是菱形;②当时,四边形是矩形.【变式8-3】(2023春·湖北·九年级期末)已知AB是⊙O的直径,AC是弦,∠BAC的角平分线交⊙O于点D,DE⊥AC于E.(1)如图(1)求证:DE是⊙O的切线;(2)如图(1)若AB=10,AC=6,求ED的长;(3)如图(2)过点B作⊙O的切线,交AD延长线于F,若ED=DF,求的值.【题型9 过圆外一点作圆的切线】【例9】(2023·北京海淀·九年级期末)已知:点,,在上,且.求作:直线,使其过点,并与相切.作法:①连接;②分别以点,点为圆心,长为半径作弧,两弧交于外一点;③作直线.直线就是所求作直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接,,∵,∴四边形是菱形,∵点,,在上,且,∴______°(_________________)(填推理的依据).∴四边形是正方形,∴,即,∵为半径,∴直线为的切线(_________________)(填推理的依据).【变式9-1】(2023·天津和平·统考三模)如图,在每个小正方形的边长为1的网格中,圆上的点在格点上,点在格点上,圆心在线段上,圆与网格线相交于点,过点作圆的切线与网格线交于点.(1);(2)过点作圆的切线,切点为(点不与点重合).请用无刻度的直尺,在如图所示的网格中,画出点,并简要说明点的位置是如何找到的(不要求证明).【变式9-2】(2023春·江苏宿迁·九年级统考期中)已知:和外一点.(1)如图甲,和是的两条切线,、分别为切点,求证:;(2)尺规作图:在图乙中,过点作的两条切线、、、为切点(要求:保留作图痕迹,不写作法).【变式9-3】(2023·北京海淀·九年级期末)按要求作图:(1)如图1,在正方形网格中,有一圆经过了两个小正方形的顶点A,B,利用无刻度直尺画出这个圆的一条直径;(2)如图2,BA,BD是⊙O中的两条弦,C是BD上一点,∠BAC=50︒,利用无刻度直尺在图中画一个含有50︒角的直角三角形;(3)如图3,利用无刻度直尺和圆规,以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹);(4)如图4,AB与圆相切,且切点为点B,利用无刻度直尺在网格中找出点B的位置.专题2.6 切线的判定和性质【九大题型】【苏科版】【题型1 有关切线的说法辨析】 (1)【题型2 判断或补全使直线为切线的条件】 (2)【题型3 证明某直线是圆的切线(连半径证垂直)】 (3)【题型4 证明某直线是圆的切线(作垂直证半径)】 (4)【题型5 利用切线的性质求线段长度】 (6)【题型6 利用切线的性质求角度大小】 (7)【题型7 利用切线的性质证明】 (8)【题型8 切线的判定与性质的综合运用】 (9)【题型9 过圆外一点作圆的切线】 (11)【知识点切线的判定】(1)切线判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线②和圆只有一个公共点的直线是圆的切线(定义法)③如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线(2)切线判定常用的证明方法:②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.【题型1 有关切线的说法辨析】【例1】(2023春·山东日照·九年级统考期中)如图,点B在⊙A上,点C在⊙A外,以下条件不能判定BC 是⊙A切线的是()A.∠A=50°,∠C=40°B.∠B﹣∠C=∠AC.AB2+BC2=AC2D.⊙A与AC的交点是AC中点【答案】D【分析】根据切线的判定分别对各个选项进行判断,即可得出结论.【详解】解:A、∵∠A=50°,∠C=40°,∴∠B=180°﹣∠A﹣∠C=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;B、∵∠B﹣∠C=∠A,∴∠B=∠A+∠C,∵∠A+∠B+∠C=180°,∴∠B=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;C、∵AB2+BC2=AC2,∴△ABC是直角三角形,∠B=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;D、∵⊙A与AC的交点是AC中点,∴AB=AC,但不能证出∠B=90°,∴不能判定BC是⊙A切线;故选:D.【点睛】本题考查了切线的判定、勾股定理的逆定理、三角形内角和定理等知识;熟练掌握切线的判定是解题的关键.【变式1-1】(2023春·九年级课时练习)下列直线中可以判定为圆的切线的是()A.与圆有公共点的直线B.经过半径外端的直线C.垂直于圆的半径的直线D.与圆心的距离等于半径的直线【答案】D【分析】根据切线的判定方法逐项分析即可.【详解】解:A.与圆有且仅有一个公共点的直线是圆的切线,故该选项不正确,不符合题意;B.经过半径外端的直线且垂直于半径的直线是圆的切线,故该选项不正确,不符合题意;C.经过半径外端的直线且与半径垂直的直线是圆的切线,故不正确;D.与圆心的距离等于半径的直线,故该选项正确,符合题意;故选:D.【点睛】本题考查了切线的判定方法,如果直线与圆只有一个公共点,这时直线与圆的位置关系叫做相切,这条直线叫做圆的切线,这个公共点叫做切点;经过半径外端点并且垂直于这条半径的直线是圆的切线.【变式1-2】(2023春·西藏拉萨·九年级校考期末)下列四个选项中的表述,一定正确的是()A.经过半径上一点且垂直于这条半径的直线是圆的切线B.经过半径的端点且垂直于这条半径的直线是圆的切线C.经过半径的外端且垂直于这条半径的直线是圆的切线D.经过一条弦的外端且垂直于这条弦的直线是圆的切线【答案】C【分析】根据切线的判定对各个选项进行分析,从而得到答案.【详解】由切线的判定定理可知:经过半径外端点且与这条半径垂直的直线是圆的切线,故A,B,D选项不正确,C故选:C.【点睛】此题主要考查了圆中切线的判定,熟练掌握切线的判定定理是解题的关键.【变式1-3】(2011秋·湖北黄冈·九年级统考期末)如图,已知、分别为的直径和弦,为的中点,垂直于的延长线于,连接,若,,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点【答案】D【分析】AB是圆的直径,则∠ACB=90°,根据DE垂直于AC的延长线于E,可以证得ED∥BC,则DE⊥OD,即可证得DE是圆的切线,根据切割线定理即可求得AC的长,连接OD,交BC与点F,则四边形DECF 是矩形,根据垂径定理即可求得半径.【详解】解:连接OD,OC.∵D是弧BC的中点,则OD⊥BC,∴DE是圆的切线.故A正确;∴DE2=CE?AE即:36=2AE∴AE=18,则AC=AE-CE=18-2=16cm.故C正确;∵AB是圆的直径.∴∠ACB=90°,∵DE垂直于AC的延长线于E.D是弧BC的中点,则OD⊥BC,∴四边形CFDE是矩形.∴CF=DE=6cm.BC=2CF=12cm.在直角△ABC中,根据勾股定理可得:AB=.故B正确;在直角△ABC中,AC=16,AB=20,则∠ABC≠30°,而D是弧BC的中点.∴弧AC≠弧CD.故D错误.故选D.【题型2 判断或补全使直线为切线的条件】【例2】(2023春·北京·九年级统考期末)在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是.(写一个条件即可)【答案】∠ABT=∠ATB=45°(答案不唯一)【分析】根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.【详解】解:添加条件:∠ABT=∠ATB=45°,∵∠ABT=∠ATB=45°,∴∠BAT=90°,又∵AB是圆O的直径,∴AT是圆O的切线,故答案为:∠ABT=∠ATB=45°(答案不唯一).【点睛】本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.【变式2-1】(2023春·山东德州·九年级统考期中)如图,A、B是⊙O上的两点,AC是过A点的一条直线,如果∠AOB=120°,那么当∠CAB的度数等于度时,AC才能成为⊙O的切线.【答案】60【分析】由已知可求得∠OAB的度数,因为OA⊥AC,AC才能成为⊙O的切线,从而可求得∠CAB的度数.【详解】解:∵△AOB中,OA=OB,∠AOB=120°,∴,∵当OA⊥AC即∠OAC=90°时,AC才能成为⊙O的切线,∴当∠CAB的度数等于60°,即OA⊥AC时,AC才能成为⊙O的切线.故答案为:60.【点睛】本题考查了切线的判定,三角形内角和定理,等腰三角形的性质,掌握切线的判定定理是解答此题的关键.【变式2-2】(2023春·河南信阳·九年级统考期中)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O 交AB于D点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【答案】(1M为BC的中点.【详解】试题分析:(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切.试题解析:(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切,故当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切.考点:切线的判定.【变式2-3】(2023春·江西上饶·九年级统考期末)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.【答案】(1)①OA⊥EF;②∠FAC=∠B;(2)见解析;(3)见解析.【分析】(1) 添加条件是:①OA⊥EF或∠FAC=∠B根据切线的判定和圆周角定理推出即可.(2) 作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB,所以点O在AB的垂直平分线上,根据∠FAC=∠B,∠BAC=∠FAC,等量代换得到∠BAC=∠B,所以点C在AB的垂直平分线上,得到OC垂直平分AB.【详解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半径,∴EF是⊙O切线,②∵AB是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA 是半径,∴EF 是⊙O 的切线.(3)∵OA=OB ,∴点O 在AB 的垂直平分线上,∵∠FAC=∠B ,∠BAC=∠FAC ,∴∠BAC=∠B ,∴点C 在AB 的垂直平分线上,∴OC 垂直平分AB ,∴OC ⊥AB .【点睛】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.【题型3 证明某直线是圆的切线(连半径证垂直)】【例3】(2023春·江西宜春·九年级江西省丰城中学校考开学考试)如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O 分别交AB ,AC 于点E ,F .(1)求证:BC 是O 的切线;(2)若8AF =,=1CF ,求O 的半径.【答案】(1)见解析(2)O 的半径为5.【分析】(1)连接OD ,可得OA OD =,根据等边对等角,以及角平分线的定义,可得ODA CAD ∠=∠,根据“内错角相等,两直线平行”可得OD AC ∥,根据平行线的性质,可得90ODB C ∠=∠=︒,再根据切线的判定方法,即可判定;(2)过点O 作OG AF ⊥,交AF 于点G ,根据垂径定理可得118422AG FG AF ===⨯=,故5CG =,根据矩形的判定和性质,即可求解.【详解】(1)证明:如图,连接OD ,则OA OD =,ODA OAD ∴∠=∠, AD 是BAC ∠的平分线,OAD CAD ∴∠=∠,ODA CAD ∴∠=∠,OD AC ∴∥,90ODB C ∴∠=∠=︒, OD 为O 的半径,点D 在O 上,∴BC 是O 的切线;(2)解:过点O 作OG AF ⊥,交AF 于点G ,如图,OG AF ⊥,118422AG FG AF ∴===⨯=, 1CF =,145CG CF FG ∴=+=+=,OG AF ⊥,90OGC ∴∠=︒,90ODB C ∠=∠=︒,∴四边形ODCG 是矩形,5DO CG ∴==,O ∴的半径为5.【点睛】本题考查了圆的切线的判定、圆的垂径定理,矩形的判定和性质、等腰三角形的性质、角平分线的定义、平行线的判定和性质,解题的关键是准确作出辅助线.【变式3-1】(2023春·全国·九年级专题练习)如图,Rt ABC △中,90A ∠=︒,以AB 为直径的O 交BC 于点D ,点E 在O 上CE CA =,AB ,CE 的延长线交于点F .(1)求证:CE 与O 相切;(2)若O 的半径为3,4EF =,求CE 的长.【答案】(1)见解析(2)6【分析】(1)连接OE 、AE ,则OE OA =,所以OEA OAE ∠=∠,由CE CA =,得CEA CAE ∠=∠,所以90CEO CEA OEA CAE OAE ∠=∠+∠=∠+∠=︒,即可证明CE 与O 相切;(2)由切线的性质得90FEO ∠=︒,3OE OA ==,4EF =,得5OF ,则8AF OF OA =+=,即可根据勾股定理列方程2228(4)CE CE +=+,求解即可.【详解】(1)证明:如图,连接OE 、AE ,则OE OA =,OEA OAE ∴∠=∠,CEA CAE ∴∠=∠,90CEO CEA OEA CAE OAE CAO ∴∠=∠+∠=∠+∠=∠=︒, CE 经过O 的半径OE 的外端,且CE OE ⊥,CE ∴与O 相切.(2)解:由(1)知CE 与O 相切,∴90FEO ∠=︒∵3OE OA ==,4EF =,5OF ∴,8AF OF OA ∴=+=,∵90CAF =︒∠∴222CA AF CF +=,∵CA CE =,4CF CE =+,2228(4)CE CE ∴+=+,6CE ∴=,CE ∴的长为6.【点睛】此题重点考查等腰三角形的性质、圆的切线的判定、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.【变式3-2】(2023春·江西九江·九年级校考期中)如图,AB 为O 的直径,C 为O 上一点,P 为BC 延长线上的一点,使得PAC B ∠=∠.(1)求证:AP 是O 的切线.(2)F 为O 上一点,且OC 经过AF 的中点E .①求证:B CAE ∠=∠;②若2AE CE =,AC =O 的半径长.【答案】(1)见解析;(2)①见解析;②O 的半径为5.【分析】(1)根据直径所对的圆周角是直角得出90ACB ∠=︒,进而得出90CAB PAC ∠+∠=︒,即90PAB ∠=︒,即可得出结论;(2)①先根据直径所对的圆周角是直角得出90ACB BCO ACE ∠=∠+∠=︒,进而得出90B ACE ∠+∠=︒,根据题意可得出AE OC ⊥,推出90CAE ACE ∠+∠=︒,即可得出结论;②设CE x =,则2AE x =,由①知AE OC ⊥,得出ACE △和AOE △都是直角三角形,在Rt ACE 中,根据勾股定理得出()(2222x x +=,求出2CE =,4AE =,在Rt AOE △中,根据勾股定理得出()22242OA OA +-=,即可得出答案 【详解】(1)证明:∵AB 为O 的直径,∴90ACB ∠=︒,∴90CAB B ∠+∠=︒,∵PAC B ∠=∠,∴90CAB PAC ∠+∠=︒,即90PAB ∠=︒,∴AP AB ⊥,∴AP 是O 的切线;(2)①证明:∵AB 为O 的直径,∴90ACB BCO ACE ∠=∠+∠=︒,∵OC OB =,∴B BCO ∠=∠,∴90B ACE ∠+∠=︒,∵OC 经过AF 的中点E ,∴AE OC ⊥,∴90CAE ACE ∠+∠=︒,∴B CAE ∠=∠;②解:设CE x =,则2AE x =,由①知AE OC ⊥,∴ACE △和AOE △都是直角三角形,在Rt ACE 中,222AE CE AC +=,∴()(2222x x +=,解得:2x =(负值舍去),即2CE =,4AE =,在Rt AOE △中,222AE OE AO +=,∴()22242OA OA +-=,解得:5OA =,即O 的半径为5.【点睛】本题考查圆周角定理,切线的判定,勾股定理,掌握切线的判定定理是解题的关键.【变式3-3】(2023春·江苏无锡·九年级统考期中)如图,已知半径为5的M 经过x 轴上一点C ,与y 轴交于A 、B 两点,连接AM 、AC ,AC 平分OAM ∠,6AO CO +=.(1)判断M 与x(2)求AB 的长.【答案】(1)相切,理由见解析(2)6【分析】(1)连接OM ,由AC 平分OAM ∠可得OAC CAM ∠=∠,又MC AM =,所以CAM ACM ∠=∠,进而可得OAC ACM ∠=∠,所以OA ∥MC ,可得MC x ⊥轴,进而可得结论;(2)过点M 作MN y ⊥轴于点N ,则A N B N =,且四边形MNOC 是矩形,设,AO m =可分别表达MN 和ON ,进而根据勾股定理可建立等式,得出结论;【详解】(1)解:M 与x 轴相切,理由如下:如图,连接OM , AC 平分OAM ∠,OAC CAM ∴∠=∠,又MC AM =,CAM ACM ∴∠=∠,OAC ACM ∴∠=∠,OA ∴∥MC ,OA x ⊥轴,MC x ∴⊥轴, CM 是半径,M ∴与x 轴相切(2)如图,过点M 作MN y ⊥轴于点N ,AN BN ∴==12AB ,90MCO AOC MNA ∠=∠=∠=︒,∴四边形MNOC 是矩形,NM OC ∴=,5MC ON ==,设,AO m =则6OC m =-,5AN m ∴=-,在Rt ANM 中,222AM AN MN =+,∴()()222556m m =-+-,解得2m =或9(m =舍去),3AN ∴=,6AB ∴=. 【点睛】本题主要考查切线的定义,勾股定理,矩形的性质与判定,垂径定理,待定系数法求函数表达式,题目比较简单,关键是掌握相关定理.【题型4 证明某直线是圆的切线(作垂直证半径)】(2023春·山东日照·九年级日照市新营中学校考期中)如图,在四边形ABCD中,∠ABC=90°,AD∥BC,【例4】CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由.(2)若AB=6,∠BDC=60°,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)3π【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD,得到BF= BA,即可证明CD与圆B相切;(2)先证明△BCD是等边三角形,根据三线合得到∠ABD= 30°,求出AD,再利用阴影部分的面积= S△ABD-S扇形ABE求出阴影部分面积.【详解】解:(1) 过点B作BF⊥CD,垂足为F,∴∠BFD=90°,∵AD∥BC,∠ABC=90°,∴∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠BFD,∵AD∥BC,∴∠ADB= ∠CBD,∴CB= CD,∴∠CBD= ∠CDB,∴∠ADB = ∠CDB ,在△ABD 和△FBD 中 ,ADB CDB BAD BFD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△FBD (AAS),∴BF = BA ,则点F 在圆B 上,∴CD 与⊙B 相切;(2) ∵∠BCD = 60°,CB = CD ,∴△BCD 是等边三角形,∴∠CBD = 60°,∵ BF ⊥CD ,∴∠ABD = ∠DBF = ∠CBF = 30 °,∴∠ABF = 60 °,∵ AB = BF = 6,∴AD = DF °∴阴影部分的面积= S △ABD -S 扇形ABE= 2130662360π⨯⨯⨯-=3π .【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,解题的关键是正确作出辅助线.【变式4-1】(2023·江西南昌·九年级期末)如图,O 为正方形ABCD 对角线上一点,以O 为圆心,OA 长为半径的O 与BC 相切于点M .(1)求证:CD 与O 相切.(2)若正方形ABCD 的边长为1,求半径OA 的长.【答案】(1)见解析;(2)2OA =【分析】(1)根据正方形的性质可知,AC 是角平分线,再根据角平分线的性质进行证明即可;(2)根据正方形的边长求出AC 的长,再根据等腰直角三角形的性质得出即可求出.【详解】解:(1)如图,连接OM ,过点O 作ON CD ⊥于点N ,∵O 与BC 相切,∴OM BC ⊥∵四边形ABCD 是正方形,∴AC 平分BCD ∠,∴OM ON =,∴CD 与O 相切.(2)∵四边形ABCD 为正方形,∴1,90,45AB B ACD ︒︒=∠=∠=,∴45AC MOC MCO ︒∠=∠=,∴MC OM OA ==,∴OC .又AC OA OC =+,∴OA 2OA =【点睛】本题主要考查了正方形的性质和圆的切线的性质和判定,还运用了数量关系来证明圆的切线的方法.【变式4-2】(2023•武汉模拟)如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D ,AB =5,EB =3.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.(2)先证明△BDE≌△DCF(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.【解答】证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,∴∠B=90°∴AB⊥BC∵AD平分∠BAC,DF⊥AC∴BD=DF∴AC与⊙D相切;(2)在△BDE和△DCF中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△DCF(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.【变式4-3】(2023•椒江区一模)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【分析】过点O作OE⊥AC于点E,连接OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【解答】证明:过点O作OE⊥AC于点E,连接OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵圆心到直线的距离等于半径,∴AC是⊙O的切线.【知识点2 切线的性质】(1)切线性质定理:圆的切线垂直于过切点的半径(2)切线性质的推论:①经过圆心且垂直于切线的直线必经过切点②经过切点且垂直于切线的直线必经过圆心【题型5 利用切线的性质求线段长度】【例5】(2023春·河南·九年级校联考期末)如图,为的直径,,是上不同于,的两点,过点的切线垂直于交的延长线于点,连接.(1)求证:;(2)若,,则的长为__________.【答案】(1)见解析(2)【分析】(1)连接,可证,从而可证,即可求证.(2)过作交于,可求,,,接可求解.【详解】(1)证明:如图,连接,为的切线,,,,,,,,.。
专题2.2 圆的切线的判定与性质--重难点题型
【知识点1 切线的判定】
(1)切线判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线
②和圆只有一个公共点的直线是圆的切线(定义法)
③如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线
(2)切线判定常用的证明方法:
①知道直线和圆有公共点时,连半径,证垂直;
②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.
【题型1 切线判定(连半径,证垂直)】
【例1】(2021•新兴县一模)如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,连接BD,∠DAB=∠B=30°,求证:直线BD是⊙O的切线.
【变式1-1】(2020秋•思明区校级期末)如图,AB是圆O的一条弦,点E是劣弧AB的中点,直线CD经过点E 且与直线AB平行,证明:直线CD是圆O的切线.
【变式1-2】(2020秋•福州期末)如图,AB是⊙O的直径,C为半圆O上一点,直线l经过点C,过点A作AD ⊥l于点D,连接AC,当AC平分∠DAB时,求证:直线l是⊙O的切线.
【变式1-3】(2021•芜湖模拟)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB 交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.
(1)求证:ED=EC;(2)求证:AF是⊙O的切线.
【题型2 切线判定(作垂直,证半径)】
【例2】(2020秋•原州区期末)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O 的切线.
【变式2-1】(2020秋•北京期末)如图,以点O为圆心作圆,所得的圆与直线a相切的是()
A.以OA为半径的圆B.以OB为半径的圆
C.以OC为半径的圆D.以OD为半径的圆
【变式2-2】(2020秋•曲靖期末)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC边于点D、F.过点D作DE⊥CF于点E.求证:DE是⊙O的切线;
【变式2-3】(2021•南平模拟)如图,在△ABC中,D为BC边上的一点,过A,C,D三点的圆O交AB于点E,已知,BD=AD,∠BAD=2∠DAC=36°.
(1)求证:AD是圆O的直径;
(2)过点E作EF⊥BC于点F,求证:EF与圆O相切.
【题型3 切线判定(定义法)】
【例3】(2020秋•北塘区期中)给出下列说法:
(1)与圆只有一个公共点的直线是圆的切线;
(2)与圆心的距离等于半径的直线是圆的切线;
(3)垂直于圆的半径的直线是圆的切线;
(4)过圆的半径的外端的直线是圆的切线.
其中正确的说法个数为()
A.1B.2C.3D.4
【变式3-1】(2020秋•锡山区校级月考)下列直线是圆的切线的是()
A.与圆有公共点的直线
B.到圆心的距离等于半径的直线
C.到圆心的距离大于半径的直线
D.到圆心的距离小于半径的直线
【变式3-2】给出下列说法:①与圆只有一个公共点的直线是圆的切线;②与圆心的距离等于半径的直线是圆的切线;③垂直于圆的半径的直线是圆的切线;④过圆的半径的外端的直线是圆的切线;⑤经过圆心和切点的直线垂直于这条切线.其中正确的是.(填序号)
【变式3-3】(2020•龙川县二模)如图,P A和⊙O相切于A点,PB和⊙O有公共点B,且P A=PB,求证:PB是⊙O的切线.
【知识点2 切线的性质】
(1)切线性质定理:圆的切线垂直于过切点的半径
(2)切线性质的推论:①经过圆心且垂直于切线的直线必经过切点
②经过切点且垂直于切线的直线必经过圆心
【题型4 切线的性质(求长度问题)】
【例4】(2020秋•衢江区期末)如图,直线AB与⊙O相切于点C,OA交⊙O于点D,连结CD.已知OD=CD =5,求AC的长.
【变式4-1】(2021•温州三模)在等腰三角形ABC 中,AC =BC =2,D 是AB 边上一点,以AD 为直径的⊙O 恰好与BC 相切于点C ,则BD 的长为( )
A .1
B .2√33
C .2
D .2√55
【变式4-2】(2021•湖州一模)如图,以△ABC 的边AB 为直径作⊙O ,交BC 于点D ,过点D 的切线DE ⊥AC 于点E .(1)求证:AB =AC ;
(2)若AB =10,BD =8,求DE 的长.
【变式4-3】(2021•陕西模拟)如图,AB 是⊙O 的直径,C 是⊙O 上的一点,连接BC ,F 为BC 的中点,连接FO 并延长交⊙O 于点D ,过点D 的切线与CA 的延长线交于点E .
(1)求证:四边形CEDF 是矩形;(2)若AC =OA =2,求AE 的长.
【题型5 切线的性质(求半径问题)】
【例5】(2020秋•市中区期末)如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,过点A 作⊙O 的切线交BE 延长线于点C .(1)若∠ADE =28°,求∠C 的度数;(2)若AC =2√3,CE =2,求⊙O 半径的长.
【变式5-1】(2020秋•沂水县期末)如图,已知⊙O 上三点A ,B ,C ,∠ABC =15°,切线P A 交OC 延长线于点P ,AP =√3,则⊙O 的半径为( )
A .√33
B .√32
C .√3
D .3
【变式5-2】(2021•河南模拟)如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,作OF ⊥AD 于点E ,交CD 于点F .
(1)在不增加辅助线的情况下,请直接写出图中一对相等的角,并证明;
(2)若BD =8,EF =2,求⊙O 的半径.
【变式5-3】(2021•贵池区模拟)已知:在⊙O 中,AB 为直径,P 为射线AB 上一点,过点P 作⊙O 的切线,切点为点C ,D 为弧AC 上一点,连接BD 、BC 、DC .
(1)如图1,求证:∠D =∠PCB ;
(2)如图2,若四边形CDBP 为平行四边形,BC =5,求⊙O 的半径.
【题型6 切线的性质(求角度问题)】
【例6】(2021•红桥区三模)在△ABC中,以AB为直径的⊙O分别与边AC,BC交于点D,E,且DE=BE.(Ⅰ)如图①,若∠CAB=38°,求∠C的大小;
(Ⅱ)如图②,过点E作⊙O的切线,交AB的延长线于点F,交AC于点G,若∠CAB=52°,求∠BEF的大小.
【变式6-1】(2021•三明模拟)从⊙O外一点A作⊙O的切线AB,AC,切点分别为B,C,D是⊙O上不同于B,C的点,∠BAC=60°,∠BDC的度数是()
A.120°B.60°C.90°或120°D.60°或120°
【变式6-2】(2021•北辰区二模)如图,在⊙O中,直径AB与弦CD相交于点E,∠ABC=58°.(Ⅰ)如图①,若∠AEC=85°,求∠BAD和∠CDB的大小;
(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线DF,与AB的延长线相交于点F,求∠F的大小.
【变式6-3】(2021•天津)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(Ⅰ)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;
(Ⅱ)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.。