中考数学数学总复习:锐角三角函数综合复习--巩固练习(提高)
- 格式:docx
- 大小:542.56 KB
- 文档页数:8
锐角三角函数—巩固练习【巩固练习】一、选择题1.(2016•乐山)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A.B.C.D.2.(2015•山西)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.3. 已知锐角α满足sin25°=cosα,则α=( )A.25° B.55° C.65° D.75°4.如图所示,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为 ( )A.12B.34C.32D.45第4题第5题5.如图,在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是( )A 57B3C21D216.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的2倍,则∠A的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.不变7.如图所示是教学用具直角三角板,边AC=30cm,∠C=90°,tan∠BAC 3BC的长为( )A .303cmB .203cmC .103cmD .53cm第7题 第8题8. 如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若AC =5,BC =2,则sin ∠ACD 的值为( )A .53 B .253 C .52 D . 23二、填空题9.(2016•临夏州)如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=,则t 的值是 .10. 用不等号连接下面的式子.(1)cos50°________cos20° (2)tan18°________tan21°11.在△ABC 中,若223sin cos 022A B ⎛⎫-+-= ⎪ ⎪⎝⎭,∠A 、∠B 都是锐角,则∠C 的度数为 . 12.如图所示,△ABC 的顶点都在方格纸的格点上,则sinA =________.13.已知:正方形ABCD 的边长为2,点P 是直线CD 上一点,若DP =1,则tan ∠BPC 的值是________.第12题 第15题14.如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 的最小角为A ,那么tanA 的值为________.15.如图所示,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标是(0,2),直线AC 的解析式为112y x =-,则tanA 的值是________.16.(2014•高港区二模)若α为锐角,且,则m的取值范围是.三、解答题17.如图所示,△ABC中,D为AB的中点,DC⊥AC,且∠BCD=30°,求∠CDA的正弦值、余弦值和正切值.18. 计算下列各式的值.(1) (2015•普陀区一模);(2) (2015•常州模拟)sin45°+tan45°﹣2cos60°.(3) (2015•奉贤区一模)﹣cos60°.19.如图所示,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若AD=10,AB=6,求tan∠EDF的值.20. 如图所示,已知⊙O的半径为2,弦BC的长为23,点A为弦BC所对优弧上任意一点(B、C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:3sin602=°,3cos302=°,3tan30)3=°.【答案与解析】一、选择题 1.【答案】C.【解析】在Rt △ABC 中,∠BAC=90°,sinB=,∵AD ⊥BC , ∴sinB=,sinB=sin ∠DAC=,综上,只有C 不正确 故选:C .2.【答案】D ;【解析】如图:由勾股定理得,AC=,AB=2,BC=, ∴△ABC 为直角三角形, ∴tan∠B==,故选:D .3. 【答案】C ;【解析】由互余角的三角函数关系,cos sin(90)αα=-°,∴ sin25°-sin(90°-α), 即90°-α=25°,∴ α=65°.4.【答案】C ;【解析】设⊙A 交x 轴于另一点D ,连接CD ,根据已知可以得到OC =5,CD =10,∴ 2210553OD =-=,∵ ∠OBC =∠ODC , ∴ 533cos OB cos 102OD C ODC CD ∠=∠===.5.【答案】D ;【解析】如图所示,过点C 作CD ⊥AB 于D ,∵ ∠BAC =120°,∴ ∠CAD =60°, 又∵ AC =2,∴ AD =1,CD =3, ∴ BD =BA+AD =5,在Rt △BCD 中,222827BC BD CD =+==,∴ 321sin 1427CD B BC ===.6.【答案】D ;【解析】根据锐角三角函数的定义,锐角三角函数值等于相应边的比,与边的长度无关,而只与边的比值或角的大小有关.7.【答案】C ;【解析】由3tan 3BC BAC AC ∠==,∴ 333010333BC AC ==⨯= 8. 【答案】A ; 【解析】 ∵ 223AB AC BC =+=,∴ 5sin sin 3AC ACD B AB ∠=∠==二、填空题 9.【答案】.【解析】过点A 作AB ⊥x 轴于B , ∵点A (3,t )在第一象限, ∴AB=t ,OB=3, 又∵tan α===,∴t=. 故答案为:.10.【答案】(1)<; (2)<;【解析】当α为锐角时,其余弦值随角度的增大而减小,∴ cos50°<cos20°;当α为锐角时,其正切值随角度的增大而增大,∴ tan18°<tan21°.11.【答案】105°;【解析】∵ 223sin cos 02A B ⎫+-=⎪⎪⎝⎭, ∴ 2sin 02A -=3cos 0B -= 即2sin A =3cos B = 又∵ ∠A 、∠B 均为锐角,∴ ∠A =45°,∠B =30°,在△ABC 中,∠A+∠B+∠C =180°,∴ ∠C =105°. 12.5【解析】假设每一个小正方形的边长为1,利用网格,从C 点向AB 所在直线作垂线CH .垂足为H ,则∠A 在直角△ACH 中,利用勾股定理得224225AC =+=,∴ 25sin 525CH A AC ===. 13.【答案】2或23【解析】此题为无图题,应根据题意画出图形,如图所示,由于点P 是直线CD 上一点,所以点P 既可以在边CD 上,也可以在CD 的延长线上,当P 在边CD 上时,tan 2BC BPC PC ∠==;当P 在CD 延长线上时,2tan 3BC BPC PC ∠==.14.【答案】13或24;【解析】由2430x x -+=得11x =,23x =,①当3为直角边时,最小角A 的正切值为1tan 3A =;②当3为斜边时,223122-=∴ 最小角A 的正切值为2tan 422A ==. 故应填13或24.15.【答案】13; 【解析】由△ABC 的内心在y 轴上可知OB 是∠ABC 的角平分线,则∠OBA =45°,易求AB 与x 轴的交点为(-2,0),所以直线AB 的解析式为:2y x =+,联立2112y x y x =+⎧⎪⎨=-⎪⎩可求A 点的坐标为(-6,-4), ∴ 2262AB AD BD =+=OC =OB =2,∴ BC =22.在Rt △ABC 中,221tan 362BC A AB ===.16.【答案】;【解析】∵0<cosα<1,∴0<<1,解得.三、解答题17.【答案与解析】过D 作DE ∥AC ,交BC 于点E .∵ AD =BD ,∴ CE =EB ,∴ AC =2DE . 又∵ DC ⊥ AC ,DE ∥AC ,∴ DC ⊥DE ,即∠CDE =90°.又∵ ∠BCD =30°,∴ EC =2DE ,DC =3DE . 设DE =k ,则CD =3k ,AC =2k .在Rt △ACD 中,227AD AC CD k =+=.∴ 227sin 77AC k CDA AD k ∠===,321cos 77CD k CDA AD k ∠===. 223tan 33AC k CDA CD k∠===.18.【答案与解析】 解:(1)原式=4×﹣×+×=1+3. (2) 原式=×+1﹣2× =1+1﹣1=1.(3) 原式=﹣×=﹣=2314-. 19.【答案与解析】(1)证明:∵ 四边形ABCD 是矩形,∴ AD ∥BC ,AD =BC ∴ ∠DAF =∠AEB 又∵ AE =BC , ∴ AE =AD又∵ ∠B=∠DFA =90°, ∴ △EAB ≌△ADF . ∴ AB =DF . (2)解:在Rt △ABE 中,22221068BE AE AB =-=-=∵ △EAB ≌△ADF ,∴ DF =AB =6,AF =EB =8, ∴ EF =AE-AF =10-8=2.∴ 21tan 63EF EDF DF ∠===.20.【答案与解析】(1)连接BO 并延长,交⊙O 于点D ,连接CD . ∵ BD 是直径,∴ BD =4,∠DCB =90°.在Rt △DBC 中,233sin 42BC BDC BD ∠===, ∴ ∠BDC =60°,∴ ∠BAC =∠BDC =60°.(2)因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 应落在优弧BC 的中点处.过O 作OE ⊥BC 于点E ,延长EO 交⊙O 于点A ,则A 为优孤BC 的中点.连结AB ,AC , 则AB =AC ,∠BAE 12=∠BAC =30°. 在Rt △ABE 中,∵ BE 3=BAE =30°,∴33tan3033BEAE===°,∴1233332ABCS=⨯⨯=△.答:△ABC面积的最大值是33.附录资料:《相似》全章复习与巩固--巩固练习(基础)【巩固练习】一、选择题1.(2015•乐山)如图,l1∥l2∥l 3,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知,则的值为()A.B.C.D.2. (2016•奉贤区一模)用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B.△ABC放大后,边AB是原来的4倍C.△ABC放大后,周长是原来的4倍D.△ABC放大后,面积是原来的16倍3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是( )4.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是,则点B的横坐标是()A.B. C.D.5.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有( ) A.1个B.2个 C.3个 D.4个6. 如图,在正方形ABCD中,E是CD的中点,P是BC边上的点,下列条件中不能推出△ABP与以点E、C、P为顶点的三角形相似的是( )A.∠APB=∠EPC B.∠APE=90° C.P是BC的中点D.BP:BC=2:37. 如图,在△ABC中,EF∥BC,12AEEB,,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.138.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是()A.∠E=2∠K B.BC=2HIC.六边形ABCDEF的周长=六边形GHIJKL的周长D.S六边形ABCDEF=2S六边形GHIJKL二、填空题9. (2016•衡阳)若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.10. 如图,在△ABC中,D、E分别是AB和AC中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=_______,△ADE•与△ABC•的面积之比为_______,•△CFG与△BFD的面积之比为________.11. 如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S△BOC=_______.12. 在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在面上的影长为40米,则古塔高为________.13. (2015•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.14.如图,在△ABC中,MN∥BC,若∠C=68°,AM:MB=1:2,则∠MNA=_______度,AN:NC=_____________.15.如图,点D,E分别在AB、AC上,且∠ABC=∠AED。
九年级中考数学锐角三角函数解答题压轴题提高专题练习含答案一、锐角三角函数1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且10cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出A D•AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析. 【解析】【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10BF B == (2)连接DG ,∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,∴FG=13,∴AD•AE=AF•AG=AF•(AF+FG)=3×10=10;3(3)连接CD,延长BD至点N,使DN=CD,连接AN,∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN,∵AD=AD,CD=ND,∴△ADC≌△ADN,∴AC=AN,∵AB=AC,∴AB=AN,∵AH⊥BN,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.2.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD.∵AD∥BF,∴∠EFB=90°.∵EF=BF,∴∠FBE=45°,∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵3BD,3AE,∴3AC CDBD AE ==. ∵BD=AF ,∴3AC CDAF AE==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,∴3AC AD BFAF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.在Rt △EFB 中,tan ∠FBE=3EF BF =, ∴∠FBE=30°, ∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵3BD ,3AE ,∴3AC CDBD AE==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,∴3AD ACAH EH==∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.在Rt △DAH 中,tan ∠ADH=3AHAD=∴∠ADH=30°,∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.3.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数4.如图13,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.【答案】(1)详见解析;(2)①②和走完全程所需时间为【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.试题解析:解:(1)证明:四边形是矩形.与交于点O,且关于对称四边形是菱形.(2)①连接,直线分别交于点,交于点关于的对称图形为在矩形中,为的中点,且O为AC的中点为的中位线同理可得:为的中点,②过点P 作交于点由运动到所需的时间为3s由①可得,点O 以的速度从P 到A 所需的时间等于以从M 运动到A即:由O 运动到P 所需的时间就是OP+MA 和最小.如下图,当P 运动到,即时,所用时间最短.在中,设解得:和走完全程所需时间为考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置5.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =,∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.6.在正方形ABCD 中,BD 是一条对角线.点P 在射线CD 上(与点C ,D 不重合),连接AP ,平移△ADP ,使点D 移动到点C ,得到△BCQ ,过点Q 作QH ⊥BD 于点H ,连接AH 、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)【答案】(1)①如图;②AH=PH,AH⊥PH.证明见解析(2)或【解析】试题分析:(1)①如图(1);②(1)法一:轴对称作法,判断:AH=PH,AH⊥PH.连接CH,根据正方形的每条对角线平分一组对角得:△DHQ等腰Rt△,根据平移的性质得DP=CQ,证得△HDP≌△△HQC,全等三角形的对应边相等得PH=CH,等边对等角得∠HPC=∠HCP,再结合BD是正方形的对称轴得出∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)轴对称作法同(1)作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由代入HR,CR解方程即可得出x的值. 四点共圆作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.试题解析:(1)①法一:轴对称作法,判断:AH=PH,AH⊥PH证:连接CH,得:△DHQ等腰Rt△,又∵DP=CQ,∴△HDP≌△△HQC,∴PH=CH,∠HPC=∠HCPBD为正方形ABCD对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.法二:四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)法一:轴对称作法考虑△DHQ等腰Rt△,PD=CQ,作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由得:,∴.即PD=法二:四点共向作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.考点:全等三角形的判定;解直角三角形;正方形的性质;死电脑共圆7.如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.【答案】解:(1)在菱形ABCD中,∵AC⊥BD,AC=80,BD=60,∴。
中考总复习锐角三角函数综合复习--巩固练习巩固练习(提高)1. 已知角A是一个锐角,sinA=0.6,求cosA的值。
解:根据三角函数的定义,sinA=对边/斜边=0.6设对边为a,斜边为c,则对边和斜边的比值为3:5,即a:5a,勾股定理可得:a^2+5a^2=c^26a^2=c^2c=√(6a^2)根据cosA=邻边/斜边,设邻边为b,则邻边和斜边的比值为b:(√(6a^2))根据勾股定理可得:b^2+6a^2=(√(6a^2))^2b^2=0b=0所以cosA=02. 已知tanθ = 0.8,θ是一个锐角,求θ的值。
解:根据tanθ=对边/邻边=0.8设对边为a,邻边为b,则对边和邻边的比值为4:5,即4a:5a,勾股定理可得:4a^2+5a^2=c^29a^2=c^2c=√(9a^2)根据tanθ=sinθ/cosθ,可得sinθ=4a/√(9a^2)=4/√(9)=4/3根据sinθ的定义可知,sinθ是正数,即θ是第一象限或第二象限的角。
又因为题目给出θ是一个锐角,所以θ必定是第一象限的角。
所以sinθ=4/3,根据sinθ=对边/斜边,可得:4/3=a/√(9a^2)4/3=a/3a4/3=1/3所以a=1,那么c=√9=3所以tanθ=4/5=0.8,那么θ=tan^(-1)(0.8)≈38.7°所以θ的值约为38.7°。
3.在直角三角形ABC中,∠B=90°,AC=20,BC=15,求三角形ABC的角A的正弦值和余弦值。
解:根据正弦定理可得sinA=AC/斜边=20/25=4/5根据余弦定理可得cosA=BC/斜边=15/25=3/5所以三角形ABC的角A的正弦值为4/5,余弦值为3/54. 已知在锐角三角形ABC中,sinA=3/5,cosB=4/5,求sinB的值。
解:根据正弦定理可得sinB=AC/斜边根据余弦定理可得cosB=BC/斜边所以AC=5sinB,BC=5cosB根据勾股定理可得:(5sinB)^2 + (5cosB)^2 = AC^2 + BC^225sin^2B + 25cos^2B = 5^2sin^2B + 5^2cos^2B25sin^2B + 25cos^2B = 25sin^2B + 25cos^2B所以25sin^2B = 0sinB = 0所以sinB的值为0。
中考总复习:锐角三角函数综合复习—巩固练习(基础)【巩固练习】一、选择题1. 如图所示,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是 ( )A .sin AB .tan A =12C .cosBD .tan B第1题 第2题2.如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D .若BC=2,则sin∠ACD 的值为( )A B D .233.在△ABC 中,若三边BC 、CA 、AB 满足 BC ∶CA ∶AB=5∶12∶13,则cosB=( )A .125B .512 C .135 D .13124.如图所示,在△ABC 中,∠C=90°,AD 是BC 边上的中线,BD=4,则tan ∠CAD 的值是( )A.2第4题 第6题5.如果△ABC 中,,则下列最确切的结论是( ) A. △ABC 是直角三角形 B. △ABC 是等腰三角形 C. △ABC 是等腰直角三角形 D. △ABC 是锐角三角形6.如图,已知:45°<A <90°,则下列各式成立的是( ) A.sinA=cosA B.sinA >cosA C.sinA >tanA D.sinA <cosA二、填空题7.若∠α的余角是30°,则cosα的值是 .8.如图,△ABC的顶点都在方格纸的格点上,则sinA=_______.第8题第12题9.计算2sin30°﹣sin245°+tan30°的结果是 .10.已知α是锐角,且sin(α.114cos( 3.14)tan3απα-⎛⎫---++ ⎪⎝⎭的值为 .11.观察下列各式:①sin 59°>sin 28°;②0<cosα<1(α是锐角);③tan 30°+tan60°=tan 90°;④tan 44°<1.其中成立的有 .(填序号)12.如图,正方体的棱长为3,点M,N分别在CD,HE上,CM=12DM,HN=2NE,HC与NM的延长线交于点P,则tan∠NPH的值为.三、解答题13.如图所示,我市某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,现要在C 点上方2m处加固另一条钢缆ED,那么EB的高为多少米?(结果保留三个有效数字)14. 已知:如图所示,八年级(1)班数学兴趣小组为了测量河两岸建筑物AB和建筑物CD的水平距离AC,他们首先在A点处测得建筑物CD的顶部D点的仰角为25°,然后爬到建筑物AB的顶部B处测得建筑物CD的顶部D点的俯角为15°30′.已知建筑物AB的高度为30米,求两建筑物的水平距离AC(精确到0.1米)(可用计算器查角的三角函数值)15.如图所示,“五一”期间在某商贸大厦上从点A到点B悬挂了一条宣传条幅,小明和小雯的家正好住在商贸大厦对面的家属楼上.小明在四楼D 点测得条幅端点A 的仰角为30°,测得条幅端点B 的俯角为45°;小雯在三楼C 点测得条幅端点A 的仰角为45°,测得条幅端点B 的俯角为30°.若设楼层高度CD 为3 m ,请你根据小明和小雯测得的数据求出条幅AB 的长.(结果精确到个位, 1.732)16. 如图所示,某水库大坝的横断面是梯形,坝顶宽AD =2.5m ,坝高4 m ,背水坡的坡度是1:1,迎水坡的坡度是1:1.5,求坝底宽BC.【答案与解析】 一、选择题 1.【答案】D ;【解析】sinA =BC AB =12,tan A =BC AC ,cosB =BC AB =12.故选D.2.【答案】A ;【解析】在直角△ABC 中,根据勾股定理可得:.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°, ∴∠B=∠ACD.∴ sin∠ACD=sin∠B=ACAB =, 故选A .3.【答案】C ;【解析】根据三角函数性质 cosB==,故选C .4.【答案】A ;【解析】∵AD 是BC 边上的中线,BD=4,∴CD=BD=4,在Rt△ACD 中,, ∴tan ∠CAD===2.故选A .5.【答案】C ;【解析】∵,∴∠A=∠B=45°,∴△ABC 是等腰直角三角形.故选C . 6.【答案】B ;【解析】∵45°<A <90°,∴根据sin45°=cos45°,sinA 随角度的增大而增大,cosA 随角度的增大而减小, 当∠A >45°时,sinA >cosA ,故选B .二、填空题 7.【答案】21; 【解析】∠α=90°﹣30°=60°,cosα=cos60°=21. 8.【答案】;【解析】过C 作CD ⊥AB ,垂足为D ,设小方格的长度为1,在Rt△ACD 中,AC=22CD AD =25,∴sinA=. CD AC9.【答案】21+33; 【解析】2sin30°﹣sin 245°+ tan30°=2×21-(22)2+()2+33=1﹣21+33=21+33.10.【答案】3;,∴α+15°=60°,∴α=45°,∴原式﹣1+1+3=3. 11.【答案】①②④;【解析】①sin 59°>sin 28°成立,②0<cos α<1(α是锐角)成立,③tan 30°+tan 60°≠tan 90°,④tan 44°<tan 45°,即tan 44°<1成立. 12.【答案】13;。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记AC BC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为33时,CPE 总是等边三角形【解析】【分析】 (1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC BC=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FP=,∵点P是BF的中点,∴EM=MC,又∵PM⊥CE,∴PC=PE;MC PB(2)PC=PE成立,理由如下:如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,∵∠DAF=∠EAF,∠FDA=∠FEA,AF=AF,∴△DAF≌△EAF(AAS),∴AD=AE,在△DAP和△EAP中,∵AD=AE,∠DAP=∠EAP,AP=AP,∴△DAP≌△EAP(SAS),∴PD=PE,∵FD⊥AC,BC⊥AC,PM⊥AC,∴FD∥BC∥PM,∴DM FP=,MC PB∵点P是BF的中点,∴DM=MC,又∵PM⊥AC,∴PC=PD,又∵PD=PE,∴PC=PE;(3)如图4,∵△CPE总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°,∵AC k BC =,AC BC=tan30°, ∴k=tan30°=33, ∴当k 为33时,△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.2.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP = 【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去.【详解】(1)联结OD ,∵OC OD =,∴OCD ODC ∠=∠,∵//CD AB ,∴OCD COA ∠=∠,∴POA QDO ∠=∠.在AOP ∆和ODQ ∆中, {OP DQPOA QDO OA DO=∠=∠=,∴AOP ∆≌ODQ ∆,∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB ,∴PFC ∆∽PAO ∆, ∴2210()()AOP yCP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时, ∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<;(3)①当90OPE ∠=时,90OPA ∠=, ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=时,∵//CD AB ,∴AOQ DQO ∠=∠,∵AOP ∆≌ODQ ∆,∴DQO APO ∠=∠,∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.3.如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,BC=16cm ,AD 是斜边BC 上的高,垂足为D ,BE=1cm .点M 从点B 出发沿BC 方向以1cm/s 的速度运动,点N 从点E 出发,与点M 同时同方向以相同的速度运动,以MN 为边在BC 的上方作正方形MNGH .点M 到达点D 时停止运动,点N 到达点C 时停止运动.设运动时间为t (s ).(1)当t 为何值时,点G 刚好落在线段AD 上?(2)设正方形MNGH 与Rt △ABC 重叠部分的图形的面积为S ,当重叠部分的图形是正方形时,求出S 关于t 的函数关系式并写出自变量t 的取值范围.(3)设正方形MNGH 的边NG 所在直线与线段AC 交于点P ,连接DP ,当t 为何值时,△CPD 是等腰三角形?【答案】(1)3;(2);(3)t=9s 或t=(15﹣6)s.【解析】试题分析:(1)求出ED的距离即可求出相对应的时间t.(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.试题解析:∵∠BAC=90°,∠B=60°,BC=16cm∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm∴t=s=3s.(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,则∠HMB=90°,∠B=60°,MH=1∴BM=cm.∴t=s.当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,设MN=xcm,则GH=DH=x,AH=x,∵AD=AH+DH=x+x=x=4,∴x=3.当≤t≤4时,S MNGN=1cm2.当4<t≤6时,S MNGH=(t﹣3)2cm2∴S关于t的函数关系式为:.(3)分两种情况:①∵当DP=PC时,易知此时N点为DC的中点,∴MN=6cm∴EN=3cm+6cm=9cm.∴t=9s故当t=9s的时候,△CPD为等腰三角形;②当DC=PC时,DC=PC=12cm∴NC=6cm∴EN=16cm﹣1cm﹣6cm=(15﹣6)cm∴t=(15﹣6)s故当t=(15﹣6)s时,△CPD为等腰三角形.综上所述,当t=9s或t=(15﹣6)s时,△CPD为等腰三角形.考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.4.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt △AFG 中,tan ∠AFG 3,∴FG =tan 3AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =AG CG , ∴CG =tan AG ACG∠=3. 又∵CG ﹣FG =24m ,33=24m , ∴AG 3, ∴AB 3+1.6≈22.4m .5.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为23,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数的表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;②若MT=12AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).【答案】(1)y=x2﹣2x﹣3(2)①在点T的运动过程中,∠DMT的度数是定值②(0,3)(3)见解析【解析】【分析】(1)把点B的坐标代入抛物线解析式求得系数b的值即可;(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE=3.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;②如图2,由已知条件MT=12AD,MT=MD,推知MD=12AD,根据△ADT的外接圆圆心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD=12AD.根据点A、D的坐标求得点M的坐标即可;(3)如图3,作MH⊥x于点H,则AH=HT=12AT.易得H(a﹣1,0),T(2a﹣1,0).由限制性条件OH≤x≤OT、动点T在射线EB上运动可以得到:0≤a﹣1≤x≤2a﹣1.需要分类讨论:(i)当2111(1)211aa a-⎧⎨----⎩,即413a<,根据抛物线的增减性求得y的极值.(ii)当0112111(1)211aaa a<-⎧⎪->⎨⎪--<--⎩,即43<a≤2时,根据抛物线的增减性求得y的极值.(iii)当a﹣1>1,即a>2时,根据抛物线的增减性求得y的极值.【详解】解:(1)把点B(3,0)代入y=x2+bx﹣3,得32+3b﹣3=0,解得b=﹣2,则该二次函数的解析式为:y=x2﹣2x﹣3;(2)①∠DMT的度数是定值.理由如下:如图1,连接AD.∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4.∴抛物线的对称轴是直线x=1.又∵点D的纵坐标为∴D(1,由y=x2﹣2x﹣3得到:y=(x﹣3)(x+1),∴A(﹣1,0),B(3,0).在Rt△AED中,tan∠DAE=DEAE==.∴∠DAE=60°.∴∠DMT=2∠DAE=120°.∴在点T的运动过程中,∠DMT的度数是定值;②如图2,∵MT=12AD.又MT=MD,∴MD=12AD.∵△ADT的外接圆圆心M在AD的中垂线上,∴点M是线段AD的中点时,此时AD为⊙M的直径时,MD=12AD.∵A(﹣1,0),D(1,∴点M的坐标是((3)如图3,作MH⊥x于点H,则AH=HT =12AT.又HT=a,∴H(a﹣1,0),T(2a﹣1,0).∵OH≤x≤OT,又动点T在射线EB上运动,∴0≤a﹣1≤x≤2a﹣1.∴0≤a﹣1≤2a﹣1.∴a≥1,∴2a﹣1≥1.(i)当2111(1)211aa a-⎧⎨----⎩,即14a3时,当x=a﹣1时,y最大值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a;当x=1时,y最小值=4.(ii)当0112111(1)211aaa a<-⎧⎪->⎨⎪--<--⎩,即43<a≤2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.(iii)当a﹣1>1,即a>2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.6.如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).(1)若△BDE是以BE为底的等腰三角形,求t的值;(2)若△BDE为直角三角形,求t的值;(3)当S△BCE≤92时,所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=2;(2秒或3秒;(3)6﹣【答案】(1)2【解析】【分析】(1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由,可得t 的值;(2)分两种情况:①当∠DEB=90°时,如图2,连接AE,根据t的值;②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,②当△BCE在BC的上方时,分别计算当高为3时对应的t的值即可得结论.【详解】解:(1)如图1,连接AE,由题意得:AD=t,∵∠CAB=90°,∠CBA=30°,∴BC=2AC=6,∴∵点A、E关于直线CD的对称,∴CD垂直平分AE,∴AD=DE,∵△BDE是以BE为底的等腰三角形,∴DE=BD,∴AD=BD,∴;(2)△BDE为直角三角形时,分两种情况:①当∠DEB=90°时,如图2,连接AE,∵CD垂直平分AE,∴AD=DE=t,∵∠B=30°,∴BD=2DE=2t,∴∴t=3;②当∠EDB=90°时,如图3,连接CE,∵CD垂直平分AE,∴CE=CA=3,∵∠CAD=∠EDB=90°,∴AC∥ED,∴∠CAG=∠GED,∵AG=EG,∠CGA=∠EGD,∴△AGC≌△EGD,∴AC=DE,∵AC∥ED,∴四边形CAED是平行四边形,∴AD=CE=3,即t=3;综上所述,△BDE为直角三角形时,t的值为3秒或3秒;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,此时S△BCE=12AE•BH=12×3×3=92,易得△ACG≌△HBG,∴CG=BG,∴∠ABC=∠BCG=30°,∴∠ACE=60°﹣30°=30°,∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,∴∠ACD=∠DCE=15°,tan∠ACD=tan15°=t3=23,∴t=6﹣3由图形可知:0<t<6﹣3时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,此时S△BCE=12CE•DE=12×3×3=92,此时t=3,综上所述,当S△BCE≤92时,t的取值范围是6﹣3.【点睛】本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.7.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =.【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y 轴, ∵90PNM POC ∠=∠=︒, ∴BMOC , ∴四边形BOCM 是平行四边形, ∴4832BOCM S BO OM =⨯=⨯=.故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.8.在正方形ABCD 中,AC 是一条对角线,点E 是边BC 上的一点(不与点C 重合),连接AE ,将△ABE 沿BC 方向平移,使点B 与点C 重合,得到△DCF ,过点E 作EG ⊥AC 于点G ,连接DG ,FG .(1)如图,①依题意补全图;②判断线段FG 与DG 之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD =60°时,求BE 的长.【答案】(1)①见解析,②FG =DG ,FG ⊥DG ,见解析;(2)3BE =【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=32,由直角三角形的性质得出FG=DG=2GH=26,得出DF=2DG=43,在Rt△DCF中,由勾股定理得出CF=23,即可得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC=90°,∴△CEG是等腰直角三角形,EG=GC,∴∠GEC=∠GCE=45°,∴∠BEG=∠GCF=135°,由平移的性质得:BE=CF,在△BEG和△GCF中,BE CFBEG GCF EG CG=⎧⎪∠=∠⎨⎪=⎩,∴△BEG≌△GCF(SAS),∴BG=GF,∵G在正方形ABCD对角线上,∴BG=DG,∴FG=DG,∵∠CGF=∠BGE,∠BGE+∠AGB=90°,∴∠CGF+∠AGB=90°,∴∠AGD+∠CGF=90°,∴∠DGF=90°,∴FG⊥DG.(2)过点D作DH⊥AC,交AC于点H.如图3所示,在Rt△ADG中,∵∠DAC=45°,∴DH=AH=32,在Rt△DHG中,∵∠AGD=60°,∴GH=3=323=6,∴DG=2GH=26,∴DF=2DG=43,在Rt△DCF中,CF=()22436-=23,∴BE=CF=23.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.9.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.(1)求半径OA的长(结果精确到0.1cm,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC的面积(π取3.14,结果精确到1cm)【答案】(1)半径OA的长约为24.5cm;(2)扇形BOC的面积约为2822cm.【解析】【分析】(1)在Rt△ODE中,DE=15,∠ODE=67°,根据∠ODE的余弦值,即可求得OD长,减去AD即为OA .(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒, ∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈ ()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.10.如图,A (0,2),B (6,2),C (0,c )(c >0),以A 为圆心AB 长为半径的BD 交y 轴正半轴于点D ,BD 与BC 有交点时,交点为E ,P 为BD 上一点.(1)若c =,①BC = ,DE 的长为 ;②当CP =时,判断CP 与⊙A 的位置关系,井加以证明;(2)若c =10,求点P 与BC 距离的最大值;(3)分别直接写出当c =1,c =6,c =9,c =11时,点P 与BC 的最大距离(结果无需化简)【答案】(1)①12,π;②详见解析;(2)①65;②65(3)答案见详解 【解析】【分析】 (1)①先求出AB ,AC ,进而求出BC 和∠ABC ,最后用弧长公式即可得出结论;②判断出△APC 是直角三角形,即可得出结论;(2)分两种情况,利用三角形的面积或锐角三角函数即可得出结论;(3)画图图形,同(2)的方法即可得出结论.【详解】 (1)①如图1,∵c =3+2,∴OC =3,∴AC =3﹣2=3∵AB =6,在Rt △BAC 中,根据勾股定理得,BC =12,tan ∠ABC =AC AB3 ∴∠ABC =60°,∵AE =AB ,∴△ABE 是等边三角形,∴∠BAE =60°,∴∠DAE =30°, ∴DE 的长为306180π⨯=π, 故答案为12,π;②CP 与⊙A 相切.证明:∵AP =AB =6,AC =OC ﹣OA =63, ∴AP 2+CP 2=108,又AC 2=(63)2=108,∴AP 2+PC 2=AC 2.∴∠APC =90°,即:CP ⊥AP .而AP 是半径,∴CP 与⊙A 相切.(2)若c =10,即AC =10﹣2=8,则BC =10.①若点P 在BE 上,AP ⊥BE 时,点P 与BC 的距离最大,设垂足为F ,则PF 的长就是最大距离,如图2,S △ABC =12AB ×AC =12BC ×AF , ∴AF =AB AC BC ⋅=245, ∴PF =AP ﹣AF =65; ②如图3,若点P 在DE 上,作PG ⊥BC 于点G ,当点P 与点D 重合时,PG 最大.此时,sin ∠ACB =PG AB CP BC =, 即PG =AB CP BC ⋅=65∴若c =10,点P 与BC 距离的最大值是65; (3)当c =1时,如图4,过点P作PM⊥BC,sin∠BCP=AB PM BC CD=∴PM=67423737AB CDBC⋅⨯===423737;当c=6时,如图5,同c=10的①情况,PF=6﹣1213=1213613-,当c=9时,如图6,同c=10的①情况,PF=4285685 -,当c=11时,如图7,点P和点D重合时,点P到BC的距离最大,同c=10时②情况,DG 18117.【点睛】此题是圆的综合题,主要考查了弧长公式,勾股定理和逆定理,三角形的面积公式,锐角三角函数,熟练掌握锐角三角函数是解本题的关键.。
127《锐角三角函数》全章复习与巩固(提高)一、选择题一、选择题1. 1. 计算计算tan 60tan 60°°+2sin 45+2sin 45°-°-°-2cos 302cos 302cos 30°的结果是°的结果是°的结果是( ( ) )..A .2B .C .D .12.如图所示,△.如图所示,△ABC ABC 中,中,AC AC AC==5,,,则△,则△ABC ABC 的面积是的面积是( ( )A .B B..12C .14D .213.如图所示,.如图所示,A A 、B 、C 三点在正方形网格线的交点处,若将△三点在正方形网格线的交点处,若将△ACB ACB 绕着点A 逆时针旋转得到△,则tan 的值为的值为( ( )A .B B..C .D .第2题图题图 第3题图题图 第4题图题图4.如图所示,小明要测量河内小岛B 到河边公路的距离,在A 点测得∠点测得∠BAD BAD BAD==3030°,°,在C 点测点测 得∠得∠BCD BCD BCD==6060°,又测得°,又测得AC AC==50米,那么小岛B 到公路的距离为的距离为( ( ) )..A .25米B B..米C C..米D .米5.如图所示,将圆桶中的水倒入一个直径为40 cm 40 cm,高为,高为55 cm 的圆口容器中,圆桶放置的角度与水平线的夹角为4545°.要使容器中的水面与圆桶相接触,则容器中水的深度°.要使容器中的水面与圆桶相接触,则容器中水的深度至少应为至少应为( ( ) )..A .10 cmB B..20 cmC C..30 cmD D..35 cm6.如图所示,已知坡面的坡度,则坡角为( ) )..A .1515°°B .2020°°C C..3030°°D D..4545°°第5题图题图 第6题图题图 第7题图题图7.如图所示,在高为2 m ,坡角为3030°的楼梯上铺地毯,°的楼梯上铺地毯,则地毯的长度至少应为则地毯的长度至少应为( ( ) )..A .4 mB .6 mC .m D . 8.因为,,所以;因为,,所以,由此猜想,推理知:一般地,当为锐角时有sin(180sin(180°°+)=-sin ,由此可知:,由此可知:sin240sin240sin240°°=( ) )..A .B B..C C..D D..二、填空题二、填空题9.如图,若AC AC、、BD 的延长线交于点E ,,则=______=______;;=______=______..1010..如图,AD AD⊥⊥CD CD,,AB=10AB=10,,BC=20BC=20,,∠A=A=∠∠C=30C=30°,°,则AD 的长为的长为__________________;;CD 的长为的长为____________.第9题图题图 第10题图题图 第11题图题图1111.如图所示,已知直线.如图所示,已知直线∥∥∥,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则________________.. 1212..如果方程的两个根分别是Rt Rt△△ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为的值为_______________.. 13. 13. 已知已知,则锐角的取值范围是的取值范围是__________________________________________..14. 14. 在△在△在△ABC ABC 中,中,AB AB AB==8,∠,∠ABC ABC ABC==3030°,°,°,AC AC AC==5,则BC BC==____________________________..15. 15. 如图,如图,直径为10的⊙A 经过点C (0,5)(0,5)和点和点O (0,0)(0,0),,B 是y 轴右侧⊙A 优弧上一点优弧上一点,,则∠OBC 的余弦值为的余弦值为________.第15题图题图 第16题图题图16. 16. 如图,等腰梯形如图,等腰梯形ABCD 中,中,AD AD AD∥∥BC BC,∠,∠,∠DBC=45DBC=45DBC=45°,翻折梯形°,翻折梯形ABCD ABCD,使点,使点B 重合于点D ,折痕分别交边AB AB、、BC 于点F 、E ,若AD=2AD=2,,BC=8.BC=8.则则(1)BE 的长为的长为______. ______. (2)(2)∠∠CDE 的正切值为切值为______. ______.三、解答题三、解答题1717.如图所示,以线段.如图所示,以线段AB 为直径的⊙为直径的⊙O O 交线段AC 于点E ,点M 是的中点,的中点,OM OM 交AC 于点D , ∠BOE BOE==6060°,°,°, cos C cos C==,BC BC==.(1)(1)求∠求∠求∠A A 的度数;的度数;(2)(2)(2)求证:求证:求证:BC BC 是⊙是⊙O O 的切线;的切线;(3)(3)(3)求求MD 的长度.的长度.18. 18. 如图所示,要在木里县某林场东西方向的两地之间修一条公路如图所示,要在木里县某林场东西方向的两地之间修一条公路MN MN,已知,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东4545°方向上,从°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西6060°方向上.°方向上.°方向上.(1)MN 是否穿过原始森林保护区是否穿过原始森林保护区??为什么为什么?(?(?(参考数据:参考数据:≈1.732)(2)(2)若修路工程顺利进行,要使修路工程比原计划提前若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高2525%,则原计划完成这项工程需要多少天%,则原计划完成这项工程需要多少天%,则原计划完成这项工程需要多少天? ?1919.如图所示,圆.如图所示,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC:CA BC:CA==4:34:3,点,点P 在半圆弧AB 上运动上运动((不与A 、B 重合重合)),过C 作CP 的垂线CD 交PB 的延长线于D 点.点.(1)(1)求证:求证:求证:AC AC AC··CD CD==PC PC··BC BC;;(2)(2)当点当点P 运动到AB 弧中点时,求CD 的长;的长;(3)(3)当点当点P 运动到什么位置时,△运动到什么位置时,△PCD PCD 的面积最大?并求这个最大面积S .20. 20. 如图所示,在如图所示,在Rt Rt△△ABC 中,∠中,∠A A =9090°,°,°,AB AB AB==6,AC AC==8,D ,E 分别是边AB AB,,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ PQ⊥⊥BC 于Q ,过点Q 作QR QR∥∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ BQ==x ,QR QR==y .(1)(1)求点求点D 到BC 的距离DH 的长;的长;(2)(2)求求y 关于x 的函数关系式的函数关系式((不要求写出自变量的取值范围不要求写出自变量的取值范围));(3)(3)是否存在点是否存在点P ,使△,使△PQR PQR 为等腰三角形为等腰三角形??若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.不存在,请说明理由.127《锐角三角函数》全章复习与巩固(提高)【答案与解析】一、选择题一、选择题1.【答案】C;【解析】tan 60°+2sin 45°-2cos 30°=.2.【答案】A;【解析】过A作AD⊥BC于D,因为,所以∠B=45°,,∴ BD=AD=3,所以所以AD=BD,因为,所以,∴,所以BC=BD+DC=7,. 3.【答案】B;【解析】旋转后的三角形与原三角形全等,得∠B′=∠B,然后将∠B放在以BC为斜边,直角边在网格线上的直角三角形中,∠B的对边为1,邻边为3,tan B′=tanB=.4.【答案】B;【解析】依题意知BC=AC=50米,小岛B到公路的距离,就是过B作的垂线,即是BE的长,在Rt△BCE中,,BE=BC·sin 60°=50×(米),因此选B.5.【答案】D;过A点作AC⊥BD于C,则∠ABC=45°,是等腰直角三角形,过【解析】如图,△ABD是等腰直角三角形,AC=BC=,则所求深度为55-20=35(cm).6.【答案】C;,∴ .【解析】,∴7.【答案】D;【解析】地毯长度等于两直角边长之和,高为2 m宽为(m)则地毯的总长至少为m.8.【答案】C;【解析】sin 240°=sin(180°+60°)=-sin 60°=.二、填空题二、填空题9.【答案】cos∠CEB=;tan∠CEB=【解析】如图,连结BC,则∠ACB=90°,易证△ECD∽△EBA,∴,cos∠CEB=tan∠CEB=题答案图题答案图 第10题答案图第9题答案图10.【答案】5+10;10+5. 【解析】过B点分别作BE⊥AD,BF⊥CD,垂足分别为E、F,则得BF=ED,BE=DF. ∵在Rt△AEB中,∠A=30°,AB=10,∴AE=AB·cos30°=10×=5,BE=AB·sin30°=10×=5. 又∵在Rt△BFC中,∠C=30°,BC=20,∴BF=BC=×20=10,CF=BC·cos30°=20×=10.∴AD=AE+ED=5+10,CD=CF+FD=10+5. 11.【答案】;【解析】设AB边与直线的交点为E,∵∥∥∥,且相邻两条平行直线间的距离都是1,则E为AB的中点,在Rt△AED中,∠ADE=α,AD =2AE.设AE=k,则AD=2k,.∴.12.【答案】或;则tan A=;【解析】由得x1=1,x2=3.①当1,3为直角边时,为直角边时,则.∴ .②当3为斜边时,则另一直角边为.∴13.【答案】0<α≤30°;°;【解析】由题意知,故≤,即sin≤sin 30°,由正弦函数是增函数. 知0<α≤30°是增函数.14.【答案】或;【解析】因△ABC的形状不是唯一的,当△ABC是锐角三角形时,如图所示,作AH⊥BC于H,在Rt△ABH中.AH=AB·sin∠ABC=8×sin30°=4,BH=,在Rt△AHC中,HC=.∴.∴ BC=.当△ABC是钝角三角形时,如图所示,同上可求得BC=.15.【答案】;【解析】连接CA并延长到圆上一点D,∵CD为直径,∴∠COD=∠yOx=90°,°,∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5,∴DO=,∵∠B=∠CDO,∴∠OBC的余弦值为∠CDO的余弦值,的余弦值, ∴cos∠OBC=cos∠CDO=.16.【答案】(1)BE=5;(2)tan∠CDE=【解析】(1)由题意得△BFE≌△DFE,∴DE=BE. °,又∵在△BDE中,∠DBE=45°,∴∠BDE=∠DBE=45°,即DE⊥BC. ∵在等腰梯形ABCD中,AD=2,BC=8,∴EC=(BC-AD)=3,BE=5. (2)由(1)得DE=BE=5,在△DEC中,∠DEC=90°,DE=5,EC=3,∴tan∠CDE==. 三、解答题三、解答题17.【答案与解析】【答案与解析】(1)∵∠BOE=60°,∴∠A=∠BOE=30°.°.(2)在△ABC 中,∵cos C =,∴∠C =60°,°,又∵∠A =30°,∴∠ABC =90°,∠ABC =90°,°,∴AB ⊥BC ,∴,∴ BC 是⊙O 的切线.的切线.(3)∵点M 是的中点,∴OM ⊥AE ,在Rt △ABC 中,中,∵BC =,∴AB =BC tan 60°=°=,∴OA =, ∴OD =OA =,∴MD =.18.【答案与解析】【答案与解析】(1)过C 点作CH ⊥AB 于H .设CH ⊥AB .由已知有∠EAC =45°,∠FBC =60°,°,则∠CAH =45°,∠CBA =30°.°.在Rt △ACH 中,AH =CH =x ,在Rt △HBC 中,tan ∠HBC =.∴, ∵AH+HB =AB ,∴,解得≈220(米)>200(米).∴ MN 不会穿过森林保护区.不会穿过森林保护区.(2)设原计划完成这项工程需要y 天,则实际完成工程需要(y-5)天.天. 根据题意得:,解得:y =25.经检验知:y =25是原方程的根.是原方程的根. 答:原计划完成这项工程需要25天.天.19.【答案与解析】【答案与解析】(1)∵AB 为直径,∴∠ACB =90°.°.又∵又∵ PC ⊥CD ,∴,∴ ∠PCD =90°.°.而∠CAB =∠CPD ,∴△ABC ∽△PDC .∴. ∴AC ·CD =PC ·BC .(2)当点P运动到AB弧中点时,过点B作BE⊥PC于点E.∵P是中点,∴∠PCB=45°,CE=BE=.又∠CAB=∠CPB,∴tan∠CPB=tan∠CAB=.∴.从而PC=PE+EC=.由(1)得CD=.(3)当点P在上运动时,.由(1)可知,CD=.取得最大值;∴.故PC最大时,取得最大值;的最大;而PC为直径时最大,∴的最大;∴的最大值.20.【答案与解析】【答案与解析】(1)∵∠A=90°,AB=6,AC=8,∴BC=10.∵点D为AB中点,∴BD=AB=3.∵∠DHB=∠A=90°,∠B=∠B.∴△BHD∽△BAC,∴,∴.(2)∵QR∥AB,∴△RQC∽△ABC,∴,∴,即y关于x的函数关系式为:.(3)存在,分三种情况:存在,分三种情况:①当PQ=PR时,过点P作PM⊥QR于M,如图所示,则QM=RM.∵∠1+∠2=90°.∠C+∠2=90°,∴∠1=∠C.∴,∴,∴,∴,∴.②当PQ=RQ时,如图28—46所示,则有,∴x=6.中垂线上的点,如图所示.③当PR=QR时,则R为PQ中垂线上的点,如图所示.于是点R为EC的中点,∴.∵,∴,∴.综上所述,当x为或6或时,△PQR为等腰三角形.为等腰三角形.。
中考数学总复习《锐角三角函数》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________命题点1直角三角形的边角关系及简单应用1(2022广西北部湾经济区)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是() A.12sin α米B.12cos α米C.12sinα米 D.12cosα米(第1题) (第2题)2(2022福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44 cm,则高AD约为(参考数据:sin 27°≈0.45,cos 27°≈0.89,tan27°≈0.51)()A.9.90 cmB.11.22 cmC.19.58 cmD. 22.44 cm3(2022随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=a,则建筑物AB的高度为()A.atanα-tanβB.atanβ-tanαC.atanαtanβtanα-tanβD.atanαtanβtanβ-tanα(第3题) (第4题)4(2022乐山)如图,在Rt △ABC 中,∠C=90°,BC=√5,点D 是AC 上一点,连接BD.若tan A=12,tan ∠ABD=13,则CD 的长为 ( )A.2√5B.3C.√5D.25(2022益阳)如图,在Rt △ABC 中,∠C=90°,若sin A=45,则cos B= .(第5题) (第6题)6(2022常州)如图,在四边形ABCD 中,∠A=∠ABC=90°,DB 平分∠ADC.若AD=1,CD=3,则sin ∠ABD= .7(2022广州)如图,AB 是☉O 的直径,点C 在☉O 上,且AC=8,BC=6.(1)尺规作图:过点O 作AC 的垂线,交AC ⏜于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O 到AC 的距离及sin ∠ACD 的值.命题点2解直角三角形的实际应用 角度1背靠背型8(2022安徽)如图,为了测量河对岸A ,B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得A ,B 均在C 的北偏东37°方向上,沿正东方向行走90米至观测点D ,测得A 在D 的正北方向上,B 在D 的北偏西53°方向上.求A ,B 两点间的距离.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.9(2022抚顺)如图,B港口在A港口的南偏西25°方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西25°方向,B港口在货轮的北偏西70°方向.求此时货轮与A港口的距离(结果取整数.参考数据:sin 50°≈0.766,cos 50°≈0.643,tan 50°≈1.192,√2≈1.414)角度2母子型10(2022天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32 m,求这座山AB的高度(结果取整数).(参考数据:tan 35°≈0.70,tan 42°≈0.90)11(2022连云港)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10 m;小亮在点G处竖立标杆FG,小亮所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5 m,GD=2 m.(1)求阿育王塔的高度CE;(2)求小亮与阿育王塔之间的距离ED.(注:结果精确到0.01 m.参考数据:sin 53°≈0.799,cos 53°≈0.602,tan 53°≈1.327)角度3拥抱型12(2021自贡)如图,在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1米.参考数据:tan 37°≈0.75,tan 53°≈1.33,√3≈1.73)角度4实物型13(2022吉林)动感单车是一种新型的运动器械.图(1)是一辆动感单车的实物图,图(2)是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70 cm,∠BCD的度数为58°.当AB长度调至34 cm时,求点A到CD的距离AE的长度(结果精确到1 cm).(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan58°≈1.60)图(1)图(2)14(2022成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10 cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是点A的对应点),用眼舒适度较为理想,求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1 cm.参考数据:sin 72°≈0.95,cos 72°≈0.31,tan 72°≈3.08)角度5其他类型15(2022山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:如图,无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60 m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24 m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB 与CD 之间的距离AC 的长(结果精确到1 m.参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75,√3≈1.73).分类训练15 锐角三角函数1.A2.B 【解析】 ∵AB=AC ,AD ⊥BC ,∴BD=CD=12BC=22 cm .在Rt △ABD 中,tan ∠ABD=ADBD ,∴AD=BD ·tan ∠ABD=22×tan 27°≈22×0.51=11.22(cm). 3.D 【解析】 设AB=x.在Rt △ABD 中,tan β=AB BD =x BD ,∴BD=xtanβ,∴BC=CD+BD=a+xtanβ.在Rt △ABC 中,tan α=ABBC =xa+xtanβ,∴x=atanαtanβtanβ-tan α.4.C 【解析】 如图,过点D 作DE ⊥AB 于点E.∵tan A=DE AE =12,tan ∠ABD=DE BE =13,∴AE=2DE ,BE=3DE ,∴2DE+3DE=5DE=AB.在Rt △ABC 中,tan A=12,BC=√5,∴BC AC =√5AC =12,∴AC=2√5,∴AB=√AC 2+BC 2=5,∴DE=1,∴AE=2,∴AD=√AE 2+DE 2=√22+12=√5,∴CD=AC-AD=√5,故选C .5.456.√66 【解析】 如图,过点D 作DE ⊥BC ,垂足为E ,则四边形ABED 是矩形,∴BE=AD=1,DE=AB ,∠ADB=∠CBD.∵DB 平分∠ADC ,∴∠ADB=∠CDB ,∴∠CBD=∠CDB ,∴CB=CD=3,∴CE=BC-BE=3-1=2,∴DE=√CD 2-CE 2=√32-22=√5,∴BD=√DE 2+BE 2=√(√5)2+12=√6,∴sin ∠ABD=AD BD =√6=√66.7.【答案】 (1)作图如图所示.(2)设(1)中AC 的垂线交AC 于点F ,则OF ⊥AC∴AF=CF=12AC=4. 又点O 是AB 的中点∴OF 是△ABC 的中位线∴OF=12BC=3,即点O 到AC 的距离为3. ∵AB 是☉O 的直径 ∴∠ACB=90°∴AB=√AC 2+BC 2=√82+62=10 ∴OD=5∴DF=OD-OF=5-3=2∴在Rt △CDF 中,CD=√DF 2+CF 2=√22+42=2√5 ∴sin ∠ACD=DFCD =2√5=√55.8.【答案】如图,由题意知,∠ECA=37°,CD=90,∠ADC=90°,∠ADB=53°,AD∥EC∴∠BCD=53°,∠BDC=∠ADC-∠ADB=37°,∠A=37°∴∠BCD+∠BDC=90°∴∠CBD=90°,即AC⊥BD.在Rt△CBD中,BD=CD cos∠BDC=90cos 37°≈90×0.80=72.在Rt△ABD中,AB=BDtanA =72tan37°≈720.75=96.答:A,B两点间的距离为96 m.9.【答案】如图,过点B作BH⊥AC于点H,根据题意,得∠BAC=25°+25°=50°,∠BCA=70°-25°=45°.在Rt△ABH中,AB=100,∠BAH=50°,sin∠BAH=BHAB ,cos∠BAH=AHAB∴BH=AB·sin∠BAC≈100×0.766=76.6,AH=AB·cos∠BAC≈100×0.643=64.3.在Rt△BHC中,∠BCH=45°∴CH=BH=76.6∴AC=AH+CH=64.3+76.6≈141.答:货轮距离A港口约141海里.10.【答案】根据题意,得BC=32,∠APC=42°,∠APB=35°.在Rt△PAC中,tan∠APC=ACPA∴PA=ACtan∠APC.在Rt△PAB中,tan∠APB=ABPA∴PA=ABtan∠APB.∵AC=AB+BC∴AB+BCtan∠APC =AB tan∠APB∴AB=BC·tan∠APBtan∠APC-tan∠APB =32×tan35°tan42°−tan35°≈32×0.700.90−0.70=112(m).答:这座山AB的高度约为112 m.11.【答案】(1)在Rt△CAE中,∵∠CAE=45°∴CE=AE.∵AB=10∴BE=AE-10=CE-10.在Rt△CEB中,由tan 53°=CEBE =CE CE-10得tan 53°(CE-10)=CE,∴CE≈40.58.答:阿育王塔的高度约为40.58 m.(2)由题意知Rt△FGD∽Rt△CED∴FGCE =GDED,即 1.540.58=2ED,∴ED≈54.11.答:小亮与阿育王塔之间的距离约为54.11 m.归纳总结解直角三角形实际应用的一般步骤①审题:根据题意画出图形,建立数学模型.②构造直角三角形:将已知条件转化到示意图中,把实际问题转化为解直角三角形问题.③列关系式:选择合适的边角关系式,使运算简便、准确.④检验:得出数学问题的答案并检验答案是否符合实际意义,同时还要注意结果有无对精确度的要求.12.【答案】在Rt△BAD中,tan∠BDA=ABAD,∠BDA=53°∴AD=ABtan53°≈18.05(米).在Rt△CAD中,tan∠CAD=CDAD,∠CAD=30°第 11 页 共 11页 ∴CD=AD ·tan ∠CAD=√33AD ≈10.4(米).故办公楼的高度约为10.4米.13.【答案】 在Rt △ACE 中,∠AEC=90°,∠C=58°,AC=AB+BC=34+70=104 ∴AE=AC sin C=104×sin 58°≈104×0.85≈88.答:点A 到CD 的距离AE 的长度约为88 cm .14.【答案】 在Rt △ACO 中,∠AOC=180°-∠AOB=30°,AC=10 cm∴OA=2AC=20 cm .在Rt △A'DO 中,∠A'OD=180°-∠A'OB=72°,OA'=OA=20 cm∴A'D=A'O sin ∠A'OD ≈20×0.95=19(cm).答:顶部边缘A'处离桌面的高度A'D 的长约为19 cm .15.【答案】 分别延长AB ,CD 与直线OF 交于点G ,点H ,如图则∠AGO=∠EHO=90°.又∵∠GAC=90°,∴四边形ACHG 是矩形∴GH=AC.由题意,得AG=60,OF=24,∠AOG=70°,∠EOF=30°,∠EFH=60°.在Rt △AGO 中,∠AGO=90°,tan ∠AOG=AG OG ∴OG=AG tan∠AOG =60tan70°≈602.75≈21.8.∵∠EFH 是△EOF 的外角∴∠FEO=∠EFH-∠EOF=60°-30°=30°∴∠EOF=∠FEO ,∴EF=OF=24.在Rt △EHF 中,∠EHF=90°,cos ∠EFH=FH EF ∴FH=EF ·cos ∠EFH=24×cos 60°=12∴AC=GH=GO+OF+FH=21.8+24+12≈58(m).答:楼AB 与CD 之间的距离AC 的长约为58 m.。
ABCa bc考向10锐角三角函数综合复习—能力提升【知识梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.方法指导:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°45° 160°方法指导:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小),②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.方法指导:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.方法指导:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,方法指导:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA ,OB ,OC ,OD 的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.方法指导:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【能力提升训练】一、选择题1. 在△ABC 中,∠C =90°,cosA =35,则tan A 等于 ( )A .35B .45C .34D .432.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是()A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A.34B.43C.35D.454.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.247B.73C.724D.135.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-33x+33,则cosα等于 ( )A.12B.22C.32D.336.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为5.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为 .9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题10.当0°<α<90°时,求21sincosαα-的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为 .三、解答题13.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C 在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF 与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)答案与解析一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A =4433BC k AC k ==.故选D. 2.【答案】D ; 【解析】根据锐角三角函数的定义,得A 、tanA•cotA=a b b a ⋅=1,关系式成立;B 、sinA=c a ,tanA•cosA=c a c b b a =⋅,关系式成立;C 、cosA=,cotA•sinA=c b a b c a =⋅,关系式成立; D 、tan 2A+cot 2A=(ba )2+(ab )2≠1,关系式不成立. 故选D .3.【答案】B ; 【解析】连接BD .∵E 、F 分別是AB 、AD 的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD 是直角三角形.∴tanC= 43故选B .4.【答案】C ;【解析】设CE =x ,则AE =8-x .由折叠性质知AE =BE =8-x .在Rt △CBE 中, 由勾股定理得BE 2=CE 2+BC 2,即(8-x)2=x 2+62,解得74x =,∴ tan ∠CBE 774624CE BC ===. 5.【答案】A ;【解析】∵y 3x 3,∴当x =0时,y 3,当y =0时,x =1,∴A(1,0),B30,3⎛⎫⎪⎪⎝⎭,∴OB=33,OA=1,∴AB=22OB OA+=233,∴cos∠OBA=12OBAB=.∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=12.故选A.6.【答案】C;【解析】如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°海里.故选C.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=5)2,∴sinθ=12,∴θ=30°.8.【答案】34;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF=DFDC=34.9.【答案】23;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=23 ACAE=;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=23.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴221sin cos|cos| cos cos cosαααααα-==.∵0°<α<90°,∴cosα>0.∴原式=coscosαα=1.11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】7或17;【解析】∵cos∠B=,∴∠B=45°,当△ABC为钝角三角形时,如图1,∵AB=12,∠B=45°,∴AD=BD=12,∵AC=13,∴由勾股定理得CD=5,∴BC=BD﹣CD=12﹣5=7;当△ABC为锐角三角形时,如图2,BC=BD+CD=12+5=17.三、解答题13.【答案与解析】解:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∴=,∵DG=EF=2m,∴GH=1m,∴DH==m,BH=BF+FH=3.5+(2.5﹣1)=5m,设HS=xm,则BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴tanBD BADAB ∠=,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt △DCE 中,∠DEC =90°,∠CDE =72°, ∴sin CE CDE CD∠=,sin CE CDE CD =∠=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE 的长约为2.3m .15.【答案与解析】解:如图所示,由已知可得∠ACB =60°,∠ADB =45°.∴在Rt △ABD 中,BD =AB .又在Rt △ABC 中,∵tan 60AB BC=°, ∴3AB BC=3BC AB =. ∵BD =BC+CD ,∴33AB AB CD =+. ∴CD =AB-33AB =180-180×33=(3米. 答:小岛C 、D 间的距离为(180-3米.16.【答案与解析】解:(1)BF =CG .证明:在△ABF 和△ACG 中,∵∠F =∠G =90°,∠FAB =∠GAC ,AB =AC ,∴△ABF ≌△ACG(AAS),∴BF =CG .(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。
中考数学—锐角三角函数的综合压轴题专题复习及详细答案一、锐角三角函数1.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE ,∵OA=OD ,∴∠A=∠ADO ,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE ⊥OD ,又OD 为圆的半径,∴DE 为⊙O 的切线;(2)∵E 是BC 的中点,O 点是AB 的中点,∴OE 是△ABC 的中位线,∴AC=2OE ,∵∠C=∠C ,∠ABC=∠BDC ,∴△ABC ∽△BDC , ∴,即BC 2=AC•CD .∴BC 2=2CD•OE ;(3)解:∵cos ∠BAD=, ∴sin ∠BAC=, 又∵BE=,E 是BC 的中点,即BC=, ∴AC=.又∵AC=2OE ,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数2.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP = 【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去.【详解】(1)联结OD ,∵OC OD =,∴OCD ODC ∠=∠,∵//CD AB ,∴OCD COA ∠=∠,∴POA QDO ∠=∠.在AOP ∆和ODQ ∆中, {OP DQPOA QDO OA DO=∠=∠=,∴AOP ∆≌ODQ ∆,∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =,∴132AOP S AO PH x ∆=⋅=. ∵//CD AB ,∴PFC ∆∽PAO ∆, ∴2210()()AOP yCP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时, ∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠, ∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB ,∴AOQ DQO ∠=∠,∵AOP ∆≌ODQ ∆,∴DQO APO ∠=∠,∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.3.如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,BC=16cm ,AD 是斜边BC 上的高,垂足为D ,BE=1cm .点M 从点B 出发沿BC 方向以1cm/s 的速度运动,点N 从点E 出发,与点M 同时同方向以相同的速度运动,以MN 为边在BC 的上方作正方形MNGH .点M 到达点D 时停止运动,点N 到达点C 时停止运动.设运动时间为t (s ).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.【解析】试题分析:(1)求出ED的距离即可求出相对应的时间t.(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.试题解析:∵∠BAC=90°,∠B=60°,BC=16cm∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm∴t=s=3s.(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,则∠HMB=90°,∠B=60°,MH=1∴BM=cm.∴t=s.当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,设MN=xcm,则GH=DH=x,AH=x,∵AD=AH+DH=x+x=x=4,∴x=3.当≤t≤4时,S MNGN=1cm2.当4<t≤6时,S MNGH=(t﹣3)2cm2∴S关于t的函数关系式为:.(3)分两种情况:①∵当DP=PC时,易知此时N点为DC的中点,∴MN=6cm∴EN=3cm+6cm=9cm.∴t=9s故当t=9s的时候,△CPD为等腰三角形;②当DC=PC时,DC=PC=12cm∴NC=6cm∴EN=16cm﹣1cm﹣6cm=(15﹣6)cm∴t=(15﹣6)s故当t=(15﹣6)s时,△CPD为等腰三角形.综上所述,当t=9s或t=(15﹣6)s时,△CPD为等腰三角形.考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.4.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:(1)点的坐标(用含的代数式表示);(2)当点在运动过程中,所有使与菱形的边所在直线相切的的值.【答案】解:(1)过作轴于,,,,,点的坐标为.(2)①当与相切时(如图1),切点为,此时,,,.②当与,即与轴相切时(如图2),则切点为,,过作于,则,,.③当与所在直线相切时(如图3),设切点为,交于,则,,.过作轴于,则,,化简,得,解得,,.所求的值是,和.【解析】(1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标⊙P与菱形OABC的边所在直线相切,则可与OC相切;或与OA相切;或与AB相切,应分三种情况探讨:①当圆P与OC相切时,如图1所示,由切线的性质得到PC垂直于OC,再由OA=+t,根据菱形的边长相等得到OC=1+t,由∠AOC的度数求出∠POC为30°,在直角三角形POC中,利用锐角三角函数定义表示出cos30°=oc/op,表示出OC,等于1+t列出关于t的方程,求出方程的解即可得到t的值;②当圆P与OA,即与x轴相切时,过P作PE垂直于OC,又PC=PO,利用三线合一得到E为OC的中点,OE为OC的一半,而OE=OPcos30°,列出关于t的方程,求出方程的解即可得到t的值;③当圆P与AB所在的直线相切时,设切点为F,PF与OC交于点G,由切线的性质得到PF垂直于AB,则PF垂直于OC,由CD=FG,在直角三角形OCD中,利用锐角三角函数定义由OC表示出CD,即为FG,在直角三角形OPG中,利用OP表示出PG,用PG+GF表示出PF,根据PF=PC,表示出PC,过C作CH垂直于y轴,在直角三角形PHC中,利用勾股定理列出关于t的方程,求出方程的解即可得到t的值,综上,得到所有满足题意的t的值.5.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.3【答案】(1)证明见解析; (2) tan∠【解析】试题分析:(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.(2)过O作OF⊥BD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.试题解析:证明:连接OD∵DE为⊙O的切线, ∴OD⊥DE∵O为AB中点, D为BC的中点∴OD‖AC∴DE⊥AC(2)过O作OF⊥BD,则BF=FD 在Rt△BFO中,∠ABC=30°∴OF=12OB, BF=32OB∵BD=DC, BF=FD,∴FC=3BF=332OB在Rt△OFC中,tan∠BCO=13233OBOFFCOB==.点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=12OB,BF=3OB,FC=3BF=33OB是解题关键.6.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt△AFG中,tan∠AFG3,∴FG=tan3AGAFG=∠,在Rt△ACG中,tan∠ACG=AGCG,∴CG =tan AG ACG ∠=3AG . 又∵CG ﹣FG =24m , 即3AG ﹣3=24m , ∴AG =123m ,∴AB =123+1.6≈22.4m .7.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)【答案】215.6米.【解析】【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米∴115.6tan 60BN DN =≈o米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.8.如图,AB 是⊙O 的直径,E 是⊙O 上一点,C 在AB 的延长线上,AD ⊥CE 交CE 的延长线于点D ,且AE 平分∠DAC .(1)求证:CD 是⊙O 的切线;(2)若AB =6,∠ABE =60°,求AD 的长.【答案】(1)详见解析;(2)92【解析】【分析】 (1)利用角平分线的性质得到∠OAE =∠DAE ,再利用半径相等得∠AEO =∠OAE ,等量代换即可推出OE ∥AD ,即可解题,(2)根据30°的三角函数值分别在Rt △ABE 中,AE =AB·cos30°, 在Rt △ADE 中,AD=cos30°×AE 即可解题.【详解】证明:如图,连接OE ,∵AE 平分∠DAC ,∴∠OAE =∠DAE .∵OA =OE ,∴∠AEO =∠OAE .∴∠AEO =∠DAE .∴OE ∥AD .∵DC ⊥AC ,∴OE ⊥DC .∴CD 是⊙O 的切线.(2)解:∵AB 是直径,∴∠AEB =90°,∠ABE =60°.∴∠EAB =30°,在Rt △ABE 中,AE =AB·cos30°=6×3=33, 在Rt △ADE 中,∠DAE =∠BAE =30°,∴AD=cos30°×AE=32×33=92. 【点睛】 本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.9.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--. 【解析】【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0)∴y =a (x+2)(x ﹣4)把点C (0,3)代入得:﹣8a =3∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D∴∠CDP =∠COB =90°∵∠DCP =∠OCB∴△CDP ∽△COB ∴PC PD BC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个此时,连接FQ ,过点Q 作QG ⊥x 轴于点G∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点∴F (1,0),FQ =FA =3∵T (﹣4,0)∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ =∴FG =35FQ =95∴x Q =1﹣9455=-,QG =2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭①若点Q 在x 轴上方,则Q (41255-,)设直线l 解析式为:y =kx+b ∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论10.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB =45°,∵EG ⊥AC ,∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC ,∴∠GEC =∠GCE =45°,∴∠BEG =∠GCF =135°,由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ),∴BG =GF ,∵G 在正方形ABCD 对角线上,∴BG =DG ,∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°,∴∠CGF+∠AGB =90°,∴∠AGD+∠CGF =90°,∴∠DGF =90°,∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示,在Rt △ADG 中,∵∠DAC =45°,∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°,∴GH 33236,∴DG =2GH =6,∴DF 2DG =3在Rt △DCF 中,CF ()22436-3∴BE =CF =23.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.11.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm .【解析】【分析】(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒.∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒, ∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈ ()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.12.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.(2)若2ABD BDC ∠=∠.①求证:CF 是O e 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】【分析】 (1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O e 的直径,且D 为O e 上一点,90ADB ∴∠=︒,CE DB ⊥Q ,90DEC ∴∠=︒,//CF AD ∴,180DAC ACF ∴∠+∠=︒.(2)①如图,连接OC .OA OC =Q ,12∴∠=∠.312∠=∠+∠Q ,321∴∠=∠.42BDC Q ∠=∠,1BDC ∠=∠,421∴∠=∠,43∴∠=∠,//OC DB ∴.CE DB ⊥Q ,OC CF ∴⊥.又OC Q 为O e 的半径,CF ∴为O e 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =Q483AD BD ∴==, 226810AB ∴=+=,5OB OC ==.OC CF Q ⊥,90OCF ∴∠=︒,3tan 4OC F CF ∴==, 解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.13.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A ,B 重合),作∠DPQ =60°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.(1)用含t 的代数式表示线段DC 的长:_________________; (2)当t =__________时,点Q 与点C 重合时; (3)当线段PQ 的垂直平分线经过△ABC 一边中点时,求出t 的值.【答案】(1);(2)1;(3)t 的值为或或. 【解析】 【分析】(1)先求出AC ,用三角函数求出AD ,即可得出结论;(2)利用AQ=AC ,即可得出结论;(3)分三种情况,利用锐角三角函数,即可得出结论.【详解】(1)∵AP= , AB=4,∠A =30°∴AC=, AD= ∴CD=; (2)AQ=2AD=当AQ=AC 时,Q 与C 重合 即=∴t=1;(3)①如图,当PQ 的垂直平分线过AB 的中点F 时,∴∠PGF =90°,PG =PQ =AP =t ,AF =AB =2.∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=②如图,当PQ的垂直平分线过AC的中点N时,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t.在Rt△NMQ中,∵AN+NQ=AQ,∴③如图,当PQ的垂直平分线过BC的中点F时,∴BF=BC=1,PE=PQ=t,∠H=30°.∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.在Rt△PEH中,PH=2PE=2t.∵AH=AP+PH=AB+BH,∴2t+2t=5,∴t=.即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为或或.【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.14.如图,正方形ABCD2+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F,(1)求证:△ABF∽△ACE;(2)求tan∠BAE的值;(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB=2﹣1;(3)PE+PF的最小值为 .22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EB,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC=EH,∴BE=EH=HC,设BE=HE=HC=x,则EC2,∵BC2+1,∴x+x2+1,∴x=1,在Rt△ABE中,∵∠ABE=90°,∴tan ∠EAB =1221BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •(2﹣1)=22, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.15.小明坐于堤边垂钓,如图①,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.。
33434A.3x+,则cosα等于() B.C.D.中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】一、选择题1.在△ABC中,∠C=90°,cosA=,则tan A等于()5A.B.C.D.55432.在△R t ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=ba中不成立的是()A.tanA•cotA=1B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1.则下列关系式第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()434B.C.D.43554.如图所示,直角三角形纸片的两直角边长分别为6、△8,现将ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是()A.247771B.C.D.32435.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-3333A.122332236.(2015•南充)如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()10.当0°<α<90°时,求的值为.A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为5.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为.9.已知△ABC的外接圆O的半径为3,AC=4,则sinB=.第8题第9题第11题1-sin2αcosα11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.(2015•牡丹江)在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为.三、解答题13.(2015•泰州)如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m 时,求点D离地面的高.(≈2.236,结果精确到0.1m)14.为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16.在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题==.故选D.∴tan∠CBE==4=.【解析】∵y=-3x+,∴当x=0时,y=,当y=0时,x=1,⎪⎪,∴OB=1.【答案】D;【解析】在△R t ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=2.【答案】D;【解析】根据锐角三角函数的定义,得BC4k4 AC3k3A、tanA•cotA=a b⋅=1,关系式成立;b aa ab aB、sinA=,tanA•cosA=⋅=,关系式成立;c b c cC、cosA=,cotA•sinA=a b b⋅=,关系式成立;c a cD、tan2A+cot2A=(故选D.3.【答案】B;【解析】连接BD.abb)2+()2≠1,关系式不成立.a∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC=4 3故选B.4.【答案】C;【解析】设CE=x,则AE=8-x.由折叠性质知AE=BE=8-x.在△R t CBE中,由勾股定理得BE2=CE2+BC2,即(8-x)2=x2+62,解得x=7 4,7CE7BC6245.【答案】A;33333⎛∴A(1,0),B 0,⎝3⎫3⎭33,OA=1,,∴cos ∠OBA = = . 3 =.∴sin∠E=AC∴AB = OB 2+ OA 2= 2 3 OB 1 3 AB 2∴OP ⊥AB ,∴∠α +∠OAB =90°,又∵∠OBA +∠OAB =90°,∴∠α =∠OBA .∴cos α =cos ∠OBA = 1.故选 A.26.【答案】C ;【解析】如图,由题意可知∠NPA=55°,AP=2 海里,∠ABP=90°. ∵AB∥NP,∴∠A=∠NPA=55°. 在 △R t ABP 中,∵∠ABP=90°,∠A=55°,AP=2 海里, ∴AB=AP•cos∠A=2cos55°海里.故选 C .二、填空题 7.【答案】30°;【解析】x 1·x 2=2sin θ ,x 1+x 2=-3,则(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=9-8sin θ =( 5 )2,∴sin θ = 1 2,∴θ =30°.8.【答案】 3 4;【解析】∵四边形 ABCD 是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE ,∵在 △R t DCF 中,CF=5,CD=4,∴DF=3,∴tan ∠AFE=tan ∠DCF= DFDC 49.【答案】 2 3;【解析】连接 AO 并延长交圆于 E ,连 CE .∴∠ACE=90°(直径所对的圆周角是直角); 在直角三角形 ACE 中,AC=4,AE=6,2= ; AE 3又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=2cosα=cosα.cosα=1.3.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴1-sin2αcos2αcosα=|cosα|∵0°<α<90°,∴cosα>0.∴原式=cosα11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】7或17;【解析】∵cos∠B=,∴∠B=45°,△当ABC为钝角三角形时,如图1,∵AB=12,∠B=45°,∴AD=BD=12,∵AC=13,∴由勾股定理得CD=5,∴BC=BD﹣CD=12﹣5=7;△当ABC为锐角三角形时,如图2,BC=BD+CD=12+5=17.三、解答题×13.【答案与解析】解:(1)∵坡度为i=1:2,AC=4m,∴BC=42=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∴=,∵DG=EF=2m,∴GH=1m,∴DH==m,BH=BF+FH=3.5+(2.5﹣1)=5m,设HS=xm,则BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.14.【答案与解析】解:在△R t ABD中,∠ABD=90°,∠BAD=18°,∴tan∠BAD=BDAB,BD=tan∠BAD·AB=tan18°×9,∴CD=tan18°×9-0.5.在△R t DCE中,∠DEC=90°,∠CDE=72°,∴sin∠CDE=CE,CE=sin∠CDE CD=sin72°×(tan18°×9-0.5)≈2.3(m).CD即该图中CE的长约为2.3m.15.【答案与解析】解:如图所示,由已知可得∠ACB=60°,∠ADB=45°.∴在△R t ABD中,BD=AB.又在△R t ABC中,=∴AB∴CD=AB-3∵tan60°ABBC,3=3,即BC=AB.BC3∵BD=BC+CD,∴AB=3AB+CD.33AB=180-180×=(180-603)米.33答:小岛C、D间的距离为(180-603)米.16.【答案与解析】解:(1)BF=CG.证明:在△ABF和△ACG中,∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,∴△ABF≌△ACG(AAS),∴BF=CG.(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).GF AHEB D C∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。