初三数学模拟试卷
- 格式:doc
- 大小:68.50 KB
- 文档页数:3
2023-2024学年度第一学期广东省深圳市九年级数学期末模拟试卷一.选择题(共10小题,每题3分,共30分)1. 如图所示的几何体的左视图是( )A .B .C .D .2. 已知23a b =,则b a b −的值是( ) A .23 B .2 C .13 D .323 . 小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是( )A .13B .23C .29D .124. 如图,小东用长2米的竹竿CD 做测量工具,测量学校旗杆的高度AB ,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点O .此时,3OD =米,6DB =米, 则旗杆AB 的高为( )米.A .3B .4C .5D .65. 二次函数y =kx 2﹣6x +3的图象与x 轴有两个交点,则k 的取值范围是( )A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠06. 如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于( )A B C D.2 37 . 在同一平面直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A. B.C. D.8. 一件商品标价100元,连续两次降价后的价格为81元,则两次平均降价的百分率是()A.10% B.15% C.18% D.20%9.如图,在A处测得点P在北偏东60°方向上,在B处测得点P在北偏东30°方向上,若2AB=米,则点P到直线AB距离PC为()A.3米B C.2米D.1米10.二次函数y=ax2+bx+c(其中a,b,c是常数,a≠0),对称轴为直线x=1,函数图象的一部分如图所示,下列说法中:①b<0;②2a+b=0;③b2﹣4ac>0;④(a+c)2<b2;⑤3a+c=0.其中正确的结论有()A .2个B .3个C .4个D .5个二.填空题(共5小题,每题3分,共15分)11.抛物线2(1)2y x =−+的顶点坐标是_______12 .如图,在Rt ABC 中,9043C AC BC ∠=°==,,,则sin A 的值是 ;13 .一个不透明的袋子中装有4个红球和若干个白球,它们除颜色外其余都相同. 现随机从袋中摸出一个球,若颜色是白色的概率为23,则袋中白球的个数是 _____. 14 .如图,小树AB 在路灯O 的照射下形成的投影为BC .若树高AB =2m ,树影BC =3m ,树与路灯的水平距离BP =4.5m .则路灯的高度OP 为 m .15. 如图,在平面直角坐标系中,矩形OABC OA 边在x 轴的正半轴上,OC 边在y 轴的正半轴上, 反比例函数()0k y x x=≠的图象与BC 交于点D ,与AB 交于点F ,与OB 交于点G , 当点G 是OB 的中点时,连接DG ,若DBG △的面积为9,则k=________的三.解答题(共6小题)16 .(1) 解方程:2670x x −−=(2)计算:|﹣4|﹣(π﹣3.14)0(13)﹣1.17 . 某中学积极落实国家“双减”教育政策, 决定增设“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程以提升课后服务质量,促进学生全面健康发展.学校面向七年级参与课后服务的部分学生开展了“你选修哪门课程?(要求必须选修一门且只能选修一门)”的随机问卷调查,并根据调查数据绘制了如下两幅不完整的统计图:请结合上述信息,解答下列问题:(1)共有_______名学生参与了本次问卷调查;(2)“陶艺”在扇形统计图中所对应的圆心角是_______度;(3)小刚和小强分别从“礼仪”“陶艺”“编程”这三门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.18.折叠矩形ABCD ,使点D 落在BC 边上的点F 处,折痕为AE .(1)求证△ABF ∽△FCE ;(2)若CF =4,EC =3,求矩形ABCD 的面积.19 .某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:()2802040y x x =−+≤≤, 设这种健身球每天的销售利润为w 元.(1)如果销售单价定为25元,那么健身球每天的销售量是 个;(2)求w 与x 之间的函数关系式;(3)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?20.如图,已知()4,A n −,()2,4B −是一次函数y bx b =+的图像和反比例函数m y x=的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求AOB 的面积;(3)根据图像直接写出不等式m kx b x+<时x 的解集.21 .如图1,是一款手机支架图片,由底座、支撑板和托板构成.图2是其侧面结构示意图,量得托板长17cm AB =,支撑板长16CD cm =,底座长14cm DE =,托板AB 连接在支撑板顶端点C 处,且7cm CB =,托板AB 可绕点C 转动,支撑板CD 可绕D 点转动.如图2,若7060DCB CDE ∠=°∠=°,.(参考数值sin400.64cos400.77°≈°≈,,tan400.84°≈ 1.73≈)(1)求点C 到直线DE 的距离(精确到0.1cm);(2)求点A 到直线DE 的距离精确到0.1cm).22 .如图,在平面直角坐标系中,抛物线24y ax bx +−与x 轴交于点()()2,04,0A B −,,与y 轴交于点C ,点D 为BC 的中点.(1)求该抛物线的函数表达式;+有最小值,求此时点G的坐标;(2)点G是该抛物线对称轴上的动点,若GA GC(3)若点P是第四象限内该抛物线上一动点,求BDP△面积的最大值;2023-2024学年度第一学期广东省深圳市九年级数学期末模拟试卷解析一.选择题(共10小题,每题3分,共30分)1. 如图所示的几何体的左视图是()A.B. C. D.【答案】D【分析】据简单几何体的三视图的画法可得答案.【详解】解:根据简单几何体的三视图的画法可知,其左视图是中间有一道横虚线的长方形,因此选项D的图形比较符合题意.故选:D.2. 已知23ab=,则b ab−的值是()A.23B.2 C.13D.32【答案】C【分析】将b ab−变形为1ab−,再代入求值即可.【详解】解:∵23ab=,∴211133b a ab b−=−=−=,故C正确.故选:C.3 .小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是()A.13B.23C.29D.12【答案】A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种, ∴小华获胜的概率是:39=13. 故选:A .4. 如图,小东用长2米的竹竿CD 做测量工具,测量学校旗杆的高度AB ,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点O .此时,3OD =米,6DB =米, 则旗杆AB 的高为( )米.A .3B .4C .5D .6【答案】D 【分析】结合题意,得//CD AB ,则有COD AOB ∽,得AB OB CD OD=,通过计算即可得到答案 【详解】 竹竿CD 和旗杆AB 均垂直于地面,∴//CD AB∴COD AOB ∽∴AB OB CD OD=, ∵3OD =米,6DB =米,2m CD =, ∴3623AB +=, 6AB ∴=米故答案为:D5.二次函数y =kx 2﹣6x +3的图象与x 轴有两个交点,则k 的取值范围是( )A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠0【答案】B【分析】根据根的判别式与二次函数的定义列出关于k 的不等式组,求出k 的取值范围即可.【详解】解:∵二次函数y =kx 2﹣6x +3的图象与x 轴有两个交点,∴03612000k k k =− ≠≠ >>,即, 解得k <3且k ≠0.故选:B .6.如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于( )A B C D .23【答案】B【详解】由格点可得∠ABC 所在的直角三角形的两条直角边为2,4,∴cos∠ABC=故选:B.7 . 在同一平面直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A. B.C. D.【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【解答】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y=(k≠0)的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y=(k≠0)的图象经过二、四象限,没有符合条件的选项.故选:B.8.一件商品标价100元,连续两次降价后的价格为81元,则两次平均降价的百分率是()A.10% B.15% C.18% D.20%【分析】设平均每次降价的百分率为x,那么第一次降价后的单价是原来的(1﹣x),那么第二次降价后的单价是原来的(1﹣x)2,根据题意列方程解答即可.【解答】解:设平均每次降价的百分率为x,根据题意列方程得:100×(1﹣x )2=81,解得x 1=0.1=10%,x 2=1.9(不符合题意,舍去),故选:A .9. 如图,在A 处测得点P 在北偏东60°方向上,在B 处测得点P 在北偏东30°方向上,若2AB =米,则点P 到直线AB 距离PC 为( )A .3米B C .2米 D .1米【答案】B 【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可.【详解】解:设点P 到直线AB 距离PC 为x 米,在Rt APC △中,tan PC AC PAC ==∠,在Rt BPC △中,tan PC BC x PBC ==∠,2=,解得,x =),故选:B .10. 二次函数y =ax 2+bx +c (其中a ,b ,c 是常数,a ≠0),对称轴为直线x =1,函数图象的一部分如图所示,下列说法中:①b <0;②2a +b =0;③b 2﹣4ac >0;④(a +c )2<b 2;⑤3a +c =0.其中正确的结论有( )A.2个B.3个C.4个D.5个【分析】由抛物线的开口方向判断a,由抛物线与y轴的交点判断c,根据对称轴的位置判断b及a、b 关系,根据抛物线与x轴交点情况进行推理,进而对所有结论进行逐一判断.【解答】解:①∵开口向下,∴a<0.对称轴在y轴右边,故.∴b>0,故①错误.②由图知:对称轴x=1,即.∴2a+b=0,故②正确.③抛物线于x轴有两个交点.故2﹣4ac>0.故③正确.④由图象可知,抛物线与x轴的左交点位于 0 和﹣1 之间,在两个交点之间时,y>0,当x=﹣1 时,y<0,即:a﹣b+c<0.∴a+c<b.∴(a+c)2<b2.故④正确.⑤根据当x=﹣1 时,y<0,即:a﹣b+c<0.由②将b=﹣2a.代入a﹣b+c<0.∴3a+c<0,故⑤错误.故正确的个数为:3个.故选:B.二.填空题(共5小题,每题3分,共15分)11.抛物线2(1)2y x =−+的顶点坐标是_______【答案】(1,2)【答案】D【分析】根据顶点式2()y a x h k =−+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =−+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =−+的顶点坐标是(1,2). 故答案为:(1,2)12 .如图,在Rt ABC 中,9043C AC BC ∠=°==,,,则sin A 的值是 ;【答案】35/0.6 【分析】先根据勾股定理求出AB ,再根据正弦的定义计算即可.【详解】解:在Rt ABC 中,9043C AC BC ∠=°==,,则AB5, ∴3sin 5BC A AB ==, 故答案为:35. 13 .一个不透明的袋子中装有4个红球和若干个白球,它们除颜色外其余都相同. 现随机从袋中摸出一个球,若颜色是白色的概率为23,则袋中白球的个数是 _____. 【答案】8【解析】【分析】设袋中白球的个数为x 个,利用概率=白球数量÷球的总数量,列方程即可解答.【详解】解:设袋中白球的个数为x 个,根据概率=白球数量÷球的总数量,可得方程243x x =+, 解得8x =,经检验,8x =是原方程的解,故答案为:8.14 .如图,小树AB 在路灯O 的照射下形成的投影为BC .若树高AB =2m ,树影BC =3m ,树与路灯的水平距离BP =4.5m .则路灯的高度OP 为 m .【分析】找出相似三角形,利用相似三角形的性质求解即可.【解答】解:∵AB ∥OP ,∴△CAB ∽△COP ,∴=,∴=,∴OP ==5(m ),故答案为:5.15. 如图,在平面直角坐标系中,矩形OABC OA 边在x 轴的正半轴上,OC 边在y 轴的正半轴上, 反比例函数()0k y x x=≠的图象与BC 交于点D ,与AB 交于点F ,与OB 交于点G , 当点G 是OB 的中点时,连接DG ,若DBG △的面积为9,则k=________的【答案】12【解析】【分析】连接OD ,根据题意以及反比例函数系数k 的几何意义得到1182BOCS k ∆=+,从而表示出矩形的面积,设设,k G m m,则22,k B m m ,最后列出方程2236k m k m ⋅=+求解即可. 【详解】解∶连接OD ,∵矩形OABC 的OA 边在x 轴的正半轴上,OC 边在y 轴的正半轴上,矩形交反比例函数()0k y x x =>于点D 、F , ∴12COD k S ∆=, ∵点G 是OB 的中点,DBG △的面积为9,∴9DOG DBGS S ∆∆==, ∴18BOD S ∆=, ∴1182BOC S k ∆=+, ∴矩形OABC 的面积为36k +,设,k G m m,则22,k B m m, ∴2236k m k m⋅=+, 解得12k =,故答案为∶12.三.解答题(共6小题)16 .(1) 解方程:2670x x −−=(2)计算:|﹣4|﹣(π﹣3.14)0(13)﹣1. 【答案】(1)x 1=7,x 2=1−(2)9(1)解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x 1=7,x 2=1−.(2)解:原式=4﹣1++3, =4﹣1+3+3,=9.17 . 某中学积极落实国家“双减”教育政策,决定增设“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程以提升课后服务质量, 促进学生全面健康发展.学校面向七年级参与课后服务的部分学生开展了“你选修哪门课程? (要求必须选修一门且只能选修一门)”的随机问卷调查,并根据调查数据绘制了如下两幅不完整的统计图:请结合上述信息,解答下列问题:(1)共有_______名学生参与了本次问卷调查;(2)“陶艺”在扇形统计图中所对应的圆心角是_______度;(3)小刚和小强分别从“礼仪”“陶艺”“编程”这三门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.【答案】(1)120(2)99(3)小刚和小强两人恰好选到同一门课程的概率为1 3【分析】(1)用“礼仪”的人数除以占比得到总人数;(2)用“陶艺”的人数除以总人数再乘以360°,即可求解;(3)用画树状图法求得概率即可求解.【详解】(1)解:3025%=120÷(人)故答案为:120.(2)“陶艺”在扇形统计图中所对应的圆心角是33360=99 120×°°,故答案为:99.(3)把“礼仪”“陶艺”“编程”三门校本课程分别记为A、B、C共有9种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有3种,∴小刚和小强两人恰好选到同一门课程的概率为31 93 =.18.折叠矩形ABCD,使点D落在BC边上的点F处,折痕为AE.(1)求证△ABF∽△FCE;(2)若CF=4,EC=3,求矩形ABCD的面积.【答案】(1)见解析(2)矩形ABCD的面积为80【分析】(1)根据矩形的性质和翻折的性质即可证明△ABF∽△FCE.(2)由(1)得△ABF∽△FCE,所以BF ABEC CF=,进而可以解决问题.【详解】(1)证明:由矩形ABCD可得,∠B=∠C=∠D=90°.∴∠BAF+∠AFB=90°.由折叠得∠AFE=∠D=90°.∴∠AFB+∠EFC=90°.∴∠BAF=∠EFC.∴△ABF∽△FCE;(2)解:∵CF=4,EC=3,∠C=90°∴EF =DE =5,∴AB =CD =8.由(1)得△ABF ∽△FCE , ∴BF AB EC CF= ∴BF =6.∴BC =10.∴S =AB •CB =10×8=80.19. 某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:()2802040y x x =−+≤≤, 设这种健身球每天的销售利润为w 元.(1)如果销售单价定为25元,那么健身球每天的销售量是 个;(2)求w 与x 之间的函数关系式;(3)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)30(2)221201600w x x =−+−(3)该种健身球销售单价定为30元时,每天的销售利润最大,最大利润是200元【分析】(1)在2080y x =−+中,令25x =,进行计算即可得; (2)根据总利润=每个建生球的利润×销售量即可列出w 与x 之间的函数关系式;(3)结合(2)的函数关系式,根据二次函数性质即可得.【详解】(1)解:在280y x =−+中,令25x =得,2258030y =−×+=, 故答案为:30;(2)解:根据题意得,2(20)(280)21201600w x x x x =−−+=−+−,即w 与x 之间的函数关系式为:221201600w x x =−+−;(3)解:22212016002(30)200w x x x =−+−=−−+, ∵20−<,∴当30x =时,w 取最大值,最大值为200,即该种健身球销售单价定为30元时,每天的销售利润最大,最大利润是200元.20.如图,已知()4,A n −,()2,4B −是一次函数y bx b =+的图像和反比例函数m y x=的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求AOB 的面积;(3)根据图像直接写出不等式m kx b x+<时x 的解集. 【答案】(1)8,y x=− 2.y x =−− (2)6(3)40x −<<或 2.x >【分析】(1)先把()2,4B −代入m y x=求解反比例函数解析式,再求解A 的坐标,再利用待定系数法求解一次函数的解析式即可;(2)先求解C 的坐标,再利用AOB AOC BOC S S S =+△△△,从而可得答案. (3)由m kx b x+<可得:一次函数的图象在反比例函数图象的下方,结合函数图象可得答案.【详解】(1)解:把()2,4B −代入m y x=得: ()248,m xy ==×−=− 所以反比例函数的解析式为:8,y x=− 把()4,A n −代入8,y x=−得2,n = ()4,2,A ∴−把()4,2,A −()2,4B −代入y bx b =+得: 42,24k b k b −+= +=− 解得:1,2k b =− =−所以一次函数的解析式为: 2.y x =−− (2)解:AB 为2,y x =−− 令0,y = 则2,x =− 即()2,0,C −AOB AOC BOC S S S ∴=+112224 6.22=××+××= (3)解:由m kx b x +<可得: 一次函数的图象在反比例函数图象的下方,所以:40x −<<或 2.x >21 .如图1,是一款手机支架图片,由底座、支撑板和托板构成.图2是其侧面结构示意图,量得托板长17cm AB =,支撑板长16CD cm =,底座长14cm DE =,托板AB 连接在支撑板顶端点C 处,且7cm CB =,托板AB 可绕点C 转动,支撑板CD 可绕D 点转动.如图2,若7060DCB CDE ∠=°∠=°,.(参考数值sin400.64cos400.77°≈°≈,,tan400.84°≈ 1.73≈)(1)求点C 到直线DE 的距离(精确到0.1cm);(2)求点A 到直线DE 的距离(精确到0.1cm).【答案】(1)点C 到直线DE 的距离约为13.8cm(2)点A 到直线DE 的距离约为21.5cm【解析】【分析】(1)如图2,过点C 作CN DE ⊥,垂足为N ,然后根据三角函数可得sin CNCDN CD∠=,即·sin CN CD CDN ∠=,最后将已知条件代入即可解答;(2)如图2,过A 作AM DE ⊥,交DE 的延长线于点M ,过点C 作CF AM ⊥,垂足为F ,再说明Rt ACF 中,9040AFC A ∠=°∠=°,,10cm AC =,然后根据三角函数和线段的和差即可解答.【小问1详解】解:如图2,过点C 作CN DE ⊥,垂足为N由题意可知,16cm 60CD CDE =∠=°,, 在Rt CDN △中, sin CNCDN CD∠=,∴·sin 1613.8cm CN CD CDN ∠====. 答:点C 到直线DE 的距离约为13.8cm .【小问2详解】解:如图2,过A 作AM DE ⊥,交DE 的延长线于点M ,过点C 作CF AM ⊥,垂足为F , ∴CN FM CN FM =,∥在Rt ACF 中,90703040AFC A BCN ∠=°∠=∠=°−°=°,,17710cm AC AB BC =−=−=, ∴·cos40100.777.7cm AF AC =°≈×≈, ∴7.713.821.5cm AM AF FM =+=+=.答:点A 到直线DE 的距离约为21.5cm .22 .如图,在平面直角坐标系中,抛物线24y ax bx +−与x 轴交于点()()2,04,0A B −,,与y 轴交于点C ,点D 为BC 的中点.(1)求该抛物线的函数表达式;(2)点G 是该抛物线对称轴上的动点,若GA GC +有最小值,求此时点G 的坐标;(3)若点P 是第四象限内该抛物线上一动点,求BDP △面积的最大值;【答案】(1)2142y x x =−− (2)()1,3−(3)BDP △面积的最大值为2【分析】(1)利用待定系数法求出二次函数解析式即可;(2)根据对称轴得出当点G 正好在直线BC 与抛物线对称轴的交点上时GA GC +最小,求出直线BC 的解析式4y x =−,求出抛物线的对称轴为直线1x =,把1x =代入4y x =−求出点G 的坐标即可;(3)连接PC ,过点P 作PQ y ∥轴,交BC 于点Q ,根据点D 是BC 的中点,得出12BDP PBC S S = ,当PBC 面积最大时,BDP △面积最大,设21,42 −−P m m m ,则(),4Q m m −,用m 表示出PBC S ,求出其最大值,即可得出答案.【详解】(1)解:把()()2,04,0A B −,代入抛物线24y ax bx +−得:424016440a b a b −−= +−=, 解得:121a b = =− , ∴抛物线的函数表达式为2142y x x =−−; (2)解:∵点G 是该抛物线对称轴上的动点,∴GA GB =,∴GA GC GB GC +=+,∴当点G 正好在直线BC 与抛物线对称轴的交点上时GA GC +最小,把0x =代入2142y x x =−−得:4y =−, ∴点C 的坐标为:()0,4−,设直线BC 的解析式为:()40y kx k =−≠, 把()4,0B 代入得:044k =−,解得:1k =,∴ 直线BC 的解析式为:4y x =−, 抛物线的对称轴为直线11122x −=−=×, 把1x =代入4y x =−得:143y =−=−, ∴点G 的坐标为:()1,3−;(3)解:连接PC ,过点P 作PQ y ∥轴,交BC 于点Q ,如图所示:∵点D 是BC 的中点, ∴12BDP PBC S S = , ∴当PBC 面积最大时,BDP △面积最大, 设()21,4042P m m m m −−<<,则(),4Q m m −, 221144222PQ m m m m m =−−++=−+, 142PBC S PQ =× 21222m m =×−+24m m =−+()224m =−−+, ∴当2m =时,PBC 面积取最大值4,∴BDP △面积的最大值为1422×=.。
北京二中教育集团2023—2024学年度第一学期初三数学期末模拟考试试卷命题人:初三数学备课组审核人:初三数学备课组考查目标1.知识:人教版九年级上册《一元二次方程》、《二次函数》、《旋转》、《圆》、《概率》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.A卷面成绩90% (满分90分)B过程性评价(满分10分)学业成绩总评=A+B(满分100分)考生须知1.本试卷分为第Ⅰ卷、第Ⅱ卷和答题卡,共16页;其中第Ⅰ卷2页,第Ⅱ卷6页,答题卡8页。
全卷共三大题,28道小题。
2.本试卷满分100分,考试时间120分钟。
3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号。
4.考试结束,将答题卡交回。
第Ⅰ卷(选择题共16分)一、选择题(共16分,每题2分,以下每题只有一个....正确的选项) 1.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,下列航天图标是中心对称图形的是()A.B.C.D.班级姓名考号座位号密封线----------------------------------------------------------------------------------------------------------------------2.抛物线先向左平移2个单位,再向下平移1个单位长度,所得新 抛物线的解析式为( ) A . B . C . D .3.用配方法解方程时,原方程变形正确的是( ) A . B . C . D .4.下列语句所描述的事件是随机事件的是( ) A .经过任意两点画一条直线B .任意画一个五边形,其外角和为C .过平面内任意三个点画一个圆D .任意画一个平行四边形,是中心对称图形 5.已知点,、,在二次函数的图象上.若, 则与的大小关系是( ) A . B . C . D .6.刘徽在《九章算术注》中首创“割圆术”,利用圆的内接正多边形来确定 圆周率,开创了中国数学发展史上圆周率研究的新纪元.某同学在学习“割 圆术”的过程中,作了一个如图所示的圆内接正八边形.若的半径为1, 则这个圆内接正八边形的面积为( ) A . B .C .D .7.如图,将绕点逆时针旋转,旋转角为,得到, 这时点旋转后的对应点恰好在直线上,则下列结论不一定正确的是 ( )A .B .C .D .8.如果x =5是关于的一元二次方程的一个根,那么关于 的一元二次方程的解为( ) A .x 1=-4,x 2=2 B .x 1=-2,x 2=4 C .x 1=-1,x 2=3 D . x 1=-3,x 2=121y x =-+2(2)2y x =-++2(2)y x =--2(2)y x =-+2(2)2y x =--+2250x x --=2(1)6x -=2(2)9x -=2(1)6x +=2(2)9x +=360°1(A x 1)y 2(B x 2)y 224y x x =-++121x x >>1y 2y y 1!y 212y y =12y y >12y y <O !p 2p 4ABC D A (0180)a a °<<°ADE D B D BC ACD EAD Ð=ÐABC ADC Ð=ÐEAC a Ð=180EDC a Ð=°-x ()(4)x m x m n --+=x (1)(3)x m x m n +-+-=第Ⅱ卷(非选择题 共84分)二、填空题(共16分,每题2分)9.请你写出一个开口向上,且经过(1,0)的抛物线的解析式_______.10.抛物线的顶点坐标是_______.11.若是关于的方程的解,则的值为_______.12.若抛物线与轴的一个交点坐标为,则该抛物线的对称轴 为直线_______.13.如图,在中是直径,,,,那么的长 等于_______.第13题图第14题图14.如图,为的直径,,点为上一点,,则 图中阴影部分的面积为_______.(结果保留π)15.手卷是国画装裱中横幅的一种体式,以能握在手中顺序展开阅览得名,它主要由“引首”、“画心”、“拖尾”三部分组成(这三部分都是矩形 形状),分隔这三部分的其余部分统称为“隔水”.图中手卷长1000 cm , 宽40 cm ,引首和拖尾完全相同,其宽度都为100 cm ,若隔水的宽度为 x cm ,画心的面积为15200 cm 2,根据题意,可列方程是_______.2(2)1y x =--3x =x 26ax bx -=6a −2b +20232y ax bx =+x (3,0)-O !AB CD AB ^30BAC Ð=°2OD =DC AB O !4AB =C O !30ABC Ð=°16.某工厂用甲、乙两种原料制作,,三种型号的工艺品,三种型号 工艺品的重量及所含甲、乙两种原料的重量如下:工艺品型号含甲种原料的重量/kg 含乙种原料的重量/kg工艺品的重量/kg3 4 7 3 2 5235现要用甲、乙两种原料共31 kg ,制作5个工艺品,且每种型号至少 制作1个.(1)若31 kg 原料恰好全部用完,则制作型工艺品的个数为_______;(2)若使用甲种原料不超过13 kg ,同时使用乙种原料最多,则制作方案中,,三种型号工艺品的个数依次为_______.三、解答题(共68分,其中第17-21、25题每题5分,第22-24、26题每题 6分,第27-28题7分) 17.解下列方程:.18.根据江心洲地质水文条件量身打造的“新时代号”泥水平衡盾构机,是目前世界上最先进的盾构设备之一,被誉为“国之重器”.如图1,盾构 机核心部件——刀盘的形状是一个圆形.如图2,当机器暂停时,刀盘露 在地上部分的跨度AB =12米,拱高(弧的中点到弦的距离CD )3米,求 盾构机刀盘的半径.19.下面是小明设计的“过圆上一点作这个圆的切线”的尺规作图过程. 已知:⊙O 及圆上一点A .求作:直线AB ,使得AB 为⊙O 的切线,A 为切点. 小明的作法如下:① 连接OA 并延长到点C ;② 分别以点A ,C 为圆心,大于长为半径作弧,两弧交于点D(点D 在直线OA 上方);A B C A B C A A B C x (x +3)=2x +612AC密 封 线 -----------------------------------------------------------------------------------------------------------------------③ 以点D 为圆心,DA 长为半径作⊙D ;④ 连接CD 并延长,交⊙D 于点B ,作直线AB . 则直线AB 就是所求作的直线.根据小明设计的尺规作图过程,完成下列问题: (1)使用直尺和圆规,完成作图;(保留作图痕迹) (2)完成下面的证明. 证明:连接AD .∵ _______=AD ,∴ 点C 在⊙D 上,CB 是⊙D 的直径. ∴ _______=90°.(_______) ∴ AB ⊥_______. ∵ OA 是⊙O 的半径, ∴ AB 是⊙O 的切线.(_______) 20.如图,在平面直角坐标系xOy 中,△OAB 的顶点坐标分别为O (0,0),A (5,0), B (4,-3).(1)作出△OAB 关于原点O 成中心对称的图形△OA 1B 1(点A 与点A 1 对应),并写出点B 1的坐标;(2)将△OAB 绕点O 顺时针旋转90°得到△OA 2B 2,点B 旋转后的对应 点为B 2,画出旋转后的图形△OA 2B 2,并写出点B 2的坐标;(3)在(2)的条件下,求点B 经过的路径的长.21.已知关于x 的一元二次方程. (1)利用判别式判断方程实数根的情况;(2)若该方程只有一个根小于2,求m 的取值范围.BB2!x 2−(m −1)x −(3m +6)=0班级姓名 考号 座位号 密 封 线 ----------------------------------------------------------------------------------------------------------------------22.已知抛物线图象上部分点的横坐标x 与纵坐标y 的 对应值,如下表:x … -2 -1 0 1 2 3 … y…-5343…(1)求此抛物线的解析式,并画出其图象;(2)结合图象,直接写出不等式的解集;(3)结合图象,直接写出当时,y 的取值范围.23.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小明购买了“二十四节气”主题邮票,他将“立春”、 “清明”、“雨水”三张纪念邮票(除正面内容不同外,其余均相同)背 面朝上,洗匀放好.(1)小明从中随机抽取一张邮票是“立春”的概率是_______;(2)小明从中随机抽取一张邮票,记下内容后,正面向下放回,洗匀后 再从中随机抽取一张邮票.请用列举法求出小明两次抽取的邮票中 至少有一张是“雨水”的概率(这三张邮票依次分别用字母A ,B , C 表示).y =ax 2+bx +c (a ≠0)ax 2+bx +c <3x <224.已知:如图,在△ABC 中,D 是AB 边上一点,圆O 过D 、B 、C 三点, ∠DOC =2∠ACD .(1)求证:直线AC 是圆O 的切线; (2)若OD ⊥OC ,∠ACB =75°,圆O 的半径为4,求BC 的长.25.2023年4月16日,在世界泳联跳水世界杯首站比赛中,中国队共收获9金2银,位列奖牌榜第一.赛场上运动员优美的翻腾、漂亮的入水令人赞叹不已.在10米跳台跳水训练时,运动员起跳后在空中的运动路线 可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到 入水的过程中,运动员的竖直高度y (单位:米)与水平距离x (单位: 米)近似满足函数关系. 某跳水运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的数据如下:水平距离x /m 0 0.2 0.4 0.6 0.8 1.6 2 竖直高度y /m10.0010.4510.6010.4510.005.201.00① 根据上述数据,直接写出该运动员竖直高度的最大值,并求出 满足的函数关系;② 运动员必须在距水面5 m 前完成规定的翻腾动作并调整好入水 姿势,否则就会出现失误.在这次训练中,测得运动员在空中 调整好入水姿势时,水平距离为1.6 m ,判断此次跳水会不会出现失误,并说明理由;(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数 关系.如图,记该运动员第一次训练的 入水点为A ,若运动员在区域AB 内(含A ,B )入水能达到压水花 的要求,则第二次训练_______达到要求(填“能”或“不能”).y =a (x −h )2+k (a <0)y =a (x −h )2+k (a <0)y =−4.16(x −0.38)2+10.60图226.在平面直角坐标系xOy 中,点,在抛物线上. (1)当,时,比较m 与n 的大小,并说明理由;(2)若存在,使得,求的取值范围.27.如图1,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,D 为AB 边上一点,DE ⊥AB 于D ,连接BE ,P 为BE 中点.(1)连接PD 、PC ,判断PD 与PC 的数量关系,并直接写出∠DPC 的 度数;(2)如图2,将△ADE 绕点A 顺时针旋转α度(0°<α<180°). ① 请你依据题意补全图形; ② 在旋转过程中,∠DPC 的度数是否发生改变?若不变,写出它的 度数,并证明;若变化,请说明理由.28.对于平面内任意一点P ,过P 作PM ⊥l 1于点M ,PN ⊥l 2于点N ,连接MN ,则称MN 的长度为点P 关于l 1和l 2的垂点距离.特别地,点P 在两相交 直线l 1、l 2的交点时,记垂点距离为0.(1)已知A (1,2),则点A 关于x 轴和y 轴的垂点距离为_______; (2)若点P 在直线上运动,则点P 关于x 轴和y 轴的垂点距离 的最小值为________;(3)若点P 在以Q (0,1)为圆心,半径为1的⊙Q 上运动,求点P 关于 x 轴和直线的垂点距离h 的取值范围.A (x 0,m )B (x 0+2,n )y =x 2−2bx +1b =5x 0=4−3<x 0<1m >n >1b y =34x +3y =3x +3图1密 封 线 -----------------------------------------------------------------------------------------------------------------------。
初三模拟试题及答案数学一、选择题(本题共10小题,每小题3分,满分30分)1. 若a、b、c是△ABC的三边长,且a²+b²+c²=ab+ac+bc,那么△ABC的形状是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 不等边三角形2. 已知x²-5x-6=0的两根为x₁和x₂,则x₁+x₂的值为()A. 5B. -5C. 6D. -63. 某商品原价为a元,打八折后售价为b元,那么商品的折扣率为()A. 80%B. 20%C. 25%D. 75%4. 已知函数y=kx+b(k≠0)的图象经过点(1,2)和(-1,0),则k和b的值分别为()A. k=2,b=1B. k=-2,b=1C. k=2,b=-1D. k=-2,b=-15. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 66. 若x=2是方程x²-3x+2=0的根,则方程的另一个根是()A. 1B. 2C. -1D. 07. 已知抛物线y=ax²+bx+c(a≠0)的对称轴为x=-1,那么抛物线与x轴的交点个数为()A. 0B. 1C. 2D. 无法确定8. 已知a、b、c是△ABC的三边长,且满足a²+b²=c²,那么△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形9. 已知方程x²-6x+8=0的两个根为x₁和x₂,则x₁x₂的值为()A. 8B. 6C. 2D. 110. 已知一个等腰三角形的两边长分别为3和5,那么这个等腰三角形的周长为()A. 11B. 13C. 16D. 14二、填空题(本题共5小题,每小题3分,满分15分)11. 已知等腰三角形的底边长为6,腰长为5,则该三角形的周长为________。
12. 已知函数y=2x+3与y=-x+4的交点坐标为(________,________)。
北京市西城区九年级模拟测试试卷 数学2024.5 第1页(共8页)北 京 市 西 城 区 九 年 级 模 拟 测 试 试 卷数 学 2024.5考生须知1.本试卷共8页,共两部分,28道题。
满分100分。
考试时间120分钟。
2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.右图是某几何体的三视图,该几何体是 (A )圆柱 (B )圆锥 (C )三棱柱(D )长方体2.新能源革命受到全球瞩目的同时,也成为中国实现“碳达峰碳中和”目标的关键所在.2023年全球可再生能源新增装机510 000 000千瓦,其中中国的贡献超过了50%. 将510 000 000用科学记数法表示应为 (A )90.5110 (B )85.110 (C )95.110 (D )75110 3.正十二边形的每一个外角的度数为(A )30°(B )36°(C )144°(D )150°4.如图,直线AB ⊥CD 于点C ,射线CE 在∠BCD 内部,射线CF平分∠ACE .若∠BCE =40°,则下列结论正确的是 (A )∠ECF =60° (B )∠DCF =30° (C )∠ACF 与∠BCE 互余 (D )∠ECF 与∠BCF 互补5.不透明的袋子里装有3个完全相同的小球,上面分别标有数字4,5,6.随机从中摸出一个小球不放回,再随机摸出另一个小球.第一次摸出小球上的数字大于第二次摸出小球上的数字的概率是 (A)12 (B )13(C )23(D )49北京市西城区九年级模拟测试试卷 数学2024.5 第2页(共8页)6.如图,点C 为线段AB 的中点,∠BAM =∠ABN ,点D ,E 分别在射线AM ,BN 上,∠ACD 与∠BCE 均为锐角.若添加一个条件一定 可以证明△ACD ≌△BCE ,则这个条件不能是 (A )∠ACD =∠BCE (B )CD=CE (C )∠ADC =∠BEC(D )AD =BE7.某农业合作社在春耕期间采购了A ,B 两种型号无人驾驶农耕机器.已知每台A 型机器的进价比每台B 型机器进价的2倍少0.7万元;采购相同数量的A ,B 两种型号机器,分别花费了21万元和12.6万元.若设每台B 型机器的进价为x 万元,根据题意可列出关于x 的方程为(A )12.621(20.7)x x (B )2112.620.7x x (C )2112.620.7x x(D )2112.620.7x x8.下面问题中,y 与x 满足的函数关系是二次函数的是①面积为102cm 的矩形中,矩形的长y (cm )与宽x (cm )的关系;②底面圆的半径为5cm 的圆柱中,侧面积y 2(cm )与圆柱的高x (cm )的关系;③某商品每件进价为80元,在某段时间内以每件x 元出售,可卖出(100)x 件. 利润y (元)与每件售价x (元)的关系. (A )① (B )②(C )③ (D )①③第二部分 非选择题二、填空题(共16分,每题2分)9. 若分式34x 有意义,则x 的取值范围是______. 10.分解因式:2218x y y =______.11.方程组25,24x y x y的解为______. 12.在平面直角坐标系xOy 中,点(3,1)A 关于原点O 的对称点的坐标为______.13.如图,BD 是△ABC 的角平分线,DE ⊥BC 于点E .若BE =3,△BDE 的面积为1.5,则点D 到边AB 的距离为______. 14.如图,AB 与⊙O 相切于点C .点D ,E 分别在OA ,OB上,四边形ODCE 为正方形.若OA =2,则DE =______.北京市西城区九年级模拟测试试卷 数学2024.5 第3页(共8页)15.如图,(2,)A m ,(3,2)B 两点在反比例函数ky x(x >0)的图象上.若将横、纵坐标都是整数的点称为整点,则线段OA ,OB 及反比例函数图象上A ,B 两点之间的部分围成的区域(不含边界)中,整点的坐标为______.16.在某次比赛中,5位选手进入决赛环节,决赛赛制为单循环形式(每两位选手之间都赛一场).每位选手胜一场得3分,负一场得0分,平局得1分.已知这次比赛最终结果没有并列第一名,获得第一名的选手的成绩记为m (分),则m 的最小值为______;当获得第一名的选手的成绩恰好为最小值时,决赛环节的平局总数至少为______场. 三、解答题(共68分,第17-21题,每题5分,第22-23题,每题6分,第24题5分,第25-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:04cos 45(π3) .18.解不等式组3 2 < 4,2,53x x x x≥并写出它的所有整数解. 19.已知230x x ,求代数式233(1144x x x的值. 20.已知:如图,在△ABC 中,∠ABC =90°,BA=BC .求作:点D ,使得点D 在△ABC 内,且12ADB BDC .下面是小华的解答过程,请补充完整:(1)使用直尺和圆规,依作法补全图形(保留作图痕迹):①作线段BC 的垂直平分线PQ 交BC 于点E ;②以点A 为圆心,AB 长为半径作弧,与直线PQ 在△ABC 内交于点D . 点D 就是所求作的点.(2)完成下面的证明.证明:连接DA ,DB ,DC .∵ 点D 在线段BC 的垂直平分线上, ∴ DB = DC ( )(填推理的依据), DE ⊥BC .∴ 12BDE CDE BDC .∵ ∠ABC =90°,∠DEC =90°, ∴ ∠ABC =∠DEC .北京市西城区九年级模拟测试试卷 数学2024.5 第4页(共8页)∴ AB ∥DE . ∴ ∠ABD =∠BDE . ∵ , ∴ ∠ADB =∠ .∴ 12ADB BDE BDC .21.已知关于x 的一元二次方程2320x x k 有两个不相等的实数根.(1)求实数k 的取值范围;(2)若k 为满足条件的最大整数,求此时方程的根.22.如图,四边形ABCD 是平行四边形,AE ⊥BD 于点E ,CG ⊥BD 于点F ,FG =CF ,连接AG .(1)求证:四边形AEFG 是矩形;(2)若∠ABD =30°,AG =2AE =6,求BD 的长.23.如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,点E 是 BD的中点,连接AE 交BC 于 点F ,∠ACB =2∠EAB . (1)求证:AC 是⊙O 的切线; (2)若BF =6,3cos 5C,求AB 的长.24.我国快递市场繁荣活跃,某快递公司为提高服务质量,对公司的业务量、公众满意度等数据进行统计分析.公司随机抽取了某日发往相邻城市的快递中的1000件,称重并记录每件快递的重量(单位:kg,精确到0.1).下面给出了部分信息.a.每件快递重量的频数分布直方图(数据分成11组:0≤x<1,1≤x<2,2≤x<3,3≤x<4,4≤x<5,5≤x<6,6≤x<7,7≤x<8,8≤x<9,9≤x<10,10≤x<11);b.在3≤x<4这一组的数据如下:3.0 3.1 3.1 3.2 3.2 3.2 3.4 3.4 3.4 3.43.5 3.5 3.5 3.5 3.6 3.6 3.7 3.7 3.8 3.9c.这1000件快递重量的平均数、中位数、众数如下:平均数 中位数 众数快递重量3.6 m n(单位:kg)根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)写出m的值;(3)下面四个结论中,① n的值一定在2≤x<3这一组;②n的值可能在4≤x<5这一组;③n的值不可能在5≤x<6这一组;④n的值不可能在8≤x<9这一组.所有正确结论的序号是 ;(4)该日此快递公司在全市揽收的快递包裹中有3800件发往相邻城市,估计这批快递的重量.北京市西城区九年级模拟测试试卷数学2024.5 第5页(共8页)北京市西城区九年级模拟测试试卷 数学2024.5 第6页(共8页)25.已知角x (0°≤x ≤90°),探究sin x 与角x 的关系.两个数学兴趣小组的同学在查阅资料后,分别设计了如下两个探究方案:方案一:如图,点P 在以点O 为圆心,1为半径的 MN上,∠MON =90°,设∠POM 的度数为x . 作PC ⊥OM 于点C ,则线段 ① 的长度c 即为sin x 的值.方案二:用函数35π1π1π()()()1806180120180x x x F x的值近似代替sin x 的值.计算函数 ()F x 的值,并在平面直角坐标系xOy 中描出坐标为(,())x F x 的点.两个小组同学汇总、记录的部分探究数据如下表所示(精确到0.001). 若()c F x ≤0.001记为√,否则记为×. x 0 102030 40455060708090 c 0 0.174 0.342 ②0.643 0.707 0.766 0.866 0.940 0.985 1 ()F x0.174 0.342 0.500 0.643 0.707 0.766 0.866 0.941 0.987 1.005√或× √√√√√√√√×根据以上信息,解决下列问题: (1)①为 ,②为 ; (2)补全表中的√或×;(3)画出()F x 关于x 的函数图象,并写出sin55°的近似值(精确到0.01).26.在平面直角坐标系xOy 中,11(,)M x y ,22(,)N x y 是抛物线2y ax bx c上任意两点.设抛物线的对称轴是x=t .(1)若对于12x ,21x ,有12y y ,求t 的值;(2)若对于1x ≥2,都有1y c 成立,并且对于21x ,存在2y c ,求t 的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,∠BAC=α(0°<α<30°).将射线AB绕点A顺时针旋转2α得到射线l,射线l与直线BC的交点为点M.在直线BC上截取MD=AB (点D在点M右侧),将直线DM绕点D顺时针旋转2α所得直线交直线AM于点E.(1)如图1,当点D与点B重合时,补全图形并求此时∠AED的度数;(2)当点D不与点B重合时,依题意补全图2,用等式表示线段ME与BC的数量关系,并证明.图1图2北京市西城区九年级模拟测试试卷数学2024.5 第7页(共8页)北京市西城区九年级模拟测试试卷 数学2024.5 第8页(共8页)28.如图1,对于⊙O 外的线段PQ (线段PQ 上的各点均在⊙O 外)和直线PQ 上的点R ,给出如下定义:若线段PQ 绕点R 旋转某一角度得到的线段P ′Q ′恰好是⊙O 的弦,则称点R 为线段PQ 关于⊙O 的“割圆点”.图1图2在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2,已知点(1,4)S ,(1,2)T ,(1,2)U ,(0,3)W . 在线段ST ,TU ,UW 中,存在关于⊙O 的“割圆点”的线段是_______,该“割圆点”的坐标是_______; (2)直线y x b 经过点(0,3)W ,与x 轴的交点为点V .点P ,点Q 都在线段VW 上,且PQ PQ 关于⊙O 的“割圆点”为点R ,写出点R 的横坐标R x 的取值范围;(3)直线l 经过点H ,不重合的四个点A ,B ,C ,D 都在直线l 上,且点H 既是线段AB 关于⊙O 的“割圆点”,又是线段CD 关于⊙O 的“割圆点”.线段AB ,CD 的中点分别为点M ,N ,记线段MN 的长为d ,写出d 的取值范围.北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第1页(共6页)北 京 市 西 城 区 九 年 级 模 拟 测 试 试 卷数学答案及评分参考 2024.5一、选择题(共16分,每题2分)题号 1 2 3 4 5 6 7 8 答案BBADABCC二、填空题(共16分,每题2分)9.4x 10.2(3)(3)y x x11.2,1x y 12.(3,1) 13.1 1415.(1,1),(2,2) 16.6;4 三、解答题(共68分,第17-21题,每题5分,第22-23题,每题6分,第24题5分,第25-26题,每题6分,第27-28题,每题7分) 17.解: 04cos 45(π3) 2412…………………………………………………………… 4分 1 . ……………………………………………………………………………… 5分18.解:原不等式组为3 2 < 4,2.53x x x x≥ 解不等式①,得3x .……………………………………………………………1分 解不等式②,得1x ≥.………………………………………………………… 2分∴ 原不等式组的解集为1 ≤3x .…………………………………………… 3分 ∴ 原不等式组的所有整数解为1 ,0,1,2.……………………………… 5分19.解: 233(1)144x x x2231(2)x x x3(1)(2)x x232x x. ……………………………………………………………………… 3分∵ 230x x , ∴ 23x x .∴ 原式3 .…………………………………………………………………………5分① ②北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第2页(共6页)20.解:(1)作图见图1.……………………………………………………………………2分(2)线段垂直平分线上的点与这条线段两个端点的距离相等;……………… 3分 AB=AD ;……………………………………………………………………… 4分ABD .………………………………………………………………………… 5分21.解:(1)依题意,得234(2)174k k .…………………………………… 1分∵ 原方程有两个不相等的实数根,∴ 1740k .………………………………………………………………2分 解得 174k.…………………………………………………………………3分 (2)∵ k 为满足条件的最大整数,∴ 4k .此时方程为2320x x .此时方程的根为11x ,22x .…………………………………………5分22.(1)证明:如图∵ 四边形ABCD 是平行四边形,∴ AB//CD ,AB=CD .…………………………………………………… 1分 ∴ ∠ABE=∠CDF .∵ AE ⊥BD 于点E ,CG ⊥BD 于点F , ∴ ∠AEB=∠CFD=∠AEF=∠EFC=90°. ∴ △ABE ≌△CDF .图1北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第3页(共6页)∴ AE=CF .∵ FG =CF ,∴ AE= FG .∵ ∠AEF=∠EFC ,∴ AE//FG .∴ 四边形AEFG 是平行四边形.∵ ∠AEF=90°,∴ 四边形AEFG 是矩形. ……………………………………………… 3分(2)解:∵ △ABE ≌△CDF ,∴ BE= DF .∵ AG=2AE =6,∴ AE =3.在Rt △ABE 中,∠AEB =90°,∠ABE =30°,AE =3,∴3tan tan 30AE BE ABE4分 ∵ 四边形AEFG 是矩形,AG =6,∴ EF=AG=6.……………………………………………………………… 5分∴26BD BE EF DF BE EF . ………………………… 6分23.(1)证明:如图3,连接AD .∵ AB 是⊙O 的直径,BC 交⊙O 于点D ,∴ ∠BDA=90°.∴ 90B DAB .∵ 点E 是 BD的中点, ∴ BEED . ∴ 1EAB .∴ 12DAB EAB EAB .∵ ∠ACB =2∠EAB ,∴ ∠DAB =∠ACB .∴ 90B ACB .∴ ∠BAC=90°.………………………………………………………… 2分∴ AC ⊥AB .∵ AB 是⊙O 的直径,∴ AC 是⊙O 的切线.…………………………………………………… 3分 图3北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第4页(共6页)(2)解:在Rt △ABC 中,∠BAC=90°,3cos 5C . 设AC =3k ,则BC =5k ,AB =4k .∵ 90B DAB ,90CAD DAB ,∴ B CAD .∵ 2B EAB ,1CAF CAD ,1EAB ,∴ 2CAF .∴ CF=AC=3k .∴ 2BF BC CF k .∵ BF =6,∴ k =3.∴ 412AB k .…………………………………………………………… 6分24.解:(1)补全频数分布直方图见图4;……………………………………………… 1分(2)2分(3)②④;………………………………………………………………………… 4分(4)3.6380013680 (kg ).……………………………………………………5分25.解:(1)PC ,0.5; …………………………………………………………………… 2分(2)√,×;……………………………………………………………………… 4分(3)画图见图5;5分0.82.………………………………………………………………………… 6分 图5北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第5页(共6页)26.解:(1)∵ 对于12x ,21x ,有12y y ,∴ 42a b c a b c .∴ b a .∴ 122b t a .………………………………………………………………2分 (2)由题意可知,抛物线2y ax bxc 与y 轴的交点为(0,)c .①当a > 0时,抛物线开口向上.∴ 当1x ≥2时,1y 有最小值,没有最大值.∴ 与“对于1x ≥2时,都有1y c ”不符,所以不合题意.∴ a > 0不成立.②当a < 0时,抛物线开口向下,且经过点(0,)c ,(2,)t c .若抛物线经过点(1,)c ,则12t ; 若抛物线经过点(2,)c ,则1t .(i )当12t ≤时, 01t ≤或021t t ≤.∴ 对于21x ,都有2y c .与“对于21x ,存在2y c ”不符,所以不合题意.(ii )当112t 时,122t t . ∴ 对于21x ,存在2y c ,对于1x ≥2,都有1y c .∴112t 成立. (iii )当1t ≥时,022t ≤. ∴ 当12x 时,1y c .与“对于1x ≥2,都有1y c 成立”不符,所以不合题意. 综上所述,112t .27.解:(1)补全图形见图6.∵ 点D 与点B 重合,MD=AB ,∠BAM ∴ ∠AMD =∠BAM =2α.在Rt △ABC 中,∠ACB =90°,∴ 90AMD MAC .∵ ∠BAC =α,∴ 5α=90AMD BAM BAC .北京市西城区九年级模拟测试试卷 数学答案及评分参考 2024.5 第6页(共6页)解得α=18 .∵ ∠MDE =2α,∴ 2α+2α4α=72AED AMD MDE .………………………… 2分(2)补全图形见图7.…………………………………………………………… 3分ME =2BC .…………………………………………………………………… 4分证明:如图7,在BC 的延长线上截取CF=BC ,连接AF .以点B 为圆心,BF 为半径作弧,交AF 于点N ,连接BN .∵ CF=BC ,∠ACB =90°,∴ AB=AF .∴ ∠BAN =2∠BAC =2α.∵ ∠MDE =2α,∴ ∠MDE =∠BAN .∴ 在等腰△ABF 中,18090α2BAF F . ∵ BN=BF ,∴ 390αF .在Rt △AMC 中,190903αMAC .∴ 21(903α)+2α90αMDE .∴ 23 .∵ 41802 ,1803BNA ,∴ 4BNA .∵ DM =AB ,∴ △DME ≌△ABN .∴ ME=BN .∵ BN=BF ,∴ ME=BF=2BC .……………………………………………………7分28.解:(1)UW ,(2,1) ;…………………………………………………………………2分(2)2R x ≤或1R x ≥;………………………………………………………… 4分(3)02d或4d ≤.……………………………………………… 7分。
2024年最新人教版初三数学(上册)模拟试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:x²4x+3=03. 解答下列方程:2x²5x+2=04. 解答下列方程:3x²+2x1=0四、应用题(每题10分,共20分)1. 一个长方形的长是5cm,宽是3cm,求这个长方形的面积。
2. 一个圆的半径是4cm,求这个圆的面积。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c+d,那么a+c=b+d。
2. 证明:如果a²=b²,那么a=b或者a=b。
六、论述题(每题10分,共20分)1. 论述一下你在学习数学过程中的困难和解决方法。
2. 论述一下你在学习数学过程中的收获和体会。
一、选择题(每题5分,共20分)1. A2. A3. A4. B5. A二、填空题(每题5分,共20分)1. 82. 163. 74. 9三、解答题(每题10分,共40分)1. x=2, y=12. x=1, x=33. x=1/2, x=24. x=1, x=1/3四、应用题(每题10分,共20分)1. 15cm²2. 50.24cm²五、证明题(每题10分,共20分)1. 证明:如果a+b=c+d,那么a+c=b+d。
九年级数学(上)期末考试模拟试卷1一、选择题(本大题有8小题,每小题3分,共24分)1. 若△ABC ∽△DEF ,相似比为1∶2,则△ABC 与△DEF 的周长比为( )A .2∶1B .1∶2C .4∶1D .1∶42. s i n 60°的值是( )A .12B .3C .2D .33.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是( )每天使用零花钱(单位:元)510152025人数25896A .20、15B .20、20C .20、17.5D .15、154. 如图,点D 、E 、F 分别是△ABC 的边AB 、AC 、BC 上的点,若DE ∥BC ,EF ∥AB ,则下列比例式一定成立的是( )A . =B . =C . =D . =5. 如图,AB为⊙O 的直径,点C ,D 在圆上,若∠BAC =25°,则∠D =( )A . 50°B . 55°C . 65°D . 70°6.如果一个正多边形的外角是锐角,且它的余弦值是,那么它是( )A .等边三角形B .正六边形C .正八边形D .正十二边形7.二次函数y =x 2+bx 的对称轴为直线x =1,若关于x 的方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有实数解,则t 的取值范围是( )A .t ≥﹣1B .﹣1≤t <3C .﹣1≤t <8D .t <38. 已知二次函数(m 是实数),当自变量任取,时,分别与之对应的函数AD DB DE BC BF BC EF AD AE ECBF FC EF AB DE BC 第4题第5题26y x x m =-+1x 2x值,满足>,则,应满足的关系式是()A .B .C .D . 二、填空题(本大题共8个小题,每小题4分,共32分)9. 已知x =1是关于x 的一元二次方程2x 2-x +a =0的一个根,则a 的值是.10. 二次函数y =-(x +2)2+3的图象的最大值是_____.11.如果在比例尺为1∶1000000的地图上,甲、乙两地的图上距离是5.8c m ,那么甲、乙两地的实际距离是 km .12.在Rt △ABC 中,∠C =90°,co sA =,则∠A = 度. 13. 将抛物线y =﹣3x 2向上平移2个单位,再向右1个平移单位所得抛物线的表达式为 .14.如图,A 、B 、C 是正方形网格中的格点,将△ABC 绕A 点逆时针旋转45°得到△ADE ,则t anD 的值为 .15. 如图,在等边三角形ABC 中,D 为BC 的中点,弧ADB 交AC 于点E ,若AB =2,则弧DE 的长为 .16. 如图,在平面直角坐标系中,点A 在抛物线y =x 2﹣2x +5上运动,过点A 作AB ⊥x 轴于点B ,以AB 为斜边作Rt △ABC ,则AB 边上的中线CD 的最小值为 .三、解答题(本大题9个小题,共86分)17.(本题10分)(1)计算:2s i n 60°-3t an 45°+9;(2)解方程:x 2-4x -1=0.1y 2y 1y 2y 1x 2x 1233x x -<-1233x x ->-12|3||3|x x -<-12|3||3|x x ->-12第14题第15题第16题18.(本题8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,-1),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,点A1的坐标为;(2)在网格内以点(1,1)为位似中心,把△A1B1C1按相似比2∶1放大,得到△A2B2C2,请画出△A2B2C2;若边AC上任意一点P的坐标为(m,n),则两次变换后对应点P2的坐标为.19. (本题8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为 ;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.20. (本题8分)如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦A B于点D.已知:AB=16cm,CD=4cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.21.(本题10分)如图,大楼A N上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DE M=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度。
重庆市第一中学2024-2025学年九年级上学期数学开学自测模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)在四个实数,0,﹣1,中,最小的数是()A.B.0C.﹣1D.2.(4分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成,这四个图案中是中心对称图形的是()A.B.C.D.3.(4分)为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是()A.该调查方式是普查B.该调查中的总体是全区初三学生C.该调查中个体是江北区每位初三学生的体考成绩D.该调查中的样本是抽取的1500名学生4.(4分)估计的值应在()A.2和3之间B.3和4之间C.﹣3和﹣4之间D.﹣3和﹣2之间5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:16.(4分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.(4分)已知如图,在▱ABCD中,点E为AD上一点,DE:AE=1:2,CE交对角线BD于点F,若△CDF的面积为3,则△BCF的面积为()A.18B.12C.9D.68.(4分)用字母“C“,“H”按如图所示的规律拼图案,则第⑧个图案中字母“H”的个数为()A.16B.17C.18D.199.(4分)如图,正方形ABCD中,E为BC边上一点,连接DE,将DE绕点E逆时针旋转90°得到EF,连接DF、BF,若∠ADF=α,则∠EFB一定等于()A.αB.45°﹣αC.90°﹣3αD.10.(4分)将x﹣y÷z×m+n(所有字母均不为0)中的任意两个字母对调位置,称为“对调操作”.例如:“x、y 对调操作”的结果为y﹣x÷z×m+n,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则x=n或m+z=0;③若y=m=z,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:||+30=.12.(4分)在同一平面内,等边△ABC和正五边形BCDEF如图所示,则∠ABF的度数为.13.(4分)已知三角形的两边长为3和5,第三边的长为方程x2﹣5x+4=0的根,则该三角形的周长为.14.(4分)有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.15.(4分)如图,△ABC中,AD是∠BAC的角平分线,BD⊥AD,垂足为D,过D作DE∥AC交AB于点E,过D作DF⊥DE交AC于点F,连接EF,已知AB=4,BD=3,则EF=.16.(4分)如图,在正方形ABCD中,AE平分∠BAC,F为CD上一点,连接BF,交AC于点G,连接DG,若DF=CE,则∠DGF=.17.(4分)若关于x的不等式组有解且至多有2个偶数解且关于y的分式方程=3 的解为非负整数,则所有满足条件的整数a的值之和为.18.(4分)一个四位自然数N,各个数位上的数字均不等于0且互不相等,当N的十位数字减去个位数字的差等于N的千位数字减去百位数字的差的2倍时,我们称自然数N为“倍差数”;当N的十位数字与个位数字的和等于N的千位数字与百位数字的和的2倍时,我们称自然数N为“倍和数”;则最小的“倍差数”与最大的“倍和数”的和是;将“倍差数”N的千位数字与百位数字交换位置,十位数字与个位数字交换位置后得到的新“倍差数”为N′,且规定F(N)=,G(N)=,自然数M既是“倍差数”又是“倍和数”,且F(M)和G(M)均为正整数,则满足条件的数M为.三.解答题(共8小题,满分78分)19.(8分)计算:(1)﹣b(2a﹣b)+(a+b)2;(2).20.(10分)学习了菱形后,小莉进行了拓展性研究:过菱形的一个顶点分别向两条对边作垂线,则这两条垂线与对角线产生两个交点,那么这两交点到此顶点的距离关系如何?她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,过点A作CD的垂线,垂足为点M,交BD于点N.(只保留作图痕迹)已知:如图,四边形ABCD是菱形,过A作AE⊥BC于点E,并交对角线BD于点F,作AM⊥CD于点M,交对角线BD于点N.求证:AF=AN.证明:∵四边形ABCD是菱形∴AB=∠ABC=∠ADC∵AE⊥BC,AM⊥CD∴∠AEB=∠AMD=90°∵∠AEB+∠ABC+∠BAE=180°∠AMD+∠ADC+∠DAM=180°∴∴△ABF≌∴AF=AN请你依照题意完成下面命题:过菱形的一个顶点向两条对边作垂线,与对角线产生两个交点,则.21.(10分)近年来,诈骗分子较为猖狂,诈骗手段不断更新,据有关部门统计,2022年全年全国电信诈骗共计达到2万亿元.为有效提高学生防诈反诈能力,学校开展了“防诈反诈”讲座后进行了“防诈反诈”知识竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x <85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,92,93,91;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:(1)填空:a=,b=,m=;(2)根据以上数据,你认为该校七、八年级学生在“防诈反诈”知识竞赛中,哪个年级学生对“防诈反诈”的了解情况更好?请说明理由;(写出一条理由即可)(3)该校现有学生七年级780名,八年级800名,请估计这两个年级竞赛成绩为优秀的学生总人数.22.(10分)如图,平行四边形ABCD中,AD=6,CD=4,∠ADC=30°,动点P从点A出发沿折线A→B→C运动,到达点C停止运动.在运动过程中,过点P作PH⊥CD于点H,设点P的运动路程为x,BP+PH记为y1.(1)请直接写出y1关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出y1的图象与的图象有1个公共点时m的取值范围.23.(10分)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?24.(10分)如图,车站A在车站B的正西方向,它们之间的距离为100千米,修理厂C在车站B的正东方向.现有一辆客车从车站B出发,沿北偏东45°方向行驶到达D处,已知D在A的北偏东60°方向,D在C的北偏西30°方向.(1)求车站B到目的地D的距离(结果保留根号);(2)客车在D处准备返回时发生了故障,司机在D处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿CD方向前往救援,同时一辆应急车从车站A以60千米每小时的速度沿AD方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D处.(参考数据:≈1.41,≈1.73,≈2.45)25.(10分)如图,在平面直角坐标系中,直线y=kx+2与y轴交于点A,与x轴负半轴交于点B,OB=2,直线y =2x与直线AB交于点C.(1)求直线AB的表达式;(2)如图1,点P为直线OC上一动点,连接P A,PB,求P A+PB的最小值及此时点P的坐标;(3)将直线OC沿射线BA方向平移个单位长度得到新直线y',在新直线y'上是否存在点M,使得AM与新直线y的夹角为45°,若存在,请写出点M的横坐标,选一种情况写出求解过程,若不存在,说明理由.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.重庆市第一中学2024-2025学年九年级上学期数学开学自测模拟试卷(答案)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)在四个实数,0,﹣1,中,最小的数是()A.B.0C.﹣1D.【答案】C2.(4分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成,这四个图案中是中心对称图形的是()A.B.C.D.【答案】B3.(4分)为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是()A.该调查方式是普查B.该调查中的总体是全区初三学生C.该调查中个体是江北区每位初三学生的体考成绩D.该调查中的样本是抽取的1500名学生【答案】C4.(4分)估计的值应在()A.2和3之间B.3和4之间C.﹣3和﹣4之间D.﹣3和﹣2之间【答案】D5.(4分)如图,△ABC与△DEF是位似图形,点O为位似中心,已知BO:OE=2:1,则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:16.(4分)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A7.(4分)已知如图,在▱ABCD中,点E为AD上一点,DE:AE=1:2,CE交对角线BD于点F,若△CDF的面积为3,则△BCF的面积为()A.18B.12C.9D.6【答案】C8.(4分)用字母“C“,“H”按如图所示的规律拼图案,则第⑧个图案中字母“H”的个数为()A.16B.17C.18D.19【答案】C9.(4分)如图,正方形ABCD中,E为BC边上一点,连接DE,将DE绕点E逆时针旋转90°得到EF,连接DF、BF,若∠ADF=α,则∠EFB一定等于()A.αB.45°﹣αC.90°﹣3αD.10.(4分)将x﹣y÷z×m+n(所有字母均不为0)中的任意两个字母对调位置,称为“对调操作”.例如:“x、y 对调操作”的结果为y﹣x÷z×m+n,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则x=n或m+z=0;③若y=m=z,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:||+30=.【答案】.12.(4分)在同一平面内,等边△ABC和正五边形BCDEF如图所示,则∠ABF的度数为48° .【答案】48°.13.(4分)已知三角形的两边长为3和5,第三边的长为方程x2﹣5x+4=0的根,则该三角形的周长为12.【答案】12.14.(4分)有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.【答案】.15.(4分)如图,△ABC中,AD是∠BAC的角平分线,BD⊥AD,垂足为D,过D作DE∥AC交AB于点E,过D作DF⊥DE交AC于点F,连接EF,已知AB=4,BD=3,则EF=.【答案】.16.(4分)如图,在正方形ABCD中,AE平分∠BAC,F为CD上一点,连接BF,交AC于点G,连接DG,若DF=CE,则∠DGF=45° .【答案】45°.17.(4分)若关于x的不等式组有解且至多有2个偶数解且关于y的分式方程=3 的解为非负整数,则所有满足条件的整数a的值之和为7.【答案】7.18.(4分)一个四位自然数N,各个数位上的数字均不等于0且互不相等,当N的十位数字减去个位数字的差等于N的千位数字减去百位数字的差的2倍时,我们称自然数N为“倍差数”;当N的十位数字与个位数字的和等于N的千位数字与百位数字的和的2倍时,我们称自然数N为“倍和数”;则最小的“倍差数”与最大的“倍和数”的和是7532;将“倍差数”N的千位数字与百位数字交换位置,十位数字与个位数字交换位置后得到的新“倍差数”为N′,且规定F(N)=,G(N)=,自然数M既是“倍差数”又是“倍和数”,且F(M)和G(M)均为正整数,则满足条件的数M为3162.【答案】7532;3162.三.解答题(共8小题,满分78分)19.(8分)计算:(1)﹣b(2a﹣b)+(a+b)2;(2).【答案】(1)a2+2b2;(2).20.(10分)学习了菱形后,小莉进行了拓展性研究:过菱形的一个顶点分别向两条对边作垂线,则这两条垂线与对角线产生两个交点,那么这两交点到此顶点的距离关系如何?她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,过点A作CD的垂线,垂足为点M,交BD于点N.(只保留作图痕迹)已知:如图,四边形ABCD是菱形,过A作AE⊥BC于点E,并交对角线BD于点F,作AM⊥CD于点M,交对角线BD于点N.求证:AF=AN.证明:∵四边形ABCD是菱形∴AB=AD∠ABC=∠ADC∵AE⊥BC,AM⊥CD∴∠AEB=∠AMD=90°∵∠AEB+∠ABC+∠BAE=180°∠AMD+∠ADC+∠DAM=180°∴∠BAE=∠DAN∴△ABF≌△ADN∴AF=AN请你依照题意完成下面命题:过菱形的一个顶点向两条对边作垂线,与对角线产生两个交点,则两交点到顶点的距离相等.【答案】作图见解析,①AD;②∠BAE=∠DAN;③△ADN;④两交点到顶点的距离相等.21.(10分)近年来,诈骗分子较为猖狂,诈骗手段不断更新,据有关部门统计,2022年全年全国电信诈骗共计达到2万亿元.为有效提高学生防诈反诈能力,学校开展了“防诈反诈”讲座后进行了“防诈反诈”知识竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x<85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,92,93,91;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:年级平均数中位数众数优秀率七91a95m八9193b65%(1)填空:a=92.5,b=94,m=60%;(2)根据以上数据,你认为该校七、八年级学生在“防诈反诈”知识竞赛中,哪个年级学生对“防诈反诈”的了解情况更好?请说明理由;(3)该校现有学生七年级780名,八年级800名,请估计这两个年级竞赛成绩为优秀的学生总人数.【答案】(1)92.5,94,60%;(2)八年级学生对“防诈反诈”的了解情况更好;(3)这两个年级竞赛成绩为优秀的学生总人数为988人.22.(10分)如图,平行四边形ABCD中,AD=6,CD=4,∠ADC=30°,动点P从点A出发沿折线A→B→C运动,到达点C停止运动.在运动过程中,过点P作PH⊥CD于点H,设点P的运动路程为x,BP+PH记为y1.(1)请直接写出y1关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出y1的图象与的图象有1个公共点时m的取值范围.【答案】(1)y1=;(2)函数图象见解答,函数的最小值为3(答案不唯一);(3)7≤m≤11.23.(10分)4月,正是春暖花开,踏青徒步的好时节,某校初三年级开展了“踏青觅春,走进自然”的春游活动.甲、乙两班都从学校出发沿相同路线去距学校7.5千米的徒步终点,已知甲班的步行速度是乙班的1.5倍.(步行过程为匀速运动)(1)若乙班比甲班先走750米,甲班才开始从学校出发,半小时后两班相遇,则两班的速度分别为多少千米/小时?(2)若乙班在出发后第一小时内按原计划的速度匀速前进,一小时后将速度提高到与甲班一致,并比原计划提前10分钟到达徒步终点,求乙班到达终点用了多少小时?【答案】(1)甲班的步行速度为4.5km/h,乙班的步行速度为3km/h;(2)乙班到达终点用了小时.24.(10分)如图,车站A在车站B的正西方向,它们之间的距离为100千米,修理厂C在车站B的正东方向.现有一辆客车从车站B出发,沿北偏东45°方向行驶到达D处,已知D在A的北偏东60°方向,D在C的北偏西30°方向.(1)求车站B到目的地D的距离(结果保留根号);(2)客车在D处准备返回时发生了故障,司机在D处拨打了救援电话并在原地等待,一辆救援车从修理厂C 出发以35千米每小时的速度沿CD方向前往救援,同时一辆应急车从车站A以60千米每小时的速度沿AD方向前往接送滞留乘客,请通过计算说明救援车能否在应急车到达之前赶到D处.(参考数据:≈1.41,≈1.73,≈2.45)【答案】(1)车站B到目的地D的距离为(50+50)千米;(2)救援车能在应急车到达之前赶到D处.25.(10分)如图,在平面直角坐标系中,直线y=kx+2与y轴交于点A,与x轴负半轴交于点B,OB=2,直线y =2x与直线AB交于点C.(1)求直线AB的表达式;(2)如图1,点P为直线OC上一动点,连接P A,PB,求P A+PB的最小值及此时点P的坐标;(3)将直线OC沿射线BA方向平移个单位长度得到新直线y',在新直线y'上是否存在点M,使得AM与新直线y的夹角为45°,若存在,请写出点M的横坐标,选一种情况写出求解过程,若不存在,说明理由.【答案】(1)y=x+2;(2)P(,)、P A+PB的最小值为:;(3)存在,点M的坐标为:(,)或(,﹣).26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.【答案】。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。
A. √-1B. πC. √4D. 无理数2. 如果 |a| = 5,那么 a 的值是()。
A. ±5B. 5C. -5D. 03. 下列各式中,正确的是()。
A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²4. 下列各图中,相似图形是()。
A.B.C.D.5. 一个等腰三角形的底边长为10cm,腰长为12cm,那么这个三角形的面积是()。
A. 60cm²B. 120cm²C. 100cm²D. 80cm²6. 如果x² - 5x + 6 = 0,那么 x 的值是()。
A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -47. 在直角坐标系中,点 A(-2,3)关于 x 轴的对称点是()。
A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)8. 下列函数中,是反比例函数的是()。
A. y = 2x + 3B. y = 3/xC. y = x²D. y = 3x9. 下列各式中,正确的是()。
A. a² = aB. (a + b)² = a² + b² + 2abC. (a - b)² = a² - b²D. (a + b)² = a² + b² - 2ab10. 下列各数中,绝对值最大的是()。
A. -3B. -2C. 1D. 0二、填空题(每题5分,共25分)11. 3 + (-5) 的值是 _______。
2024年中考第二次模拟考试数 学(考试时间:120分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯2.下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+5.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是( )A .1-B .1C .2D .37.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是( )A .23B .34C .25D .358.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②a b +>)a b c +>;上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③第Ⅱ卷 非选择题二、填空题(共16分,每小题2分)9x 可取的一个数是 .10.将2327m n n -因式分解为 .11.方程12131x x =+-的解为 .12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0k y k x =≠的图象上,且12y y >,请你写出一个符合要求的k 的值 .13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于 .14.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x株,根据题意可列分式方程为.CE=.连接15.如图,在矩形ABCD中,4AB=,5BC=,E点为BC边延长线一点,且3⊥于点H,则DH=.AE交边CD于点F,过点D作DH AE16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母 的位置,标注字母e 的卡片写有数字 .三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()20211π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭18.(本题5分)解不等式组:221352x x x x +<-⎧⎪⎨-<⎪⎩.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++⎝⎭,其中1x =.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE的形状,并证明;(2)连接EF,若EF CD的长.21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺为3m,且空白区域A B贴用纸费用分别为:A区域10元2/m,铺贴三个区域/m,B区域15元2/m,C区域20元2共花费150元,求C区域的面积.22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a .这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖人数101010第一次竞赛平均数828795人数21216第二次竞赛平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx 01245/m y 18311311383小梅根据学习函数的经验,发现y 是x 的函数,并对y 随x 的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y ,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m ;此时距离A 的水平距离为___________m ;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m 时补光效果最好,若在距离A 处水平距离1.5m 的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m ?(灯的大小忽略不计)26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()0y b b =+>交x 轴于点C ,在ABC 中,3AC =,AB =若线段AB 是O的关于直线()0y b b =+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.2024年中考第二次模拟考试数学·全解全析第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯2.下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此项不合题意;D.既是中心对称图形,又是轴对称图形,故此项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒【答案】B 【分析】根据∠AOC 和∠BOC 的度数得出∠AOB 的度数,从而得出答案.【详解】∵∠AOC =70°,∠BOC =30°,∴∠AOB =70°-30°=40°,∴∠AOD =∠AOB +∠BOD =40°+70°=110°.故选:B .【点睛】本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+22a b <,∴C 选项的结论不成立;22a b +<+,∴D 选项的结论成立.故选:D .【点睛】本题主要考查了不等式的性质,有理数大小的比较法则,利用点在数轴上的位置确定出a ,b 的取值范围是解题的关键.5.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒【答案】C【分析】根据多边形的内角和公式()2180n -∙︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】 正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选:C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是( )A .1-B .1C .2D .3【答案】B【分析】本题考查一元二次方程根与判别式的关系,根据方程有两个相等的实数根,判别式等于0列式求解即可得到答案;【详解】解:∵一元二次方程220x x a -+=有两个相等的实数根,∴2(2)410a --⨯⨯=,解得:1a =,故选:B .7.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是( )A .23B .34C .25D .358.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②a b +>)a b c +>;上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③==+,∴DF AC a b∵DF DE<,+<,①正确,故符合要求;∴a b c∵EAB BCD≌△△,第Ⅱ卷非选择题二、填空题(共16分,每小题2分)9x可取的一个数是.∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.10.将2327m n n -因式分解为.【答案】()()333n m m +-【分析】先提公因式,再利用平方差公式可进行因式分解.【详解】解:2327m n n -=()239n m -=()()333n m m +-故答案为:()()333n m m +-.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.11.方程12131x x =+-的解为 .【答案】x =3【分析】根据分式方程的解法解方程即可;【详解】解:去分母得:3x ﹣1=2x +2,解得:x =3,检验:把x =3代入得:(x +1)(3x ﹣1)≠0,∴分式方程的解为x =3.故答案为:x =3.【点睛】本题考查了解分式方程:先将方程两边乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0k y k x=≠的图象上,且12y y >,请你写出一个符合要求的k 的值 .13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于 .AB是直径,CD丄AB∴=,CE DE=BD BC=60︒,∠ACDA∴∠=︒,30∴∠=∠=︒,DOE A26014.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x株,根据题意可列分式方程为.CE=.连接15.如图,在矩形ABCD中,4AB=,5BC=,E点为BC边延长线一点,且3⊥于点H,则DH=.AE交边CD于点F,过点D作DH AE16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母的位置,标注字母e的卡片写有数字.【答案】B;4【分析】根据排列规则依次确定白1,白2,白3,白4的位置,即可得出答案.【详解】解:第一行中B与第二行中c肯定有一张为白1,若第二行中c为白1,则左边不可能有2张黑卡片,∴白卡片数字1摆在了标注字母B的位置,∴黑卡片数字1摆在了标注字母A的位置,;第一行中C与第二行中c肯定有一张为白2,若第二行中c为白2,则a,b只能是黑1,黑2,而A为黑1,矛盾,∴第一行中C为白2;第一行中F与第二行中c肯定有一张为白3,若第一行中F为白3,则D,E只能是黑2,黑3,此时黑2在白2右边,与规则②矛盾,∴第二行中c 为白3,∴第二行中a 为黑2,b 为黑3;第一行中F 与第二行中e 肯定有一张为白4,若第一行中F 为白4,则D ,E 只能是黑3,黑4,与b 为黑3矛盾,∴第二行中e 为白4.故答案为:①B ,②4.【点睛】本题考查图形类规律探索,解题的关键是理解题意,根据所给规则依次确定出白1,白2,白3,白4的位置.三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()20211π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭18.(本题5分)解不等式组:221352x x x x +<-⎧⎪⎨-<⎪.∴不等式组的解集为35x <<.【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++,其中1x =.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE 的形状,并证明;(2)连接EF ,若EF =CD 的长.四边形DFHE 是菱形,12OH OD DH ∴==,60HDE ∠=︒ ,633OE OD ∴===21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长为3m ,且空白区域AB 、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺贴用纸费用分别为:A 区域10元2/m ,B 区域15元2/m ,C 区域20元2/m ,铺贴三个区域共花费150元,求C 区域的面积.【答案】25m 【分析】本题考查一元一次方程的应用,设A 区域的面积为m x ,根据题意得出101520(92)150x x x ++-=,解得2x =,再求出C 区域的面积即可.【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,解得2x =,9225-⨯=,答:C 区域的面积是25m .22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖人数101010第一次竞赛平均数828795人数21216第二次竞赛平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n 91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).【答案】(1)见详解;(2)88m =,90n =;(3)第二次【分析】(1)根据30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图可得横坐标(2)8210871095108830m ⨯+⨯+⨯==,∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,其中第1个和第2个数是30名学生成绩中第∴1(9090)902n =⨯+=,∴88m =,90n =;24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx 01245/m y 18311311383小梅根据学习函数的经验,发现y是x的函数,并对y随x的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m;此时距离A的水平距离为___________m;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m时补光效果最好,若在距离A处水平距离1.5m的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m?(灯的大小忽略不计)【答案】(1)见解析;(2)4;3;(3)为使补光效果最好补光灯悬挂部分的长度应是1.75m.【分析】(1)描点,连线,即可画出函数的图象;(2)结合图表回答,即可解答;x=,求得函数值,即可解答.(3)利用待定系数法求得抛物线的解析式,令 1.5【详解】(1)解:描点,连线,函数的图象如图所示,(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为距离为3m ;故答案为:4;3;(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫⎪⎝⎭,,代入得,18342c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.()32,C a y +在对称轴的右侧,当()121,A a y -在对称轴右侧时,21+2a a ->,解得:3a >,不符合题意,当()121,A a y -在对称轴左侧时,()21+2a a a a -->-,解得:1a <-;∴a 的取值范围是1a <-;综上所述:a 的取值范围是3a >或1a <-.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.【答案】(1)①见解析;②见解析;(2)CF DF =【分析】(1)①根据题意画出图形即可求解;②连接AD ,则AD BC ⊥于点D ,AD 平分BAC ∠,根据等腰三角形的性质以及三角形内角和定理得出BAD ∠=α,90B α∠=︒-,根据90AEF ∠=︒,得出90AFE α∠=︒-,则B AFE ∠=∠;(2)延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,倍长中线法证明HBE FDE ≌,进而证明AHB AFC ≌,即可得证.【详解】(1)解:①如图所示,②连接AD ,∵AB AC =,D 是BC 的中点,∴AD BC ⊥于点D ,AD 平分BAC ∠,∵()24590BAC αα∠=︒<<︒∴BAD ∠=α,90B α∠=︒-,∵EF AE ⊥,∴90AEF ∠=︒,90AFE α∠=︒-,∴B AFE ∠=∠;(2)CF DF =;证明如下,延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,∵E 为BD 的中点,E 为HF 的中点∴,EH EF EB ED ==,又HEB FED ∠=∠,∴HBE FDE ≌()SAS ,∴BH FD =,∵AE HF ⊥,EH EF =,∴AHF △是等腰三角形,则AH AF =,HAE FAE α∠=∠=,,∵2BAC HAF α∠=∠=,∴HAF BAF BAC BAF ∠-∠=∠-∠,即BAH CAF ∠=∠,∴AHB AFC ≌()SAS ,∴CF BH =,∴CF FD =.【点睛】本题考查了等腰三角形的性质与判定,旋转的性质,全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()0y b b =+>交x 轴于点C ,在ABC 中,3AC =,AB =若线段AB 是O的关于直线()0y b b =+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.发现线段11A B 的对称线段是⊙O 的弦,∴线段11A B ,22A B ,33A B 中,⊙O 的关于直线故答案为:11A B ;(2)已知()30y x b b =-+>交x 轴于点是O 的关于直线()30y x b b =-+>对称的以及相应的BC 长.解:∵直线()30y x b b =-+>交x 轴于点当0y =时,()030x b b =-+>,将点C 代入直线3y x b =-+中,得0解得:23b =,∵点B B ',关于323y x =-+对称∴22125BC B C '==+=,∴当A '为()10,时,如图,OC 最大,此时2024年中考第二次模拟考试数学·参考答案 第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.12345678BDBDCBDD第Ⅱ卷 非选择题二、填空题(共16分,每小题2分)9.如4等(答案不唯一,3x ≥)10.()()333n m m +-11.x =312.2-(答案不唯一)13.14.()621031x x-=1516.B ;4三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)【详解】解:原式1144=-+-+....................(2分)114=-++-....................(4分)4=.....................(5分)18.(5分)【详解】解:221352x xxx+<-⎧⎪⎨-<⎪⎩①②,解不等式①得:3x>,....................(2分)解不等式②得:5x<,....................(4分)∴不等式组的解集为35x<<.....................(5分)19.(5分)【详解】解:原式22121211(1)x x xx x x⎛⎫---=+÷⎪+++⎝⎭()()22112x x xx x-+=⋅+-....................(2分)()1x x=-+....................(3分)2x x=--,....................(4分)当1x=时,原式)1113=--+=-....................(5分)20.(5分)【详解】(1)解:四边形DFHE是菱形,理由如下:CD平分ACB∠,过点D作DE BC⊥于点E,DF AC⊥于点F,60ACB∠=︒,DF DE∴=,30FCD DCE∠=∠=︒,....................(1分)点H是CD的中点,FH CH DH∴==,EH CH DH==,FH HE∴=,30DCE∠=︒,DE CB⊥,60HDE∴∠=︒,DHE∴ 是等边三角形,DE HE DH∴==,DF DE HE FH∴===,∴四边形DFHE 是菱形;....................(2分)(2)解:连接EF ,交DH 于点O ,四边形DFHE 是菱形,12OH OD DH ∴==,12OF OE EF ===EF DH ⊥,....................(3分)60HDE ∠=︒,OD ∴===....................(4分)24CD DH OD ∴===....................(5分)21.(5分)【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,....................(1分)解得2x =,....................(2分)9225-⨯=,....................(3分)答:C 区域的面积是25m .....................(5分)22.(5分)【详解】(1)解: 一次函数(0)y kx b k =+≠的图象经过点(0,1),(2,2)-,∴122b k b =⎧⎨-+=⎩,解得121k b ⎧=-⎪⎨⎪=⎩,....................(1分)该一次函数的表达式为112y x =-+,....................(2分)令0y =,得1012x =-+,2x ∴=,(2,0)A ∴;....................(3分)(2)解:当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数(0)y kx b k =+≠的值,1212x m x ∴+>-+,....................(4分)4m ∴>-.....................(5分)23.(6分)【详解】(1)解:如图所示;....................(2分)(2)8210871095108830m ⨯+⨯+⨯==,....................(3分)∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,94,94,95,95,96,98,其中第1个和第2个数是30名学生成绩中第15和第16个数,∴1(9090)902n =⨯+=,∴88m =,90n =;....................(4分)(3)第二次竞赛,学生成绩的平均数、中位数和众数均高于第一次竞赛,故第二次竞赛中初三年级全体学生的成绩水平较高.....................(6分)24.(6分)【详解】(1)解:∵BAC ADB∠=∠∴ AB BC =,....................(1分)∴ADB CDB ∠=∠,即DB 平分ADC ∠.∵BD 平分ABC ∠,∴ABD CBD ∠=∠,....................(2分)∴ AD CD =,∴ AB AD BC CD +=+,即 BAD BCD =,∴BD 是直径,∴90BAD ∠=︒;....................(3分)(2)解:∵90BAD ∠=︒,CF AD ∥,∴180F BAD ∠+∠=︒,则90F ∠=︒.∵ AD CD =,∴AD DC =.∵AC AD =,∴AC AD CD ==,∴ADC △是等边三角形,则60ADC ∠=︒.....................(4分)∵BD 平分ADC ∠,∴1302CDB ADC ∠=∠=︒.∵BD 是直径,∴90BCD ∠=︒,则12BC BD =.∵四边形ABCD 是圆内接四边形,∴180ADC ABC ∠+∠=︒,则120ABC ∠=︒,∴60FBC ∠=︒,∴906030FCB ∠=︒-︒=︒,∴12FB BC =.....................(5分)∵2BF =,∴4BC =,∴28BD BC ==.∵BD 是直径,∴此圆半径的长为142BD =.....................(6分)25.(6分)【详解】(1)解:描点,连线,函数的图象如图所示, ....................(1分)(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为4m ;此时距离A 的水平距离为3m ;故答案为:4;3;....................(3分)(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫ ⎪⎝⎭,,代入得,18311423c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩,解得1321a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,....................(4分)∴抛物线的解析式为21213y x x =-++,令 1.5x =,则21331321 3.253224y ⎛⎫=-⨯+⨯+== ⎪⎝⎭,()3.25 1.5 1.75m -=,....................(5分)答:为使补光效果最好补光灯悬挂部分的长度应是1.75m .....................(6分)26.(6分)【详解】(1)解:∵抛物线解析式为()22230y ax a x a =--≠,。
初三期中模拟试卷(1)一、选择题(每题4分,满分24分)1 、已知线段满足,则下列比例式不一定正确的是()A B C D2 、如图,在中,分别是上的点,下列比例式中伯努判定的是()A B C D3 、已知是线段的黄金分割点,,下列各式中不正确的是()A BC D4 、已知,在中,,,则的长为()A B C D5 、已知,是非零向量,下列判断错误的是()A 如果,那么B 如果为单位向量,且,那么C 如果,那么D 如果,那么或6 、如图,在梯形中,,对角线相交于点,是梯形的中位线,与相交于点,如果的面积为1,那么的面积为()A 3B 2C 4D 2.5二、填空题(每题4分,满分48分)ba、43=ba34=ab47=+bba3211=--bababa=++43ABC△ED、ACAB、BCDE//ACAEABAD=ECAEDBAD=ACCEABBD=BCDEABAD=P AB PBAP>215-=ABAPABPBAP⋅=2215-=PBAP253-=ABBPABC△︒=∠90C mBCA==∠、αABαsinmαcosmαsinmαcosma bba2=ba//e ea2=2||=a=+ba ba-=||||ba=ba=ba-=ABCD ADBCBCAD3//=、BDAC、O EF EF ACBD、HG、OGH△ABD△7 、如果线段,那么线段的比例中项8 、计算:9 、在中,,,那么的余弦值为10 、如图,在梯形中,,是梯形中位线,设,,那么向量用向量,表示为11 、如图,已知,,,那么12 、小明在楼上点处看到楼下点处小丽的俯角是,那么点小丽看点处小明的仰角是13 、如图,在中,,点是的重心,如果,那么14 、如果梯形两底分别为4和6,梯形高为2,那么两腰延长线的交点到这个梯形的较大底边的距离为15 、如图,在梯形中,,分别在的延长线上,,如果,,那么的长为16 、构建几何图形解决代数问题是数形结合思想,在中,,,延长线段,使,联结,可得,所以,利用此图形可以得出,通过此方法,可以得出cmccma94==、ca、=b cm=--)2(24baaABC△︒=∠90C43==BCAC、A∠ABCD ADBCBCAD3//=、EFaAD=bDC=BC a b321////LLL23=BCAB6=DE=DFA B︒32B A ABC△3=BC G ABC△BCDG// =DGABCD CDAB//FE、BDAC、ABEF//DEAD3=106==EFAB、CDABCRt△︒=∠90C ︒=∠30ABC DCB到点ABBD=AD︒=∠15D︒=∠75CAD3275tan+=︒=︒5.67tan17 、如图,在中,,垂足分别为,若,则18 、如图,在中,,平分,交,将绕着点旋转,如果点落在射线,点落在点处,联结,那么的正切值为三 、解答题(本大题共7题,满分78分)19 、(本题满分10分)计算:20 、(本题满分10分)如图,,于点,已知,求的长ABC △AB CE AC BD A ⊥⊥=∠︒、、45E D 、22=DE =BC ABC Rt △4390===∠︒BC AC ACB 、、CD ACB ∠D AB 于点ABC △A C CD B E DE AED ∠︒︒︒︒+-45cot 30sin 30cos 60tan 2BC EG AD ////AC DB AB EG 、、分别交G F E 、、53106====AB AE BC AD 、、、FG EG 、21 、(本题满分10分)如图,在中,,点分别在边上,,,(1)求的长(2)求的值22 、(本题满分10分)地铁10号线某站出口横截面平面图如图所示,电梯的两端分别距顶部9.9米和2.4米,在距电梯起点端6米的处,用1.5米的测角仪测得电梯终端处的仰角为,求电梯的坡度与长度参考数据:,,ABC △︒=∠90C E D 、AB AC 、ABC BD ∠平分8=⊥AE AB DE 、53sin =A CD DBC ∠cot AB A P B ︒14AB 24.014sin ≈︒97.014cos ≈︒25.014tan ≈︒23 、(本题满分12分)已知,如图,在中,点分别在边上,,相交于点,(1)求证:(2)求证:24 、(本题满分12分)在平面直角坐标系中,直线与轴交于点,将直线向下平移16个单位后交轴于点(1)求的余切值(2)点在平移后的直线上,其纵坐标为6,联结,其中与交于点,求:的值(3)点在直线上,且位于第一象限,联结,当时,求点的坐标ABC △E D 、AB BC 、AC AD BD ==CE AD 与F ECEF AE ⋅=2EAFDCE ADC ∠+∠=∠EFAB AD AF ⋅=⋅1223:+-=x y L x A L y BOBA ∠C CB CA 、CA y E ABE CBE S S △△:M 3=x MB MA 、OBA BMA ∠=∠M25 、(本题满分14分)如图,在直角图形中,,,对角线交于点,已知,,点是射线上任意一点,过点作,垂足为点,交射线,射线(1)当点是线段中点时,求线段的长(2)当点在线段上时(不与重合),设,求的函数解析式及定义域(3)联结,如果线段与直角梯形中的一条边(除外)垂直时,求的值ABCD CD AB //︒=∠90ABC BD AC 、G 3==BC AB 21tan =∠BDC E BC B DE BF ⊥F M AC 于点HDC 于点F BH CH E BC C B 、y CM x BE ==、x y 关于GF GF ABCD AD x参考答案一,选择题1 ,C ;2 ,D ;3 ,C ;4 ,C ;5 ,D ;6 ,C ;二 ,填空题7 ,6 ;8 ,;9 , ;10,;11 ,10 ;12 ,32 ;13 ,1 ;14 ,6 ;15 ,9 ;16 , ;17 ,4 ;18 , ;三 ,解答题19 , ;20 , ;21 ,(1)6 ,(2) ;22 ,19 , ;23 ,证明略 ;24 ,(1),(2)(,6),(3)(3 ,5);25 ,(1) ,(2)()(证相似)(3)当时,∵,∴,∵相似,∴ ,∴∵相似,∴,,∵ ,∴ ,解得:,(舍)b a 42+53a 2+12+7334+5186==GF EG 、2124:1=i 21cot =∠OBA C 320-658320||21||21==⋅⋅=A C ABE CBE x BE x BE S S △△M 653-x x y +-=3232930<<x BCH △DCE △BC GF ⊥21==DC AB GD BG 31=BH BF BH BF 31=BCH △DCE △DE BH 21=DE BF 61=BFE △DCE △DE BE CD BF =DEx DE =661x DE 362=222CE CD DE +=2)3(3636x x -+=116211-=x 116212+=x当时,如上图易得,,∵相似,,∵,∴, , ,,(舍)综上所述CD GF ⊥24==KC DK 、32=CE KF )3(32-=x KF BCH △DCE △21=CE CH )3(2121-==x CE CH 27)3(212x x CH CK KH -=--=-=BC KF //CH KH BC KF =23273)3(32--=-x x x )7(9)3(22x x -=-045322=--x x 441331+=x 441332-=x 1162144133-+=或x。
A
初三数学模拟试卷
2003.5
第一部分(满分100分)
一、填空题(每空2分,共24分)
1.方程2y -1=0的根是 ;0.0310含有 个有效数字;
2.函数y =2x -3的图象与x 轴交点为 ;函数y =(x -1)2
+2的图象与y 轴交点为 ;对于函数y =-1
x
,当x <0时,这部分图象在第 象限,
3.正方形的内切圆与外接圆的面积之比为 ;
4.高60米的塔影长为40m ,同一时刻,高3米的树干影长 米。
5.等腰三角形的一个底角为30°,一腰长是6,则它的底边上的高是 ;外接圆的半径是 ;
6.圆锥的底面半径是4cm ,侧面积是20πcm 2
,则圆锥的高是 cm ,侧面展开图中扇形的圆心角是 ;
7.“圆材埋壁”是我国古代著名的数学著作《九章算术》 中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之, 深一寸(CE =1),锯道(注:即图中AB )长十寸,问径(注直 径)= 寸。
”
二、选择题(每小题3分,共18分,每小题只有一个正确答案)
8.(-a )2
·a ÷a 2
等于( )
A.-1
B.1
C.a
D.a 2
9.若-1<a <1,则(a -1)2
+|a +1|等于( )
A.2
B.2a
C.2a +2
D.2a -2 10.若两圆有且只有两条公切线,则这两圆的位置关系是( )
A.外离
B.外切
C.相交
D.内切
11.已知一组数x 1,x 2,x 3,x 4,x 5的平均数是2,方差是1
3
,那么另一组数据3x 1-2,
3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别是( )
A.2,13
B.2,1
C.4,2
3
D.4,3
12.若0<a <1,则抛物线y =(x +1-a )2
+a 的顶点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
13.如图,Rt △ABC 中,∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于点E ,则结论正确的是( )
A.△BAE ∽△ACB
B.△AEB ∽△ACD
C.△AEC ∽△DAC
D.△BAE ∽△ACE 三、简答题(每小题6分,共24分)
14.|tan45°- 3 |-( 3 - 2 )0
--3
-8
3 +1
+(13 )-1
15.解方程x 2
+1x -1 -3x -3
x 2+1
+2=0
16.某校初三年级学生参加“抗击非典捐款”活动,甲班共捐款200元,乙班30名同学共捐款200元,这样两班人均捐款比甲班人均捐款多1元,问甲班有多少人参加捐款,(规定每班人数不超过54人)。
17.甲乙两小组各10名学生某次数学测验成绩如下(单位:分)
甲组:76,90,84,86,81,87,86,82,85,83 乙组:82,84,85,89,79,80,91,89,78,74 回答下列问题:
⑴甲组数据的众数为 ;乙组数据的中位数为 ;
⑵经计算:S 甲2
=13.2,S 乙2
=26.36,S 甲2
<S 乙2
这说明 (用文字语言表达)
⑶将甲乙两组数据合并成一组数据后,按照组距4分分组时,可以分成以下5组, 73.5~77.5,77.5~81.5,81.5~85.5,85.5~89.5,89.5~93.5,则其中85.5~89.5这一组的频数是 ;频率是 ;
四、证明计算(18-20题每小题8分,21题10分,共34分) 18.如图,ABCD 为正方形,E 是BC 上一点,AE 交BD 于F ,连CF ,
求证:∠DCF =∠BEA
19.为了响应节水号召,小红家要使200m 3
的水比过去多用5个月,计划每月比过去用少2m 3
,问小红家计划每月用多少水?
20.如图,△ABC 中,∠C =90°,BE 平分∠ABC ,DE ⊥BE ,交AB 于D ,⊙O 是△BDE 的外接圆,⑴求证:AC 是⊙O 的切线;⑵若AD =6,AE =62,求DE 。
21.如图,以P (3,0)为圆心,5为半径的圆交x 轴于A 、B ,交
⑴求过A 、B 、C 三点的抛物线的解析式:
⑵若⑴中抛物线的顶点为M ,判定直线MC 与⊙P
的位置关系,并说明理由:
⑶过点B 作QB ⊥AB 交直线MC 于点Q ,问P 、 Q 、D 三点是否在同一直线上,为什么?
第二部分(满分50分)
五、选择题(每小题3分,共15分,每小题只有一个正确答案)
22.在△ABC 中,a ,b 分别是∠A 、∠B 的对边,如果sinA:sinB =2:3,则a:b 等于( ) A.2:3 B.3:2 C.4:9 D.9:4
23.有一旅客携带了30kg 行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20kg 行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是( )
A.1000
B.800
C.600
D.400 24.若x =1时,px 3
+qx +1=2003,则当x =-1时,Px 3
+qx +1=( )
A.2001
B.2003
C. -2001
D.-2003
25.如果a 是一元二次方程x 2
-3x +m =0的一个根,如果-a 是一元二次方程x 2
+3x -m =0
的一个根,那么a 的值是( )
A.1或2
B.0或-3
C.-1或-2
D.0或3 26.如图,直线AB 经过⊙O 的圆心,与⊙O 相交于A 、B 两点,
D
C
点C 在⊙O 上,且∠AOC =30°,点E 是直线AB 上的一个动点(与 点O 不重合),直线EC 交⊙O 于D ,则使DE =DO 的点E 共有( )
A.1个
B.2个
C.3个
D.4个 六、(本题8分)
27.已知实数a ,b 满足a 2
=2-2a ,b 2
=2-2b ,且a ≠b ,求:⑴a b +b
a
的值;
⑵a 2+2b 2
+2b 的值。
七、(本题7分)
28.在一服装厂里有大量形状为等腰直角三解形的边角布料(如下图)现找出其中的一种,测得∠C =90°,AC =BC =8,今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在△ABC 的边上,且扇形的弧与△ABC 的其它边相切。
请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径)
八、(本题10分)
29.已知:如图,PA 切⊙O 于A ,割PBC 线交⊙O 于B 、C ,PD ⊥AB 于D ,延长PD 交AO 的延长线于E ,连结CE 并延长交⊙O 于F ,连结AF 。
⑴求证:PD ·PE =PB ·PC ⑵求证:PE ∥AF ;
⑶连AC ,若AE:AC =1: 2 ,AB =2,求EF 的长。
九、(本题10分)
30.如图,在平面直角坐标系xoy 中,正方形OABC 的边长为2厘米,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上。
抛物线y =ax 2
+bx +c 经过点A 和点B ,且12a +5c =0
⑴求抛物线的解析式
⑵如果点P 由点A 开始沿AB 边以2厘米/秒的速度向点B 移动,同时点Q 由点B 开始沿BC 边以1厘米/秒的速度向点C 移动。
移动开始后第t 秒时,设S =PQ 2
(厘米2
)
①试写出S 与t 之间的函数关系式,并写出t 的取值范围;
②当S 取最小值时,在抛物线上是否存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形?如果存在,求出点R 的坐标;如果不存在,请说明理由。
x
P
E。