2019-2020高一数学学年上学期期末复习备考黄金30题 专题05 小题易丢分(30题)苏教版
- 格式:doc
- 大小:852.22 KB
- 文档页数:17
小题易丢分(选择23道 填空7道 共30道)班级:________ 姓名:________一、单选题1. 定义集合运算{|,,}A B x x a b a A b B ⊗==⨯∈∈,设{}0,1A =, {}3,4,5B =,则集合A B ⊗的子集个数为( ) A. 16 B. 15 C. 14 D. 8 【答案】A【解析】∵{}0,1A =, {}3,4,5B =,∴{}0345A B ⊗=,,, ∴集合A B ⊗的子集个数为4216= 故选:A2. 已知集合{|ln 1}P x x =<, {|510}xQ y y x ==-<,,则( )A. 2.8P ∉且0.3Q -∈B. 2.8P ∈且0.3Q -∈C. 1.8P ∈且 1.3Q -∈D.1.8P ∈且0.3Q ∈【答案】A3. 若集合{}11,{|10}A B x mx =-=-=,,且A B B ⋂=,则m 的值为( )A. 1B. -1C. 1或-1D. 1或-1或0 【答案】D【解析】∵{}11,{|10}A B x mx =-=-=,,且A B B ⋂=,∴B A ⊆,当B =∅时,0m =;当B ≠∅时,则有1x =-或1x =为方程10mx -=的解,把1x =-代入得1m =-;把1x =代入得1m =,则m 的值是0或1或1-,故选D.4. 已知函数()[]24,,4f x x x x m =-+∈的值域是[]0,4,则实数m 的取值范围是A. (),0-∞B. []0,2C. (]0,2D. []2,4 【答案】B5. 已知()f x 的图象恒过点()1,1-,则函数()3f x -的图象恒过点( ) A. ()2,1-- B. ()4,1- C. ()1,4- D. ()1,2- 【答案】B【解析】因为已知()f x 的图象恒过点()1,1-,所以当31x -=时, ()31f x -=-,即函数()3f x -的图象恒过点()4,1-,故选B.6. 已知函数()20{ 40x a a x f x ax a x ->=-+≤,,,其中0a >,且1a ≠,若()f x 在R 上单调,则a的取值范围是( )A. 103⎛⎤ ⎥⎝⎦,B. 113⎡⎫⎪⎢⎣⎭,C. 102⎛⎤ ⎥⎝⎦,D. 112⎡⎫⎪⎢⎣⎭,【答案】B【解析】函数()20{ 40x a a x f x ax a x ->=-+≤,,,其中0a >,且1a ≠, ()f x 在R 上单调,由4y ax a =-+为减函数,可知: 2x y a a =-是减函数,则1a <,且应满足()()24x min maxa aax a -≤-+,可得: 12a a -≤,解得: 13a ≥,综上可得: a 的取值范围是113⎡⎫⎪⎢⎣⎭,,故选B.点睛:本题主要是在指数函数,一次函数单调性的背景下考查分段函数的单调性,属于基础题,要使分段函数单调递减,必须满足每段均递减,同时需满足左段的最小值不小于右段的最大值,取几者交集即可得参数范围.7. 函数()f x 在()-∞+∞,上单调递增,且为奇函数,若()23f =,则满足()313f x -≤+≤的x 的取值范围是( )A. []22-,B. []33-,C. []04,D. []31-, 【答案】D【解析】由奇函数的性质可得: ()()223f f -=-=-, 则不等式()313f x -≤+≤即: ()()()212f f x f -≤+≤, 结合函数的单调性脱去f 符号有: 212,31x x -≤+≤∴-≤≤. 本题选择D 选项.点睛:对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若f (x )为偶函数,则f (-x )=f (x )=f (|x |).8. 下列函数中,是偶函数且在区间()0,+∞上单调递减的函数是( ) A. 12y x = B. 3xy =- C. 23log y x = D. 2y x x =- 【答案】B9. 己知函数()()log 6a f x ax =-在()3,2-上是减函数,则实数a 的取值范围是( ) A. ()1,+∞ B. (]1,3 C. ()1,3 D. [)3,+∞ 【答案】B 【解析】∵0a >,∴函数y 6ax =-为减函数,要使函数()()log 6a f x ax =-在()3,2-上是减函数,需满足1{620a a >-≥ ,解得13a <≤。
2019-2020学年高一上学期期末考试数学多选题复习一.多选题(共26小题)1.设a,b为两条直线,α,β为两个平面,下列四个命题中,错误的命题是()A.若a,b与α所成的角相等,则α∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,α∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,是a⊥b2.若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为假命题的是()A.若α∥β,l⊂α,n⊂β,则l∥n B.若α⊥β,l⊂α,则l⊥βC.若l⊥n,m⊥n,则l∥m D.若l⊥α,l∥β,则α⊥β3.如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,正确的为()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°4.l1,l2,l3是空间三条不同的直线,则下列命题不正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面5.在正方体ABCD﹣A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,下列四个推断中正确的是()A.FG∥平面AA1D1D B.EF∥平面BC1D1C.FG∥平面BC1D1D.平面EFG∥平面BC1D16.设m,n是两条不同的直线,α,β,γ是三个不同的平面,下列四个命题中正确的是()A.m⊥α,n∥α,则m⊥nB.若α⊥γ,β⊥γ,则α∥βC.若α∥β,β∥γ,m⊥α,则m⊥γD.若α∩γ=m,β∩γ=n,m∥n,则α∥β7.已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,下列四个命题中真命题是()A.若m⊥α,m⊥β,则α∥βB.若α⊥γ,β⊥α,则γ∥βC.若m∥α,n∥β,m∥n,则α∥βD.若m、n是异面直线,m⊥α,m∥β,n⊥β,n∥α,则α⊥β8.已知两条直线m,n,两个平面α,β,下面四个命题中正确的是()A.m∥n,m⊥α⇒n⊥αB.α∥β,m⊂α,n⊂β⇒m∥nC.m∥n,m∥α⇒n∥αD.α∥β,m∥n,m⊥α⇒n⊥β9.不同直线m,n和不同平面α,β,下列命题中假命题有()A.B.C.D.10.已知直线l⊥平面α,直线m⊂平面β,下列命题中正确的是()A.α∥β=l⊥m B.α⊥β⇒l∥m C.l∥m⇒α⊥βD.l⊥m⇒α∥β11.如图是正方体的平面展开图.在这个正方体中,下列四个命题中,正确命题的是()A.BM与ED平行B.CN与BE是异面直线C.CN与BM成60°角D.DM与BN垂直12.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.B.C.D.13.若直线过点A(1,2),且在两坐标轴上截距的绝对值相等,则直线l方程可能为()A.x﹣y+1=0B.x+y﹣3=0C.2x﹣y=0D.x﹣y﹣1=0 14.给出下列关系,其中正确的选项是()A.∅∈{{∅}}B.∅∉{{∅}}C.∅∈{∅}D.∅⊆{∅}15.已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,则满足条件的实数x可能为()A.2B.﹣2C.﹣3D.116.已知集合A={x|﹣1<x≤3},集合B={x||x|≤2},则下列关系式正确的是()A.A∩B=∅B.A∪B={x|﹣2≤x≤3}C.A∪∁R B={x|x≤﹣1或x>2}D.A∩∁R B={x|2<x≤3}17.下列函数中值域为R的有()A.f(x)=3x﹣1B.f(x)=lg(x2﹣2)C.f(x)=D.f(x)=x3﹣118.下列各组函数中是同一函数的是()A.f(x)=x与g(x)=B.f(x)=与g(x)=C.f(x)=x﹣1与g(x)=D.f(x)=x2+1与g(t)=t2+119.已知f(x)=,则下列叙述中正确的一项是()A.f(x﹣1)的图象B.|f(x)|的图象C.f(﹣x)的图象D.f(|x|)的图象20.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x﹣x2,则下列说法正确的是()A.f(x)的最大值为B.f(x)在(﹣1,0)上是增函数C.f(x)>0的解集为(﹣1,1)D.f(x)+2x≥0的解集为[0,3]21.下列函数中在区间(0,1)内单调递减的是()A.y=B.y=21﹣x C.y=ln(x+1)D.y=|1﹣x| 22.已知函数f(x)是[2﹣m,2m﹣6](m∈R)上的偶函数,且f(x)在[2﹣m,0]上单调递减,则f(x)的解析式可能为()A.f(x)=x2+m B.f(x)=﹣m|x|C.f(x)=x m D.f(x)=log m(|x|+1)23.已知f(x)=,若f(x)=1,则x的值是()A.﹣1B.C.﹣D.124.如图是正方体的平面展开图,则关于这个正方体的说法正确的是()A.BM与ED平行B.CN与BE是异面直线C.CN与BM成60°角D.DM与BN是异面直线25.如图所示,已知正方体ABCD﹣A1B1C1D1,E,F分别是D1B,A1C上不重合的两个动点,下列四个结论中正确的是()A.CE∥D1F B.平面AFD∥平面B1EC1C.AB1⊥EF D.平面AED⊥平面ABB1A126.在下列四个命题中,错误的有()A.坐标平面内的任何一条直线均有倾斜角和斜率B.直线的倾斜角的取值范围是[0,π]C.若一条直线的斜率为tanα,则此直线的倾斜角为αD.若一条直线的倾斜角为α,则此直线的斜率为tanα2019-2020学年高一上期末考试数学多选题复习答案解析一.多选题(共26小题)1.设a,b为两条直线,α,β为两个平面,下列四个命题中,错误的命题是()A.若a,b与α所成的角相等,则α∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,α∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,是a⊥b【分析】根据题意,依次分析选项,A、用直线的位置关系判断.B、用长方体中的线线,线面,面面关系验证.C、用长方体中的线线,线面,面面关系验证.D、由a⊥α,α⊥β,可得到a⊂β或a∥β,再由b⊥β得到结论.【解答】解:A、直线a,b的方向相同时才平行,不正确;B、用长方体验证.如图,设A1B1为a,平面AC为α,BC为b,平面A1C1为β,显然有a∥α,b∥β,α∥β,但得不到a∥b,不正确;C、可设A1B1为a,平面AB1为α,CD为b,平面AC为β,满足选项C的条件却得不到α∥β,不正确;D、∵a⊥α,α⊥β,∴a⊂β或a∥β又∵b⊥β,∴a⊥b,D正确故选:ABC.【点评】本题主要考查空间内两直线,直线与平面,平面与平面间的位置关系,综合性强,方法灵活,属中档题.2.若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为假命题的是()A.若α∥β,l⊂α,n⊂β,则l∥n B.若α⊥β,l⊂α,则l⊥βC.若l⊥n,m⊥n,则l∥m D.若l⊥α,l∥β,则α⊥β【分析】对于A,考虑空间两直线的位置关系和面面平行的性质定理;对于B,考虑线面垂直的判定定理及面面垂直的性质定理;对于C,考虑空间两条直线的位置关系及平行公理;对于D,考虑面面垂直的判定定理.【解答】解:选项A中,l除平行n外,还有异面的位置关系,则A不正确.选项B中,l与β的位置关系有相交、平行、在β内三种,则B不正确.选项C中,l与m的位置关系还有相交和异面,故C不正确.选项D中,由l∥β,设经过l的平面与β相交,交线为c,则l∥c,又l⊥α,故c⊥α,又c⊂β,所以α⊥β,正确.故选:ABC.【点评】本题考查空间直线位置关系问题及判定,及面面垂直、平行的判定与性质,要综合判定定理与性质定理解决问题.3.如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,正确的为()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°【分析】首先由正方形中的线线平行推导线面平行,再利用线面平行推导线线平行,这样就把AC、BD平移到正方形内,即可利用平面图形知识做出判断.【解答】解:因为截面PQMN是正方形,所以PQ∥MN、QM∥PN,则PQ∥平面ACD、QM∥平面BDA,所以PQ∥AC,QM∥BD,由PQ⊥QM可得AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故B正确;异面直线PM与BD所成的角等于PM与QM所成的角,故D正确;综上C是错误的.故选:ABD.【点评】本题主要考查线面平行的性质与判定.4.l1,l2,l3是空间三条不同的直线,则下列命题不正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面【分析】通过两条直线垂直的充要条件两条线所成的角为90°;判断出B对;通过举常见的图形中的边、面的关系说明命题错误.【解答】解:对于A,通过常见的图形正方体,从同一个顶点出发的三条棱两两垂直,A 错;对于B,∵l1⊥l2,∴l1,l2所成的角是90°,又∵l2∥l3∴l1,l3所成的角是90°∴l1⊥l3,B对;对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;对于D,例如三棱锥的三侧棱共点,但不共面,故D错.故选:ACD.【点评】本题考查两直线垂直的定义、考查判断线面的位置关系时常借助常见图形中的边面的位置关系得到启示.5.在正方体ABCD﹣A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,下列四个推断中正确的是()A.FG∥平面AA1D1D B.EF∥平面BC1D1C.FG∥平面BC1D1D.平面EFG∥平面BC1D1【分析】由FG∥BC1,BC1∥AD1,得FG∥AD1,从而FG∥平面BC1D1,FG∥平面AA1D1D;由EF∥A1C1,A1C1与平面BC1D1相交,从而EF与平面BC1D1相交,进而平面EFG与平面BC1D1相交.【解答】解:∵在正方体ABCD﹣A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1,∵BC1∥AD1,∴FG∥AD1,∵FG⊄平面AA1D1D,AD1⊂平面AA1D1D,∴FG∥平面AA1D1D,故A正确;∵EF∥A1C1,A1C1与平面BC1D1相交,∴EF与平面BC1D1相交,故B错误;∵E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1,∵FG⊄平面BC1D1,BC1⊂平面BC1D1,∴FG∥平面BC1D1,故C正确;∵EF与平面BC1D1相交,∴平面EFG与平面BC1D1相交,故D错误.故选:AC.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.6.设m,n是两条不同的直线,α,β,γ是三个不同的平面,下列四个命题中正确的是()A.m⊥α,n∥α,则m⊥nB.若α⊥γ,β⊥γ,则α∥βC.若α∥β,β∥γ,m⊥α,则m⊥γD.若α∩γ=m,β∩γ=n,m∥n,则α∥β【分析】直接由空间中的直线与平面的位置关系逐一判断四个命题得答案.【解答】解:由n∥α,可知α内有直线l与n平行,由m⊥α,知m⊥l,则m⊥n,A正确;若α⊥γ,β⊥γ,则α∥β或α与β相交,B错误;若α∥β,β∥γ,知α∥γ,由m⊥α,则m⊥γ,C正确;若α∩γ=m,β∩γ=n,m∥n,则α∥β或α与β相交,D错误.故选:AC.【点评】本题考查了命题的真假判断与应用,考查了空间直线和平面的位置关系,是基础题.7.已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,下列四个命题中真命题是()A.若m⊥α,m⊥β,则α∥βB.若α⊥γ,β⊥α,则γ∥βC.若m∥α,n∥β,m∥n,则α∥βD.若m、n是异面直线,m⊥α,m∥β,n⊥β,n∥α,则α⊥β【分析】要求解本题,需要寻找特例,进行排除即可.【解答】解:A因为α、β是不重合的平面,m⊥α,m⊥β,所以α∥β;B若α⊥γ,β⊥α,α、β、γ是三个两两不重合的平面,可知α不一定平行β;C:m∥α,n∥β,m∥n,αβ可能相交,不一定平行;D因为mn两直线是异面直线,可知不平行,又因为m⊥α,m∥β,n⊥β,n∥α,可知α、β只能满足垂直关系.故选:AD.【点评】本题考查学生的空间想象能力,是基础题.8.已知两条直线m,n,两个平面α,β,下面四个命题中正确的是()A.m∥n,m⊥α⇒n⊥αB.α∥β,m⊂α,n⊂β⇒m∥nC.m∥n,m∥α⇒n∥αD.α∥β,m∥n,m⊥α⇒n⊥β【分析】由题意用线面垂直和面面平行的定理,判断线面和面面平行和垂直的关系.【解答】解:用线面垂直和面面平行的定理可判断AD正确;B中,由面面平行的定义,m,n可以平行或异面;C中,用线面平行的判定定理知,n可以在α内;故选:AD.【点评】本题考查了线面垂直和面面平行的定理,及线面、面面位置关系的定义,属于基础题.9.不同直线m,n和不同平面α,β,下列命题中假命题有()A.B.C.D.【分析】不同直线m,n和不同平面α,β,结合平行与垂直的位置关系,分析和举出反例判定,即可得到结果.【解答】解:,m与平面β没有公共点,所以A是正确的.,直线n可能在β内,所以B不正确.,可能两条直线相交,所以C不正确.,m与平面β可能平行,D不正确.故选:BCD.【点评】本题考查空间直线与直线,直线与平面的位置关系,考查空间想象能力,逻辑思维能力,是基础题.10.已知直线l⊥平面α,直线m⊂平面β,下列命题中正确的是()A.α∥β=l⊥m B.α⊥β⇒l∥m C.l∥m⇒α⊥βD.l⊥m⇒α∥β【分析】由两平行平面中的一个和直线垂直,另一个也和平面垂直得直线l⊥平面β,再利用面面垂直的判定可得A为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,故B为假命题;由两平行线中的一条和平面垂直,另一条也和平面垂直得直线m⊥平面α,再利用面面垂直的判定可得C为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,如果直线m在平面α内,则有α和β相交于m,故D为假命题.【解答】解:l⊥平面α且α∥β可以得到直线l⊥平面β,又由直线m⊂平面β,所以有l ⊥m;即A为真命题;因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故B为假命题;因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即C 为真命题;由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即D为假命题.故选:AC.【点评】本题是对空间中直线和平面以及直线和直线位置关系的综合考查.重点考查课本上的公理,定理以及推论,所以一定要对课本知识掌握熟练,对公理,定理以及推论理解透彻,并会用.11.如图是正方体的平面展开图.在这个正方体中,下列四个命题中,正确命题的是()A.BM与ED平行B.CN与BE是异面直线C.CN与BM成60°角D.DM与BN垂直【分析】正方体的平面展开图复原为正方体,不难解答本题.【解答】解:由题意画出正方体的图形如图:显然AB不正确;CN与BM成60°角,即∠ANC=60°,C正确;DM⊥平面BCN,所以D正确;故选:CD.【点评】本题考查正方体的结构特征,异面直线,直线与直线所成的角,直线与直线的垂直,是基础题.12.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.B.C.D.【分析】根据线面平行的判定定理和性质定理分别进行判断即可.【解答】解:在A中,连接AC,则AC∥MN,由正方体性质得到平面MNP∥平面ABC,∴AB∥平面MNP,故A成立;B若下底面中心为O,则NO∥AB,NO∩面MNP=N,∴AB与面MNP不平行,故B不成立;C过M作ME∥AB,则E是中点,则ME与平面PMN相交,则AB与平面MNP相交,∴AB与面MNP不平行,故C不成立;D连接CE,则AB∥CE,NP∥CD,则AB∥PN,∴AB∥平面MNP,故D成立.故选:AD.【点评】本题主要考查空间直线和平面位置关系的判断,结合线面平行的判定定理和性质定理进行证明是解决本题的关键.13.若直线过点A(1,2),且在两坐标轴上截距的绝对值相等,则直线l方程可能为()A.x﹣y+1=0B.x+y﹣3=0C.2x﹣y=0D.x﹣y﹣1=0【分析】讨论直线过原点时和直线不过原点时,分别求出对应的直线方程即可.【解答】解:当直线经过原点时,斜率为k==2,所求的直线方程为y=2x,即2x ﹣y=0;当直线不过原点时,设所求的直线方程为x±y=k,把点A(1,2)代入可得1﹣2=k,或1+2=k,求得k=﹣1,或k=3,故所求的直线方程为x﹣y+1=0,或x+y﹣3=0;综上知,所求的直线方程为2x﹣y=0、x﹣y+1=0,或x+y﹣3=0.故选:ABC.【点评】本题考查了利用分类讨论思想求直线方程的问题,是基础题.14.给出下列关系,其中正确的选项是()A.∅∈{{∅}}B.∅∉{{∅}}C.∅∈{∅}D.∅⊆{∅}【分析】根据元素与集合的关系,集合并集的运算,空集是任何集合的子集即可判断每个选项的正误.【解答】解:显然∅不是集合{{∅}}的元素,∴A错误;∅不是集合{{∅}}的元素,∅是{∅}的元素,∅是任何集合的子集,从而得出选项B,C,D 都正确.故选:BCD.【点评】本题考查了元素与集合的关系,集合、元素的定义,空集是任何集合的子集,考查了推理能力,属于基础题.15.已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,则满足条件的实数x可能为()A.2B.﹣2C.﹣3D.1【分析】根据集合元素的互异性2∈M必有2=3x2+3x﹣4或2=x2+x﹣4,解出后根据元素的互异性进行验证即可.【解答】解:由题意得,2=3x2+3x﹣4或2=x2+x﹣4,若2=3x2+3x﹣4,即x2+x﹣2=0,∴x=﹣2或x=1,检验:当x=﹣2时,x2+x﹣4=﹣2,与元素互异性矛盾,舍去;当x=1时,x2+x﹣4=﹣2,与元素互异性矛盾,舍去.若2=x2+x﹣4,即x2+x﹣6=0,∴x=2或x=﹣3,经验证x=2或x=﹣3为满足条件的实数x.故选:AC.【点评】本题考查了元素与集合的关系及元素的互异性,要注意检验.16.已知集合A={x|﹣1<x≤3},集合B={x||x|≤2},则下列关系式正确的是()A.A∩B=∅B.A∪B={x|﹣2≤x≤3}C.A∪∁R B={x|x≤﹣1或x>2}D.A∩∁R B={x|2<x≤3}【分析】求解绝对值不等式化简集合B,再利用交、并、补集的运算性质逐一分析四个选项得答案.【解答】解:∵A={x|﹣1<x≤3},B={x||x|≤2}={x|﹣2≤x≤2},∴A∩B={x|﹣1<x≤3}∩{x|﹣2≤x≤2}={x|﹣1<x≤2},故A不正确;A∪B={x|﹣1<x≤3}∪{x|﹣2≤x≤2}={x|﹣2≤x≤3},故B正确;∵∁R B={x|x<﹣2或x>2},∴A∪∁R B={x|﹣1<x≤3}∪{x|x<﹣2或x>2}={x|x<﹣2或x>﹣1},故C不正确;A∩∁R B={x|﹣1<x≤3}∩{x|x<﹣2或x>2}={x|2<x≤3},故D正确.∴正确的是B,D.故选:BD.【点评】本题考查了交、并、补集的混合运算,考查了绝对值不等式的解法,是基础题.17.下列函数中值域为R的有()A.f(x)=3x﹣1B.f(x)=lg(x2﹣2)C.f(x)=D.f(x)=x3﹣1【分析】分别判断函数的单调性和取值范围,结合函数的值域进行求解即可.【解答】解:A.f(x)=3x﹣1为增函数,函数的值域为R,满足条件.B.由x2﹣2>0得x>或x,此时f(x)=lg(x2﹣2)的值域为R,满足条件.C.f(x)=,当x>2时,f(x)=2x>4,当0≤x≤2时,f(x)=x2∈[0,4],真是f(x)≥0,即函数的值域为[0,+∞),不满足条件.D.f(x)=x3﹣1是增函数,函数的值域为R,满足条件.故选:ABD.【点评】本题主要考查函数值域的求解,结合函数单调性的性质是解决本题的关键.18.下列各组函数中是同一函数的是()A.f(x)=x与g(x)=B.f(x)=与g(x)=C.f(x)=x﹣1与g(x)=D.f(x)=x2+1与g(t)=t2+1【分析】根据相同函数的定义:定义域和对应关系都相同.【解答】解:对于A:f(x)=x与g(x)=|x|的对应关系不同,因此不是同一函数;对于B:f(x)==与g(x)=,因此是同一函数;对于C:f(x)=x﹣1与g(x)===x﹣1,(x≠﹣1),定义域不同,因此不是同一函数;对于D:f(x)=x2+1与g(t)=t2+1,定义域和对应关系都相同,因此是同一函数.故选:BD.【点评】本题考查了两个函数相等的定义,属中档题.19.已知f(x)=,则下列叙述中正确的一项是()A.f(x﹣1)的图象B.|f(x)|的图象C.f(﹣x)的图象D.f(|x|)的图象【分析】作出函数f(x)的图象,利用函数与f(x)之间的关系即可得到结论.【解答】解:作出函数f(x)的图象如图:A.将f(x)的图象向右平移一个单位即可得到f(x﹣1)的图象,则A正确.B.∵f(x)>0,∴|f(x)|=f(x),图象不变,则B错误.C.y=f(﹣x)与y=f(x)关于y轴对称,则C正确.D.f(|x|)是偶函数,当x≥0,f(|x|)=f(x),则D正确,故错误的是B,故选:ACD.【点评】本题主要考查函数图象之间的关系的应用,比较基础.20.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x﹣x2,则下列说法正确的是()A.f(x)的最大值为B.f(x)在(﹣1,0)上是增函数C.f(x)>0的解集为(﹣1,1)D.f(x)+2x≥0的解集为[0,3]【分析】对四个命题分别进行判断,即可得出结论.【解答】解:x≥0时,f(x)=x﹣x2=﹣(x﹣)2+,∴f(x)的最大值为,A正确;f(x)在(﹣,0)上是减函数,B错误;f(x)>0的解集为(﹣1,0)∪(0,1),C错误;x≥0时,f(x)+2x=3x﹣x2≥0的解集为[0,3],x<0时,f(x)+2x=x﹣x2≥0无解,故D正确.故选:AD.【点评】本题考查函数的奇偶性,考查学生的计算能力,比较基础.21.下列函数中在区间(0,1)内单调递减的是()A.y=B.y=21﹣x C.y=ln(x+1)D.y=|1﹣x|【分析】利用幂函数、指数函数、对数函数及绝对值函数的性质逐个判断即可.【解答】解:A:y=在(0,1)单调递增函数,B:y=21﹣x=2×()x,单调递减函数,C:y=ln(x+1)单调递增函数,D:y=|1﹣x|=,故在(0,1)上单调递减函数,故选:BD.【点评】本题考查基本初等函数的单调性,熟练掌握其图象性质是解决问题的关键,属于基础题.22.已知函数f(x)是[2﹣m,2m﹣6](m∈R)上的偶函数,且f(x)在[2﹣m,0]上单调递减,则f(x)的解析式可能为()A.f(x)=x2+m B.f(x)=﹣m|x|C.f(x)=x m D.f(x)=log m(|x|+1)【分析】先根据函数是偶函数,建立方程求出m的值,结合函数的单调性分别进行判断即可.【解答】解:∵f(x)是[2﹣m,2m﹣6](m∈R)上的偶函数,∴2﹣m+2m﹣6=0得m=4,则f(x)在[﹣2,0]上单调递减,f(x)是[﹣2,2](m∈R)上的偶函数,A.f(x)=x2+4是偶函数,在[﹣2,0]上单调递减满足条件.故A有可能,B.f(x)=﹣4|x|,是偶函数,当x≤0时,f(x)=﹣4﹣x=﹣()x为增函数,不满足条件.C.f(x)=x4,是偶函数,则[﹣2,0]上单调递减满足条件.故C有可能,D.f(x)=log4(|x|+1)是偶函数,当x≤0,f(x)=log4(﹣x+1)是减函数,满足条件.故D有可能,故选:ACD.【点评】本题主要考查函数奇偶性和单调性的判断,根据定义域的对称性求出m的值,结合函数奇偶性和单调性的性质是解决本题的关键.23.已知f(x)=,若f(x)=1,则x的值是()A.﹣1B.C.﹣D.1【分析】根据题意,由函数的解析式按x的范围分3种情况讨论,求出x的值,综合即可得答案.【解答】解:根据题意,f(x)=,若f(x)=1,分3种情况讨论:①,当x≤﹣1时,f(x)=x+2=1,解可得x=﹣1;②,当﹣1<x<2时,f(x)=x2=1,解可得x=±1,又由﹣1<x<2,则x=1;③,当x≥2时,f(x)=2x=1,解可得x=,舍去综合可得:x=1或﹣1;故选:AD.【点评】本题考查分段函数解析式的应用,涉及函数值的计算,属于基础题.24.如图是正方体的平面展开图,则关于这个正方体的说法正确的是()A.BM与ED平行B.CN与BE是异面直线C.CN与BM成60°角D.DM与BN是异面直线【分析】把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【解答】解:把平面展开图还原原几何体如图:A.由正方体的性质可知,BM与ED异面且垂直,故A错误;B.CN与BE平行,故B错误;C.连接BE,则BE∥CN,∠EBM为CN与BM所成角,连接EM,可知△BEM为正三角形,则∠EBM=60°,故C正确;D.由异面直线的定义可知,DM与BN是异面直线,故D正确.故选:CD.【点评】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.25.如图所示,已知正方体ABCD﹣A1B1C1D1,E,F分别是D1B,A1C上不重合的两个动点,下列四个结论中正确的是()A.CE∥D1F B.平面AFD∥平面B1EC1C.AB1⊥EF D.平面AED⊥平面ABB1A1【分析】由题意画出图形,利用两直线平行,同旁内角互补判断A;取特殊位置判断B;利用线面垂直的判定与性质判断C;由面面垂直的判定判断D.【解答】解:如图,在D1B,A1C上分别取点E,F,∵ABCD﹣A1B1C1D1为正方体,则四边形A1BCD1为矩形,∵∠FD1C+∠ECD1<∠A1D1C+∠BCD1=180°,∴CE与D1F不平行,故A错误;不妨取F与A1重合,E与O重合,此时平面平面AFD与平面B1EC1相交,故B错误;AB1⊥A1B,AB1⊥BC,且A1B∩BC=B,则AB1⊥平面A1BCD1,则AB1⊥EF,故C正确;AD⊥平面ABB1A1,而AD⊂平面AED,则平面AED⊥平面ABB1A1,故D正确.故选:CD.【点评】本题考查命题的真假判断与应用,考查棱柱的结构特征,考查空间中直线与直线,直线与平面,平面与平面间的位置关系,是中档题.26.在下列四个命题中,错误的有()A.坐标平面内的任何一条直线均有倾斜角和斜率B.直线的倾斜角的取值范围是[0,π]C.若一条直线的斜率为tanα,则此直线的倾斜角为αD.若一条直线的倾斜角为α,则此直线的斜率为tanα【分析】A中,直线与x轴垂直时,直线的倾斜角为90°,斜率不存在;B中,直线倾斜角的取值范围是[0,π);C中,直线的斜率为tanα时,它的倾斜角不一定为α;D中,直线的倾斜角为α时,它的斜率为tanα或不存在.【解答】解:对于A,当直线与x轴垂直时,直线的倾斜角为90°,斜率不存在,∴A 错误;对于B,直线倾斜角的取值范围是[0,π),∴B错误;对于C,一条直线的斜率为tanα,此直线的倾斜角不一定为α,如y=x的斜率为tan,它的倾斜角为,∴C错误;对于D,一条直线的倾斜角为α时,它的斜率为tanα或不存在,D错误.故选:ABCD.【点评】本题考查了直线的倾斜角与斜率的应用问题,是基础题.。
大题易丢分(解答题30道)班级:________ 姓名:________1. 已知集合{|27}A x x =≤<, {|310}B x x =<≤. 求A B ⋂, ()R B C A ⋃, ()()R R C A C B ⋂. 【答案】见解析【解析】试题分析:题中直接给了每一个集合的条件,元素满足的特点,按照集合的交集,并集,补集的概念,直接求出来即可。
{}37A B x x ⋂=<<;(){}()(){}23210R R R B C A x x x C A C B x x x ⋃=⋂=或 或2. 设集合2{|8150},{|10,}A x x x B x ax a R =-+==-=∈ . (1)若{}1,3,5A B ⋃=,求a 的值; (2)若A B B ⋂=,求a 的取值集合. 【答案】(1)1a =;(2)110,,35C ⎧⎫=⎨⎬⎩⎭.【解析】试题分析:(1){}3,5A =,所以{}1B =,所以1a =.(2)因为A B B ⋂=,则B A ⊆,当,0B a φ==,当B φ≠时, {}3B =或{}5,则13a =或15,综上110,,35C ⎧⎫=⎨⎬⎩⎭.试题解析:(1)由题意{}3,5A =,因为{}1,3,5A B ⋃=, 所以{}1B =,则110a ⋅-=,所以1a =. (2)因为A B B ⋂=,则B A ⊆, 当,0B a φ==,当B φ≠时, {}3B =或{}5,则13a =或15, 综上110,,35C ⎧⎫=⎨⎬⎩⎭.3. 已知集合{|12}A x x =-≤≤, {|1}B x m x m =≤≤+. (1)当2m =-时,求()R C A B ⋃; (2)若B A ⊆,求实数m 的取值范围.【答案】(1)(){|22}R C A B x x x ⋃=-或;(2){|11}m m -≤≤【解析】试题分析:(1)2m =-时,可以求出集合B ,然后进行并集及补集的运算即可; (2)根据B A ⊆可得出1{12m m ≥-+≤,解该不等式组即可得出实数m 的取值范围.4. 已知集合()0{|3}A x y x ==+-,集合{|014}B x x =≤-≤,集合{|14,}C x m x m m R =-<<∈ .(1)求集合,A B A B ⋂⋃;(2)若B C ⊆,求实数m 的取值范围.【答案】(1) [)][()2335,1A B A B ⋂=⋃⋃=+∞,,, (2)524m << 【解析】试题分析:(1)解出集合[)()[]233,,1,5A B =⋃+∞=,,根据交集并集的运算可得解(2)B C ⊆则限制集合B 与C 的左右端点的大小关系即得解,注意对应的端点是否能相等的问题 试题解析: (1)由20{30x x -≥-≠得[)()[]233,,1,5A B =⋃+∞=,,所以[)][()2335,1A B A B ⋂=⋃⋃=+∞,,,;(2)由B C ⊆知11{45m m -<>,所以524m <<.5. 若集合 {}A x 2x 4=-<<, {}B x x m 0=-<. (1)若 m 3=,全集 U A B =⋃,试求 ()U A B ⋂ð; (2)若 A B A ⋂=,求实数 m 的取值范围. 【答案】(1)(){}U A B x 3x 4⋂=≤<ð;(2)[)4,∞+.【解析】试题分析:(1)由3m =,得出集合B ,根据集合的基本运算,即可求解; (2)由A B A ⋂=,可得A B ⊆,即可求解实数m 的取值范围.(2) 因为 {}A x 2x 4=-<<, {}B x x m =<, A B A ⋂=, 所以 A B ⊆, 故 m 4≥.所以实数 m 的取值范围是 [)4,∞+.6. 已知集合2{|680}A x x x =-+<, ()(){|30}B x x a x a =--<.(1)若A B B ⋃=,求实数a 的取值范围; (2)若{|34}A B x x ⋂=<<,求实数a 的值. 【答案】(1)423a ≤≤;(2)a =3. 【解析】试题分析:(1)先解不等式x 2﹣6x+8<0,得集合A ,(1)由于不等式(x ﹣a )•(x﹣3a )<0的解集与a 的取值有关,故讨论a 的范围,得集合B ,再利用数轴得满足条件的a 的不等式,解得a 的范围;(2)由(1)知,若A ∩B={x|3<x <4},则a >0且a=3时成立,从而得a 的值 试题解析:,(1),,时,,2{34a a ≤∴≥,计算得出时,,显然A ⊈B;时,,显然不符合条件时,(2)要满足,由(1)知,且时成立.此时,,故所求的a 值为3.7. 设函数()f x 满足()()221101x x a f x a x ++++=>+.(1)求函数()f x 的解析式; (2)当1a =时,记函数()()()0{ 0f x x g x f x x >=-<,,,求函数()g x 在区间123⎡⎤--⎢⎥⎣⎦,上的值域.【答案】(1)()2x a f x x +=;(2)102,3⎡⎤⎢⎥⎣⎦.【解析】试题分析: ()1根据整体思想()10x t t +=≠,则1x t =-,代入即可求的答案;()2先把解析式化简后判断出函数()g x 为偶函数,再根据()1g x x x =+在1,13⎡⎤⎢⎥⎣⎦单调减, []1,2单调增,即可求出()g x 在区间123⎡⎤--⎢⎥⎣⎦,上的值域。
2019-2020 学年高一数学上学期期末复习备考黄金30题专题 05小题易丢分(30题)一、单项选择题y 3 log 3x 的定义域为()1.函数A.,9B.0,9C.0,27D.,27【答案】 C【分析】 3log3 x0log 3x30 x27因此函数 y 3 log3 x 的定义域为0,27应选 C2.已知f x 是周期为4的偶函数,当 x 0,2 时, f x x 1,则不等式 xf x 0在区间1,3 上的解集为()A. (1 ,3)B. (-1,1)C. (-1,0)∪(1,3)D. (-1,0)∪(0,1)【答案】 C【分析】若x∈ [ ﹣2, 0] ,则﹣ x∈ [0 ,2] ,此时 f (﹣ x) =﹣ x﹣ 1,∵ f ( x)是偶函数,∴ f (﹣ x) =﹣ x﹣ 1=f ( x),即 f (x) =﹣ x﹣ 1, x∈[ ﹣ 2, 0] ,若 x∈ [2 ,4] ,则 x﹣ 4∈ [ ﹣ 2, 0] ,∵函数的周期是4,∴ f (x) =f ( x﹣4) =﹣( x﹣ 4)﹣ 1=3﹣ x,x 1, 2 x0即 f x { x 1,0 x 2,作出函数 f ( x)在 [ ﹣ 1,3] 上图象如图,3 x,2 x4若 0< x≤3,则不等式xf ( x)> 0 等价为 f ( x)> 0,此时 1< x<3,若﹣ 1≤ x≤0,则不等式 xf ( x)> 0 等价为 f ( x)< 0,此时﹣ 1<x< 0,综上不等式 xf ( x)> 0 在 [ ﹣ 1, 3] 上的解集为 ( - 1, 0) ∪(1 , 3) ,应选: C13. 在以下四个图形中,y= x2的图像大概是 ()A. B. C. D.【答案】 D11【分析】函数y x 2的定义域为 (0 ,+∞ ) ,是减函数.应选 D.xx4.已知函数 f x 1log3 x ,若实数 x0是方程 f x0 的解,且 0 x1x0,则 f x1的值() 2A.恒为正当B.恒为负值C.等于0D.不可以确立【答案】 A【方法点晴】此题主要考察函数的零点、函数的单一性,属于中档题.函数单一性的应用比较宽泛,是每年高考的要点和热门内容.概括起来,常有的命题研究角度有:( 1)求函数的值域或最值;( 2)比较两个函数值或两个自变量的大小;( 3)解函数不等式;(4 )求参数的取值范围或值.此题先判断函数的单一性后联合 f x00,依据 0x1 x0,获得 f x1 f x0,从而获得结论的.5.设 f x 与 g x 是定义在同一区间a,b 上的两个函数,若函数 y f x g x在 x a,b 上有两个不一样的零点,则称 f x 和 g x 在 a,b 上是关系函数,a,b 称为关系区间,若 f x2x 3x 4 与g x2x m在 0,3上是关系函数,则 m的取值范围是()A.9 ,B.9, 2 C.,2 D.1,044【答案】 A【分析】∵ f ( x) =x2-3x+4 与 g( x) =2x+m在 [0 , 3] 上是“关系函数”,故函数 y=h( x) =f ( x) -g ( x) =x2-5x+4-m 在 [0 , 3] 上有两个不一样的零点,h 04 m 0 9 故有{ h 3 0{2 m 0 m 2525 254m 0h4422故答案为9 , 246. 若直角坐标平面内 A 、 B 两点知足:①点 A 、 B 都在函数 f x 的图象上;②点A 、B 对于原点对称,则称点知函数A ,B 是函数 f x 的一个“姊妹点对” . 点对A ,B 与 B ,A 可看作是同一个“姊妹点对”,已x 2 2x xf x { 2x,则 f x 的“姊妹点对”有()exA. 0个B.1个 C. 2个 D.3个【答案】 C【分析】依据题意可知,“姊妹点对”知足两点:都在函数图象上,且对于坐标原点对称。
2019-2020学年高一上学期期末考试数学试题(附解析版)一、选择题(本大题共12小题,共60.0分)1.若集合,,则A. B. C. D.【答案】D【解析】解:集合,,.故选:D.先分别求出集合A,B,由此能求出.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.函数的定义域为A. B.C. D. ,【答案】C【解析】解:要使函数有意义则解得且函数的定义域为故选:C.根据分式的分母不为0,对数的真数大于0,建立关系式,解之即可.本题考查函数定义域的求解,属基础题,做这类题目的关键是找对自变量的限制条件.3.运行如图所示的程序,若输出y的值为2,则可输入实数x值的个数为A. 0B. 1C. 2D. 3【答案】B【解析】解:模拟程序运行,可得程序的功能是求的值,故时,,解得:舍去;时,,解得:舍,或,综上,可得可输入x的个数为1.故选:B.模拟程序运行,可得程序的功能是求的值,分类讨论即可得可输入x的个数.本题的考点是函数零点几何意义和用导函数来画出函数的图象,考查了数学结合思想和计算能力,属于基础题.4.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为A. B. C. D.【答案】B【解析】解:设20个数分别为,,,,求出的平均数为,实际平均数,求出的平均数与实际平均数的差:.故选:B.求出的平均数与实际平均数的差:,由此能求出结果.本题考查求出的平均数与实际平均数的差的求法,考查平均数的性质等基础知识,考查运算求解能力,是基础题.5.已知函数,那么的值为A. 9B.C.D.【答案】B【解析】解:,,而,..故选:B.首先判断自变量是属于哪个区间,再代入相应的解析式,进而求出答案.正确理解分段函数在定义域的不同区间的解析式不同是解题的关键.6.某单位有职工160人,其中业务员104人,管理人员32人,其余为后勤服务人员,现用分层抽样方法从中抽取一容量为20的样本,则抽取后勤服务人员A. 3人B. 4人C. 7人D. 12人【答案】A【解析】解:根据分层抽样原理知,应抽取后勤服务人员的人数为:.故选:A.根据分层抽样原理求出应抽取的后勤服务人数.本题考查了分层抽样原理应用问题,是基础题.7.已知函数,若对任意实数,且都有成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】解:根据题意,满足对任意实数,且都有成立,则函数为减函数,又由,则有,解可得,即a的取值范围为;故选:A.根据题意,分析可得函数为减函数,结合函数的解析式可得,解可得a的取值范围,即可得答案.本题考查函数的单调性的判定以及应用,涉及分段函数的应用,关键是掌握函数单调性的定义.8.函数的部分图象大致是如图所示的四个图象中的一个,根据你的判断,a可能的取值是A. B. C. 2 D. 4【答案】D【解析】解:函数为偶函数,图象关于原点对称,排除,又指数型函数的函数值都为正值,排除,故函数的图象只能是,当时,函数为减函数,则,得,故只有4满足故选:D.根据函数奇偶性和单调性的性质先确定对应的图象,然后结合指数函数的图象特点确定底数的大小即可.本题主要考查函数图象的识别和判断,根据函数奇偶性和函数值的符号确定对应的图象是解决本题的关键.9.一直以来,由于长江污染加剧以及滥捕滥捞,长江刀鱼产量逐年下降为了了解刀鱼数量,进行有效保护,某科研机构从长江中捕捉a条刀鱼,标记后放回,过了一段时间,再从同地点捕捉b条,发现其中有c条带有标记,据此估计长江中刀鱼的数量为A. B. C. D.【答案】D【解析】解:设长江中刀鱼的数量为x条,根据随机抽样的等可能性,得:,解得.故选:D.设长江中刀鱼的数量为x条,根据随机抽样的等可能性,列出方程能求出结果.本题考查长江中刀鱼的数量的估计,考查随机抽样的性质等基础知识,考查运算求解能力,是基础题.10.已知偶函数在区间上是单调递增函数,若,则实数m的取值范围是A. B.C. D.【答案】C【解析】解:偶函数在区间上是单调递增函数,则在上为减函数,若,则,即,求得,故选:C.由题意利用函数的奇偶性和单调性可得,由此求得实数m的取值范围.本题主要考查函数的奇偶性和单调性,属于基础题.11.如图程序框图是为了求出满足的最小偶数n,那么在和两个空白框中,可以分别填入A. 和B. 和C. 和D. 和【答案】D【解析】解:因为要求时输出,且框图中在“否”时输出,所以“”内不能输入“”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.通过要求时输出且框图中在“否”时输出确定“”内不能输入“”,进而通过偶数的特征确定.本题考查程序框图,属于基础题,意在让大部分考生得分.12.已知函数,,若方程有且只有三个不同的实数根,则实数a的取值范围为A. B. C. D.【答案】C【解析】解:当时,方程可化为,解得:或,又,所以当时,此时方程有一个实数根,当时,方程可化为,由题意有此方程必有两不等实数根,设,由二次方程区间根问题有:,解得:或,综合可得:实数a的取值范围为:,故选:C.含参、含绝对值的二次函数的解的个数问题先通过讨论:当时,当时去绝对值符号,再结合区间根问题求解二次方程的根的个数即可.本题考查了含参、含绝对值的二次函数的解的个数问题及区间根问题,属中档题.二、填空题(本大题共4小题,共20.0分)13.已知函数,那么______.【答案】3【解析】解:由得,,即,故答案为:3由,求出,直接代入即可.本题主要考查函数值的计算,根据函数解析式直接转化是解决本题的关键.14.《少年中国说》是清朝末年梁启超所作的散文,写于戊戌变法失败后的1900年,文中极力歌颂少年的朝气蓬勃,其中“少年智则国智,少年富则国富;少年强则国强,少年独立则国独立”等优秀文句激励一代又一代国人强身健体、积极竞技年,甲、乙、丙、丁四人参加运动会射击项目选拔赛,四人的平均成绩和方差如表:则参加运动会的最佳人选应为______.【答案】丙【解析】解:从表格中可以看出乙和丙的平均成绩优于甲和丁的平均成绩,但是两的成绩发挥的最稳定,故最佳人选应该是丙.故答案为:丙.从表格中可以看出乙和丙的平均成绩优于甲和丁的平均成绩,但是两的成绩发挥的最稳定.本题考查最佳人选的判断,考查平均数、方差的性质等基础知识,考查运算求解能力,是基础题.15.某汽车4S店销售甲品牌A型汽车,在2019年元旦期间,进行了降价促销活动,根据以往数据统计,该型汽车的价格与月销售量之间有如下关系:已知A型汽车的销售量y与价格x符合线性回归方程:,若A型汽车价格降到19万元,预测它的销售量大约是______辆【答案】42【解析】解:由图表可得,,.代入线性回归方程,得.,当时,.预测它的销售量大约是42辆.故答案为:42.由已知求得,代入线性回归方程求得b,得到线性回归方程,取求得y值得答案.本题考查线性回归方程的求法,考查计算能力,是基础题.16.已知函数有唯一零点,则______.【答案】【解析】解:与的图象均关于直线对称,的图象关于直线对称,的唯一零点必为,,,.故答案为:.判断函数与的图象的对称性,结合函数的对称性进行判断即可.本题主要考查函数零点个数的判断,根据条件判断函数的对称性是解决本题的关键.三、解答题(本大题共6小题,共70.0分)17.已知集合,.Ⅰ当时,求;Ⅱ若,求实数k的取值范围.【答案】解:Ⅰ当时,,则,分Ⅱ,则分当时,,解得;分当时,由得,即,解得分综上,分【解析】Ⅰ直接根据并集的定义即可求出由,得,由此能求出实数k的取值范围.本题考查集合的求法,考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.计算下列各式的值:;.【答案】解:原式;原式.【解析】进行分数指数幂的运算即可;进行对数的运算即可.考查分数指数幂和对数的运算,以及对数的运算性质.19.已知是奇函数.求a的值并判断的单调性,无需证明;若对任意,不等式恒成立,求实数k 的取值范围.【答案】解:是奇函数,定义域为R,,解得,验证:,,即为奇函数,,在R上为增函数,对任意,不等式恒成立,,在R上为增函数,,,即对任意,恒成立,令,,,,对于,当时取最大值,最大值为3,,,故实数k的取值范围为.【解析】由奇函数的性质可得,在判断函数的单调性;利用的奇偶性和单调性,将不等式转化为:在上恒成立,然后转化为最值,最后构造函数求出最大值即可.本题考查了奇偶函数定义、函数的单调性、恒成立问题转化为最值、二次函数求最值属中档题.20.张先生和妻子李女士二人准备将家庭财产100万元全部投资兴办甲、乙两家微型企业,计划给每家微型企业投资50万元,张先生和妻子李女士分别担任甲、乙微型企业的法人根据该地区以往的大数据统计,在10000家微型企业中,若干年后,盈利的有5000家,盈利的有2x家,持平的有2x家,亏损的有x家.求x的值,并用样本估计总体的原理计算:若干年后甲微型企业至少盈利的可能性用百分数示;张先生加强了对企业的管理,预计若干年后甲企业一定会盈利,李女士由于操持家务,预计若干年后盈利情况与该地区以往的大数据统计吻合求若干年后李女士拥有的家庭财产数量的期望值婚姻期间财产各占一半.【答案】解:,,用样本估计总体计算得:若干年后甲微型企业至少盈利的可能性为:.由题意得若干年后,两人家庭财产的总数量为:万元.由于婚姻期间家庭财产为共同财产,若干年后李女士拥有的家庭财产数量的期望值婚姻期间财产各占一半为:万元.【解析】由,求出,用样本估计总体,能求出若干年后甲微型企业至少盈利的可能性.由题意求出若干年后,两人家庭财产的总数量,由此能求出若干年后李女士拥有的家庭财产数量的期望值.本题考查实数值、至少盈利的可能性、期望值的求法,考查用样本特征估计总体特征等基础知识,考查运算求解能力,是基础题.21.当今的学校教育非常关注学生身体健康成长,某地安顺小学的教育行政主管部门为了了解小学生的体能情况,抽取该校二年级的部分学生进行两分钟跳绳次数测试,测试成绩分成,,,四个部分,并画出频率分布直方图如图所示,图中从左到右前三个小组的频率分别为,,,且第一小组从左向右数的人数为5人.求第四小组的频率;求参加两分钟跳绳测试的学生人数;若两分钟跳绳次数不低于100次的学生体能为达标,试估计该校二年级学生体能的达标率用百分数表示【答案】解:第四小组的频率为:.设参加两分钟跳绳测试的学生有x人,则,解得,参加两分钟跳绳测试的学生人数为50人.由题意及频率分布直方图知:样本数据参加两分钟跳绳次数测试体体能达标率为:,估计该校二年级学生体能的达标率为.【解析】由频率分布直方图能求出第四小组的频率.设参加两分钟跳绳测试的学生有x人,则,由此能求出参加两分钟跳绳测试的学生人数.由题意及频率分布直方图知样本数据参加两分钟跳绳次数测试体体能达标率为,由此能估计该校二年级学生体能的达标率.本题考查频率、频数、达标率的求法,考查频率分布直图的性质等基础知识,考查运算求解能力,是基础题.22.已知函数,其最小值为.求的表达式;当时,是否存在,使关于t的不等式有且仅有一个正整数解,若存在,求实数k的取值范围;若不存在,请说明理由.【答案】解:函数的对称轴为,当时,区间为增区间,可得;当,可得;当时,区间为减区间,可得.则;当时,即,可得,令,,可得在递减,在递增,在的图象如右图:,,由图可得,即,关于t的不等式有且仅有一个正整数解2,所以k的范围是【解析】求得的对称轴,讨论对称轴和区间的关系,结合单调性可得最小值;由题意可得,令,求得单调性,画出图象,可得整数解2,即可得到所求范围.本题考查二次函数的最值求法,注意运用对称轴和区间的关系,考查不等式有解的条件,注意运用参数分离和对勾函数的单调性,考查运算能力和推理能力,属于中档题.。
2019-2020学年度高一第一学期期末复习建议考试范围:必修一、必修二考试形式:满分,100分;时间,一个半小时;8个选择题、6个填空、4个解答题、1个附加题;《函数》1.函数y ____________.2.请写出一个既是偶函数又在区间(0,)+∞上单调递增的函数3.给定条件:①0x ∃∈R ,00()()f x f x -=-; ②x ∀∈R ,(1)(1)f x f x -=+ 请写出一个满足给定条件的函数4.()x f x a =和()x g x b =是指数函数,则“(2)(2)f g >”是“a b >”的 条件5. 1.30.33111(),(),log ,,,332a b c a b c ===则从小到大的关系是 6.已知函数,log a b y x y x ==的图象如图所示, 则,a b 的大小关系7.函数()22x f x x =-的零点个数是8.函数()y f x =的图象如图所示,则()f x 的解析式可以为( ) A. 21()f x x x =- B. 31()f x x x =- C. 1()e x f x x =- D. 1()ln f x x x=- 9.已知(0,)x ∈+∞,求223x x y x-+-=的最大值,以及y 取得最大值时x 的值.10. 若函数()22()123f x k x x =-+- 在(),2-∞ 上单调递增,求k 的取值范围11.已知函数1, 1(), 111, 1x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,函数21()4g x ax =+. 若函数()()y f x g x =-恰有2个不同零点,则实数a 的取值范围是yOx12.某商场全年中一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型:①()x f x p q =⋅,(0,1)q q >≠;②()log (0,1)xp f x q p p =+>≠;③2()f x x px q =++.能较准确反映商场月销售额()f x 与月份x 关系的函数模型为 _________(填写相应函数的序号),若所选函数满足(1)10,(3)2f f ==,则()f x =_____________.《统计与概率》1.某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:答对题目数 [)0,88 9 10女 2 13 12 8 男337169(Ⅰ)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(Ⅱ)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.2.某超市从一年中甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图: 分组(日销售量) 频率(甲种酸奶)[ 0,10] 0.10 (10,20] 0.20 (20,30] 0.30 (30,40] 0.25 (40,50]0.15的频率分布直方图;(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为21s ,22s ,试比较21s 与22s 的大小;(只需写出结论)(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量.3.某中学为了解初三年级学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下:已知该项目评分标准为:(Ⅰ)求上述20名女生得分..的中位数和众数; (Ⅱ)从上述20名男生中,有6人的投掷距离低于7.0米,现从这6名男生中随机抽取2名男生,求抽取的2名男生得分都是4分的概率;(Ⅲ)根据以上样本数据和你所学的统计知识,试估计该年级学生实心球项目的整体情况.(写出两个结论即可)。
2019-2020学年高一上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={1,3},B={3,5},则A∩B=()A. B. C. D. 3,2.下列四组直线中,互相平行的是()A. 与B. 与C. 与D. 与3.圆x2+4x+y2=0的圆心和半径分别为()A. ,4B. ,4C. ,2D. ,24.在空间中,下列命题错误的是()A. 如果两条直线垂直于同一条直线,那么这两条直线平行B. 如果两个平面垂直于同一个平面,那么这两个平面可能互相垂直C. 过直线外一点有且只有一条直线与已知直线平行D. 不共线的三个点确定一个平面5.下列各函数在其定义域内为增函数的是()A. B. C. D.6.一个几何体的三视图如图所示,则该几何体的体积为()A. 3B. 4C. 5D. 67.若x=8,y=log217,z=()-1,则()A. B. C. D.8.如图,在棱长为4的正方体ABCD-A1B1C1D1中,E为DD1的中点,F、G分别为C1D1、BC1上一点,C1F=1,且FG∥平面ACE,则BG=()A. B. 4 C. D.9.已知直线l:y=kx+2(k∈R),圆M:(x-1)2+y2=6,圆N:x2+(y+1)2=9,则()A. l必与圆M相切,l不可能与圆N相交B. l必与圆M相交,l不可能与圆N相切C. l必与圆M相切,l不可能与圆N相切D. l必与圆M相交,l不可能与圆N相离10.函数f(x)=+1的大致图象为()A. B.C. D.11.若函数f(x)=log2(x2-2x+a)的最小值为4,则a=()A. 16B. 17C. 32D. 3312.光线沿直线l:3x-4y+5=0射入,遇直线l:y=m后反射,且反射光线所在的直线经过抛物线y=x2-2x+5的顶点,则m=()A. 3B.C. 4D.二、填空题(本大题共4小题,共20.0分)13.直线的倾斜角是直线的倾斜角的______倍.14.直线3x-4y+5=0被圆x2+y2=7截得的弦长为______.15.若函数f(x)=是在R上的减函数,则a的取值范围是______.16.在三棱锥P-ABC中,PA⊥AB,AC⊥AB,PA=3,AC=4,PC=5,且三棱锥P-ABC的外接球的表面积为28π,则AB=______.三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=+ln(2-x)的定义域为A,集合B={x|2x>1}.(1)求A∪B;(2)若集合{x|a<x<a+1}是A∩B的子集,求a的取值范围.18.(1)设直线l过点(2,3)且与直线2x+y+1=0垂直,l与x轴,y轴分别交于A、B两点,求|AB|;(2)求过点A(4,-1)且在x轴和y轴上的截距相等的直线l的方程.19.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为矩形,E为PC的中点,且.(1)过点A作一条射线AG,使得AG∥BD,求证:平面PAG∥平面BDE;(2)若点F为线段PC上一点,且DF⊥平面PBC,求四棱锥F-ABCD的体积.20.已知函数f(x)=x3+e x-e-x.(1)判断此函数的奇偶性,并说明理由;(2)判断此函数的单调性(不需要证明);(3)求不等式f(2x-1)+f(-3)<0的解集.21.已知圆心在x轴上的圆C与直线l:4x+3y-6=0切于点M(,).(1)求圆C的标准方程;(2)已知N(2,1),经过原点,且斜率为正数的直线L与圆C交于P(x1,y1),Q(x2,y2)两点.(ⅰ)求证:+为定值;(ii)求|PN|2+|QN|2的最大值.22.设函数f(x)=()x+m的图象经过点(2,-),h(x)=ax2-2x(<1).(1)若f(x)与h(x)有相同的零点,求a的值;(2)若函数f(x)在[-2,0]上的最大值等于h(x)在[1,2]上的最小值,求a的值.答案和解析1.【答案】A【解析】解:A∩B={3}.故选:A.直接利用交集运算得答案.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【答案】D【解析】解:因为x+2y=0与2x+4y-3=0的斜率均为-,故平行,故选:D.两直线平行则斜率相等,计算斜率判断即可.本题考查了两直线平行与斜率的关系,属于基础题.3.【答案】C【解析】解:圆x2+4x+y2=0,即圆(x+2)2+y2=4,它的圆心为(-2,0),半径为2,故选:C.把圆的一般方程化为标准方程,可得它的圆心和半径.本题主要考查圆的一般方程和标准方程,属于基础题.4.【答案】A【解析】解:空间中,如果两条直线垂直于同一条直线,那么这两条直线平行或相交货异面,故A错误;如果两个平面垂直于同一个平面,那么这两个平面可能互相垂直,也可能相交货平行,故B正确;过直线外一点有且只有一条直线与已知直线平行,由平行公理可C正确;由公理3可得不共线的三个点确定一个平面,故D正确.故选:A.空间垂直于同一直线的两直线可以平行、相交或异面,可判断A;垂直于同一平面的两个平面肯相交或平行,可判断B;运用平行公理和公理3,即可判断C和D.本题考查空间线线、面面的位置关系的判断,考查平行和垂直的性质和公理的运用,属于基础题.5.【答案】B【解析】解:根据题意,依次分析选项:对于A,y=-,其定义域为(-∞,0)∪(0,+∞),在其定义域上不是增函数,不符合题意;对于B,y=log(4-x),其定义域为(-∞,4),令t=4-x,则y=log tx,则t=4-x为减函数,y=log tx也为减函数,则y=log(4-x)在其定义域内为增函数,符合题意;对于C,y=1-2x2,为二次函数,在其定义域上不是增函数,不符合题意;对于D,y=-x3,在其定义域上是减函数,不符合题意;故选:B.根据题意,依次分析选项中函数的单调性,综合即可得答案.本题考查函数单调性的判断,关键是掌握函数单调性的性质以及判断方法,属于基础题.6.【答案】C【解析】解:由已知三视图得到几何体如图:由团长时间得到体积为=5;故选:C.由已知几何体的三视图得到几何体为棱柱,由两个三棱锥组合成的,根据棱柱的体积公式计算即可.本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体.7.【答案】D【解析】解:∵x=8,∴x=4,∵z=()-1=,y=log217>y=log216=4,∴y>x>z,故选:D.分别根据对数指数幂的运算性质求出x,y,z即可比较本题考查了对数指数幂的运算性质,属于基础题8.【答案】C【解析】解:根据题意,连接BD,与AC交于点O,连接EO,在△BDD1中,O为BD的中点,则EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,而EO⊂平面ACE,则BD1∥平面ACE,又由FG∥平面ACE,则BD1∥FG,又由C1F=1,且C1D1=4,则=,则C1G=,则BG=BC1-C1G=3,故选:C.根据题意,连接BD,与AC交于点O,连接EO,分析可得EO为△BDD1的中位线,进而可得BD1∥平面ACE,由线面平行的性质可得BD1∥FG,由平行线定理分析可得答案.本题考查线面平行的性质以及应用,涉及正方体的几何结构,属于基础题.9.【答案】D【解析】解:∵直线l:y=kx+2(k∈R)过点(0,2),(0,2)在圆M:(x-1)2+y2=6内,∴直线l必与圆M相交,∵(0,2)在圆N:x2+(y+1)2=9上,∴l不可能与圆N相离.故选:D.直线l:y=kx+2(k∈R)过点(0,2),(0,2)在圆M:(x-1)2+y2=6内,(0,2)在圆N:x2+(y+1)2=9上,由此得到l必与圆M相交,l不可能与圆N相离.本题考查直线与圆的位置关系的判断,考查直线、圆等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.10.【答案】D【解析】解:∵f(-x)=f(x),∴函数为偶函数,其图象关于y轴对称,故排除B,C,当0<x<1时,log2x8<0,x2-4<0,∴f(x)>1,故排除A,故选:D.先判断函数为偶函数,再求出当0<x<1时,f(x)>1,故排除A,B,C本题考查了函数的图象的识别,关键掌握函数的奇偶性,和函数值得变化趋势,属于基础题11.【答案】B【解析】解:函数f(x)=log2(x2-2x+a)的最小值为4,可得y=x2-2x+a的最小值为16,由y=(x-1)2+a-1,可得a-1=16,即a=17,故选:B.由对数函数的单调性可得y=x2-2x+a的最小值为16,配方即可得到所求最小值,解方程可得a.本题考查函数的最值的求法,注意转化为二次函数的最值,考查运算能力,属于基础题.12.【答案】C【解析】解:抛物线y=x2-2x+5的顶点(1,6),点(1,6)关于直线y=m的对称点(1,2m-6),(1,2m-6)在直线3x-4y+5=0上,3-4(2m-6)+5=0,解得m=4.故选:C.求出抛物线的顶点坐标,求得点M关于直线y=m的对称点M'的坐标,代入直线方程求解m即可.本题主要考查求一个点关于直线的对称点的坐标,考查直线的方程的求法,属于中档题.13.【答案】5【解析】解:直线的倾斜角是150°,直线的倾斜角是30°,则直线的倾斜角是直线的倾斜角的5倍,故答案为:5.根据直线的斜率k=tanα,分别求出直线的倾斜角,问题得以解决.本题考查直线的倾斜角,考查了直线的斜率,是基础题14.【答案】2【解析】解:∵O到直线3x-4y+5=0的距离为1,∴所求距离为2=2.故答案为:2先求圆心O到直线的距离,再用勾股定理可得弦长.本题考查了直线与圆相交的性质.属中档题.15.【答案】[-6,1)【解析】解:由题意得:,解得:-6≤a<1,故答案为:[-6,1).根据一次函数以及对数函数的性质得到关于a的不等式组,解出即可.本题考查了一次函数以及对数函数的性质,考查转化思想,是一道基础题.16.【答案】【解析】解:∵PA=3,AC=4,PC=5,∴PA2+AC2=PC2,则PA⊥AC,又PA⊥AB,AC⊥AB,∴三棱锥P-ABC可以补成一个长方体,则其外接球的半径r=,∴,即AB=.故答案为:.由已知可得三棱锥P-ABC满足过顶点A的三条侧棱两两垂直,然后补形为长方体求解.本题考查球的表面积的求法,考查空间想象能力与思维能力,是基础题.17.【答案】解:(1)由得,-6≤x<2;由2x>1得,x>0;∴A=[-6,2),B=(0,+∞);∴A∪B=[-6,+∞);(2)A∩B=(0,2);∵集合{x|a<x<a+1}是A∩B的子集;∴ ;解得0≤a≤1;∴a的取值范围是[0,1].【解析】(1)可解出A=[-6,2),B=(0,+∞),然后进行并集的运算即可;(2)可解出A∩B=(0,2),根据集合{x|a<x<a+1}是A∩B的子集,即可得出,解出a的范围即可.考查描述法、区间表示集合的定义,指数函数的单调性,函数定义域的定义及求法,子集的定义,以及交集、并集的运算.18.【答案】解:(1)设l的方程为x-2y+c=0,代入(2,3)可得c=4,则x-2y+4=0,令x=0,得y=2,令y=0,得x=-4,∴A(-4,0),B(0,2),则|AB|==2;(2)当直线不过原点时,设直线l的方程为x+y=c,代入(4,-1)可得c=3,此时方程为x+y-3=0,当直线过原点时,此时方程为x+4y=0.【解析】(1)设l的方程为x-2y+c=0,代入(2,3)可得c=4,即可求出A,B的坐标即可求出|AB|;(2)分类讨论:当直线过原点时,当直线不过原点时,代点分别可得方程.本题考查直线的截距式方程,是基础题.解题时要认真审题,仔细解答19.【答案】证明:(1)在矩形ABCD中,连结AC和BD交于点O,连接OE,则O是AC的中点,∵E是PC的中点,∴OE是△PAC的中位线,∴OE∥PA,又OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE,又AG∥BD,同理得AG∥平面BDE,∵PA∩AG=A,∴平面PAG∥平面BDE.解:(2)∵DF⊥平面PBC,∴DF⊥PC.在Rt△PDC中,∵PD=4,CD=8,∴,∴DF==,∴FC==,∴=,过F作FK∥PD,交CD于K,则FK=,∵PD⊥底面ABCD,∴FK⊥底面ABCD,∴ .【解析】(1)在矩形ABCD中,连结AC和BD交于点O,连接OE,则O是AC的中点,从而OE∥PA,进而PA∥平面BDE,由AG∥BD,得AG∥平面BDE,由此能证明平面PAG∥平面BDE.(2)由DF⊥PC,过F作FK∥PD,交CD于K,则FK⊥底面ABCD,由此能求出四棱锥F-ABCD的体积.本题考查面面平行的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.【答案】解:(1)根据题意,函数f(x)=x3+e x-e-x,则f(-x)=(-x)3+e-x-e x=-(x3+e x-e-x)=-f(x),则函数f(x)为奇函数;(2)f(x)=x3+e x-e-x在R上为增函数;(3)由(1)(2)的结论,f(x)=x3+e x-e-x是奇函数且在R上为增函数;f(2x-1)+f(-3)<0⇒f(2x-1)<-f(-3)⇒f(2x-1)<f(3)⇒2x-1<3,解可得x<2,即不等式的解集为(-∞,-2).【解析】(1)根据题意,由函数的解析式分析可得f(-x)=-f(x),结合函数奇偶性的定义分析可得答案;(2)由函数的解析式结合常见函数的单调性,分析易得结论;(3)根据题意,由(1)(2)的结论,可以将原不等式转化为2x-1<3,解可得x的取值范围,即可得答案.本题考查函数的奇偶性与单调性的证明与应用,(3)注意分析得到关于x的不等式,属于基础题.21.【答案】解:(1)由圆心在x轴上的圆C与直线l:4x+3y-6=0切于点M(,).设C(a,0),则k CM=,∴•(-)=-1,∴a=-1,∴C(-1,0),|CM|=2,即r=2,∴圆C的标准方程为(x+1)2+y2=4.(2)设直线l的方程为y=kx(k>0),与圆的方程联立,可得(1+k2)x2+2x-3=0,△=4+12(1+k2)>0,x1+x2=-,x1x2=-.(i)证明:+==为定值;(ii)|PN|2+|QN|2=(x1-2)2+(y1-1)2+(x2-2)2+(y2-1)2=(x1-2)2+(kx1-1)2+(x2-2)2+(kx2-1)2=(1+k2)(x1+x2)2-2(1+k2)x1x2-(4+2k)(x1+x2)+10=+16,令3+k=t(t>3),则k=t-3,上式即为+16=+16≤+16=2+22.当且仅当t=,即k=-3时,取得最大值2+22.【解析】(1)由题意设C(a,0),运用两直线垂直的条件:斜率之积为-1,解得a,再由两点的距离公式可得半径,进而得到所求圆的标准方程;(2)设直线l的方程为y=kx(k>0),联立圆的方程,可得x的二次方程,运用韦达定理,即可证得(ⅰ)+为定值;(ii)由两点的距离公式,以及韦达定理和基本不等式,化简整理,即可得到所求最大值.本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.22.【答案】解:(1)由题意可得f(2)=m+=-,即有m=-,即f(x)=()x-,由f(x)=0,可得x=1,由题意可得h(1)=a-2=0,即a=2;(2)函数f(x)在[-2,0]上递减,可得f(x)的最大值为f(-2)=4+m=,若函数f(x)在[-2,0]上的最大值等于h(x)在[1,2]上的最小值,由h(x)的对称轴为x=,当a>0时,由<1可得a>1,即有h(x)在[1,2]递增,可得h(x)的最小值为h(1)=a-2,由a-2=,解得a=;当a<0时,h(x)在[1,2]递减,即有h(x)的最小值为h(2)=4a-8,由4a-8=,解得a=,又a<0,不符题意.综上可得a=.【解析】(1)由题意可得f(2)=-,解得m,由零点定义,即可得到所求值;(2)运用指数函数的单调性可得f(x)的最大值,讨论二次函数的对称轴和区间的关系,解方程即可得到所求值.本题考查函数的零点求法,考查指数函数的单调性和二次函数的最值求法,注意运用分类讨论思想方法,属于中档题.。
2019-2020学年高一上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.已知全集2,3,4,,集合3,,集合,则为A. 4,B. 3,C. 2,D. 3,4,【答案】A【解析】解:全集2,3,4,,集合3,,,,4,.故选:A.根据全集U及A求出A的补集,找出A补集与B的并集即可.此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.A. B. C. D.【答案】A【解析】解:;故选:A.利用诱导公式直接化简函数的表达式,通过特殊角的三角函数值求解即可.本题是基础题,考查三角函数的求值,注意正确应用诱导公式是解题的关键.3.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】解:利用任意角三角函数的定义,,故选:D.利用任意角三角函数的定义,分别计算和,再代入所求即可本题主要考查了任意角三角函数的定义及其用法,属基础题4.函数的定义域为A. B. C. D.【答案】C【解析】解:要使原函数有意义,则,解得:,或所以原函数的定义域为.故选:C.根据“让解析式有意义”的原则,对数的真数大于0,分母不等于0,建立不等式,解之即可.本题主要考查了函数的定义域及其求法,求定义域常用的方法就是根据“让解析式有意义”的原则,属于基础题.5.已知函数,在下列区间中包含零点的区间是A. B. C. D.【答案】B【解析】解:函数,是连续函数,,,根据零点存在定理,,函数在存在零点,故选:B.要判断函数,的零点的位置,根据零点存在定理,则该区间两端点对应的函数值,应异号,将四个答案中各区间的端点依次代入函数的解析式,易判断零点的位置.要判断函数的零点位于哪个区间,可以根据零点存在定理,即如果函数在区间上存在一个零点,则,如果方程在某区间上有且只有一个根,可根据函数的零点存在定理进行解答,但要注意该定理只适用于开区间的情况,如果已知条件是闭区间或是半开半闭区间,要分类讨论.6.为了得到函数的图象,只需把函数的图象上所有的点A. 向左平行移动个单位长度B. 向右平行移动个单位长度C. 向左平行移动个单位长度D. 向右平行移动个单位长度【答案】D【解析】解:把函数的图象向右平移个单位长度,可得函数的图象,故选:D.由条件根据函数的图象变换规律,可得结论.本题主要考查函数的图象变换规律,属于基础题.7.已知向量,,满足,,,,则与的夹角等于A. B. C. D.【答案】A【解析】解:,,与的夹角等于故选:A.要求夹角,就要用到数量积,所以从入手,将,代入,求得向量,的数量积,再用夹角公式求解.本题主要考查向量的数量积和向理的夹角公式,数量积是向量中的重要运算之一,是向量法解决其他问题的源泉.8.设,,,则a,b,c的大小关系是A. B. C. D.【答案】D【解析】解:,即故选:D.要比较三个数字的大小,可将a,b,c与中间值0,1进行比较,从而确定大小关系.本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.9.若扇形的圆心角是,半径为R,则扇形的内切圆面积与扇形的面积之比为A. 1:2B. 1:3C. 2:3D. 3:4【答案】C【解析】解:扇形的圆心角是,半径为R,扇形扇形的内切圆的圆心在圆心角的角平分线上,几何知识,,所以内切圆的半径为,,圆形扇形的内切圆面积与扇形的面积之比为:故选:C.确定扇形的内切圆的半径,分别计算扇形的内切圆面积与扇形的面积,即可得到结论.本题考查扇形的面积公式,考查学生的计算能力,确定扇形的内切圆的半径是关键.10.如果偶函数在上是增函数且最小值是2,那么在上是A. 减函数且最小值是2B. 减函数且最大值是2C. 增函数且最小值是2D. 增函数且最大值是2【答案】A【解析】解:偶函数在上是增函数且最小值是2,由偶函数在对称区间上具有相反的单调性可知,在上是减函数且最小值是2.故选:A.直接由函数奇偶性与单调性的关系得答案.本题考查函数的奇偶性与单调性的关系,关键是明确偶函数在对称区间上具有相反的单调性,是基础题.11.已知的最大值为A,若存在实数,使得对任意实数x总有成立,则的最小值为A. B. C. D.【答案】B【解析】解:或的最大值为;由题意得,的最小值为,的最小值为.故选:B.根据题意,利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值,即可求出的最小值.本题考查了三角函数的恒等变换以及正弦、余弦函数的周期性和最值问题,是基础题目.12.定义一种运算,若,当有5个零点时,则实数m的取值范围是A. B. C. D.【答案】A【解析】解:由题意,,其图象如下:结合图象可知,有5个零点时,实数m的取值范围是,故选:A.画出,图象,结合图象可知,求解有5个零点时m的取值,本题考查了学生对新定义的接受与应用能力及数形结合的思想应用,属于中档题.二、填空题(本大题共4小题,共20.0分)13.函数是幂函数,且其图象过原点,则______.【答案】【解析】解:函数是幂函数,且其图象过原点,,且,.故填.由已知知函数是幂函数,则其系数必定是1,即,结合图象过原点,从而解出m的值.本题考查幂函数的图象与性质、数形结合,解题时应充分利用幂函数的图象,掌握图象的性质:当指数大于0时,图象必过原点需结合函数的图象加以验证.14.已知函数是定义在上的奇函数,且,则______.【答案】【解析】解:Ⅰ函数是定义在上的奇函数,,即,,,,,解得,,.故答案为:.由题意可得,,代入可求b,然后由且可求a,进而可求函数解析式;本题主要考查了奇函数定义的应用及待定系数求解函数的解析式,考查了函数的单调性在不等式的求解中的应用.15.的外接圆的圆心为O,半径为1,若,且,则______.【答案】1【解析】解:的外接圆的圆心为O,且,为BC的中点,故为直角三角形,,为等边三角形,,则.故答案为:1.由的外接圆的圆心为O满足,可知O为BC的中点,且为直角三角形,然后结合向量数量积的定义可求.本题主要考查了向量基本定理,向量的数量积的定义的应用,解题的关键是找到为直角三角形的条件.16.若,则______【答案】【解析】解:,,.故答案为:.利用诱导公式和二倍角公式,计算即可.本题考查了三角函数求值运算问题,是基础题.三、解答题(本大题共6小题,共70.0分)17.已知向量,,点.求线段BD的中点M的坐标;若点满足,求y与的值.【答案】解:设,,,解得即.同理可得.线段BD的中点M的坐标为,,,由得,解得,.【解析】利用向量中点坐标公式和向量共线定理即可得出.熟练掌握向量中点坐标公式和向量共线定理是解题的关键.18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:;;;;.试从上述五个式子中选择一个,求出这个常数;根据的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【答案】本小题满分12分解:方法一:选择式,计算如下:分三角恒等式为.证明如下:分方法二:同方法一.三角恒等式为.证明如下:分【解析】方法一:选择式,由倍角公式及特殊角的三角函数值即可得解发现推广三角恒等式为,由三角函数中的恒等变换应用展开即可证明.方法二:同方法一发现推广三角恒等式为由降幂公式,三角函数中的恒等变换应用展开即可证明.本题主要考查了三角函数中的恒等变换应用,归纳推理,属于基本知识的考查.19.销售甲、乙两种商品所得利润分别是、万元,它们与投入资金x万元的关系分别为,,其中m,a,b都为常数,函数,对应的曲线、如图所示.求函数、的解析式;若该商场一共投资4万元经销甲、乙两种商品,求该商场所获利润的最大值.【答案】解:由题意,解得,分又由题意得,分不写定义域扣一分设销售甲商品投入资金x万元,则乙投入万元由得,分令,则有,,当即时,y取最大值1.答:该商场所获利润的最大值为1万元分不答扣一分【解析】根据所给的图象知,两曲线的交点坐标为,由此列出关于m,a的方程组,解出m,a的值,即可得到函数、的解析式;对甲种商品投资万元,对乙种商品投资万元,根据公式可得甲、乙两种商品的总利润万元关于x的函数表达式;再利用配方法确定函数的对称轴,结合函数的定义域,即可求得总利润y的最大值.本题考查了函数模型的构建以及换元法、配方法求函数的最值,体现用数学知识解决实际问题,属于基础题.20.已知函数其中,,,的部分图象如图所示.求A,,的值;已知在函数图象上的三点M,N,P的横坐标分别为,1,3,求的值.【答案】解:由图知,分的最小正周期,所以由,得分又且,所以,,解得分因为,,,所以,,,设,分在等腰三角形MNP中,设,则分所以分【解析】根据的图象特征,由函数的最值求出A,由周期求出,由五点法作图求出的值.求出三点M,N,P的坐标,在等腰三角形MNP中,设,求出、的值,再利用二倍角公式求得的值.本题主要考查利用的图象特征,由函数的部分图象求解析式,由函数的最值求出A,由周期求出,由五点法作图求出的值,属于中档题.21.已知,函数.求的最小正周期,并求其图象对称中心的坐标;当时,求函数的值域.【答案】解:分的最小正周期为,令,得,,.故所求对称中心的坐标为,分,分,即的值域为分【解析】由向量的坐标运算可求得,从而可求的最小正周期,并求其图象对称中心的坐标;由可得,从而可求得函数的值域.本题考查平面向量数量积的运算,考查两角和与差的正弦函数,考查正弦函数的定义域和值域及其周期,属于三角中的综合,考查分析问题、解决问题的能力.22.已知函数,.Ⅰ若在上存在零点,求实数a的取值范围;Ⅱ当时,若对任意的,总存在,使成立,求实数m的取值范围.【答案】解:Ⅰ:因为函数的对称轴是,所以在区间上是减函数,因为函数在区间上存在零点,则必有:即,解得,故所求实数a的取值范围为.Ⅱ若对任意的,总存在,使成立,只需函数的值域为函数的值域的子集.,的值域为,下求的值域.当时,为常数,不符合题意舍去;当时,的值域为,要使,需,解得;当时,的值域为,要使,需,解得;综上,m的取值范围为.【解析】在上单调递减函数,要存在零点只需,即可存在性问题,只需函数的值域为函数的值域的子集即可.本题主要考查了函数的零点,值域与恒成立问题.。
2019-2020学年高一上学期期末数学试题一、单选题1.已知集合{1,2,3,4,5}U =,{1,3}A =,{3,4}B =,则()U A B =U ð( ) A .{2,3,4,5} B .{1,3,4,5}C .{1,2,3,5}D .{1,2,3,4}答案:C[解析]∵{1,2,3,4,5}U =,{3,4}B =,∴{1,2,5}U B =ð, ∴()U A B =U ð{1,2,3,5}. 故选:C.2.计算tan 210︒的值为( )A B .C D .答案:C[解析]∵tan 210tan (183)030tan 0︒=︒+︒=︒=. 故选:C.3.已知扇形的弧长是6,半径为3,则扇形的圆心角的弧度数是( ) A .1 B .2C .12或2 D .12答案:B [解析]∵||l r α=,∴6||23l r α===. 故选:B.4.函数()ln(1)f x x =+的定义域为( ) A .[1,1]- B .(1,1)-C .[1,1)-D .(]1,1-答案:D[解析]∵10,(1,1]10,x x x -≥⎧⇒∈-⎨+>⎩. ∴函数的定义域为(]1,1-. 故选:D.5.若幂函数()af x kx =的图象过点1,22⎛⎫⎪ ⎪⎝⎭,则k α+值是( )A .32B .12C .12-D .2答案:A[解析]由幂函数()a f x kx =,∴1k =,∵函数过点12⎛ ⎝⎭11)2(2αα=⇒=, ∴32k α+=. 故选:A.6.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )A .B .C .D .答案:A[解析]试题分析:由偶函数排除B 、D,排除C.故选A.7.定义在R 上的函数cos ,0()(π),0x x f x f x x ≤⎧=⎨->⎩则13π3f ⎛⎫⎪⎝⎭的值为( )A .12B C . D .12-答案:D[解析]∵0x >时,()()f x f x π=-,∴1314cos()cos 3333332ππ2π2ππππf f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+==-=-=-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D.8.已知函数21()ln(||1)2f x x x =-++,不等式(2)(2)f x f +≤-的解集是( ) A .[4,0]- B .[0,)+∞C .(,4]-∞-D .[0,)(,4]+∞⋃-∞- 答案:D[解析]∵函数的定义域为R ,关于原点对称,且21()ln(||1)()()2f x x f x x -=--+=-+,∴()f x 为偶函数,∴(2)(2)(|2|)(2)f x f f x f +≤-⇔+≤, ∵212x +在[0,)+∞递减,ln(||1)x -+在[0,)+∞递减, ∴()f x 在[0,)+∞递减,∴|2|2x +≥22x ⇒+≥或22x +≤-,即[0,)(,4]x ∈+∞⋃-∞-. 故选:D. 二、多选题9.已知2(21)4f x x -=,则下列结论正确的是( ) A .(3)9f = B .(3)4f -=C .2()f x x =D .2()(1)f x x =+答案:BD[解析]令1212t t x x +=-⇒=,∴221()4()(1)2t f t t +==+. ∴2(3)16,(3)4,()(1)f f f x x =-==+.故选:BD.10.已知集合[2,5)A =,(,)B a =+∞.若A B ⊆,则实数a 的值可能是( ) A .3- B .1 C .2 D .5答案:AB[解析]∵A B ⊆,∴2a <, ∴a 可能取3,1-; 故选:AB.11.如图,已知点O 为正六边形ABCDEF 中心,下列结论中正确的是( )A .0OA OC OB ++=u u u r u u u r u u u r rB .()()0OA AF EF DC -⋅-=u u u r u u u r u u u r u u u rC .()()OA AF BC OA AF BC ⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u rD .||||OF OD FA OD CB +=+-u u u r u u u r u u u r u u u r u u u r答案:BC[解析]对A ,2OA OC OB OB ++=u u u r u u u r u u u r u u u r,故A 错误;对B ,∵OA AF OA OE EA -=-=u u u r u u u r u u u r u u u r u u u r ,EF DC EF EO OF -=-=u u u r u u u r u u u r u u u r u u u r,由正六边形的性质知OF AE ⊥,∴()()0OA AF EF DC -⋅-=u u u r u u u r u u u r u u u r,故B 正确;对C ,设正六边形的边长为1,则111cos1202OA AF ⋅=⋅⋅=-ou u u r u u u r ,111cos602AF BC ⋅=⋅⋅=o u u u r u u u r , ∴()()OA AF BC OA AF BC ⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r 1122BC OA ⇔-=u u ur u u u r ,式子显然成立,故C 正确;对D ,设正六边形的边长为1,||||1OF OD OE +==u u u r u u u r u u u r,||||||||FA OD CB OD DC CB OC OA AC +-=+-=-==u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,故D 错误;故选:BC.12.已知函数()sin()(0,0,0π)f x A x B A ωϕωϕ=++>><<部分自变量、函数值如下表所示,下列结论正确的是( )A .函数解析式为5π()3sin 26f x x ⎛⎫=+⎪⎝⎭B .函数()f x 图象的一条对称轴为2π3x =-C .5π,212⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D .函数()f x 的图象向左平移π12个单位,再向下平移2个单位所得的函数为奇函数 答案:BCD[解析]由表格的第1、2列可得:022,53A B B A B A ⨯+=⇒=+=⇒=,由表格的第4、5列可得:7πππ2ππ241234T ωω=-=⇒=⇒=, ∴π3π5π2326ϕϕ⋅+=⇒=,∴5π()3sin 226f x x ⎛⎫=++ ⎪⎝⎭,故A 错误; 令5π()3sin 26g x x ⎛⎫=+⎪⎝⎭, ∵2π4π5π()3sin 3336g ⎛⎫-=-+=- ⎪⎝⎭, ∴2π3x =-是函数()g x 图象的一条对称轴,即为()f x 的一条对称轴,故B 正确; ∵5π56π5π()3sin 0126g ⎛⎫-=-+= ⎪⎝⎭,∴5π,012⎛⎫- ⎪⎝⎭是函数()g x 图象的一个对称中心, ∴5π,212⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心,故C 正确; ∵函数()f x 的图象向左平移π12个单位,再向下平移2个单位所得的函数为, ∴)12π5π3sin 2(223sin 26y x x ⎛⎫=+++-=- ⎪⎝⎭为奇函数,故D 正确; 故选:BCD. 三、填空题13.已知向量(,2)a x =r,(2,1)b =-r ,且//a b r r,则实数x 的值是________. 答案:4-[解析]∵//a b r r,∴(1)224x x ⋅-=⋅⇒=-.故答案为:4-.14.计算10.532771lg 252lg12594-⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭的结果是________. 答案:2[解析]原式1133225355lg100225933⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫=+-=+-= ⎪ ⎪⎝⎭⎝⎭.故答案为:2. 15.若方程π3sin 265x ⎛⎫-= ⎪⎝⎭在(0,π)上的解为12x x 、,且12x x >,则()12sin x x -=________. 答案:45[解析]作出函数πsin 26y x ⎛⎫=-⎪⎝⎭的图象,如图所示, ∵12π3π3sin 2,sin 26565x x ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, ∴12π23x x +=,则122π3x x =-, ∴()2222122ππsin sin sin cos 36ππ6222x x x x x x ⎛⎫⎛⎫⎛⎫-===⎪ --+⎪ ⎪⎝⎝⎭⎝-⎭⎭-∵23sin 25π6x ⎛⎫-= ⎪⎝⎭,且22ππππ023662x x <<⇒-<-<, ∴2πcos 2645x x ⎛⎫-= ⎪⎝⎭. ∴()124sin 5x x -=. 故答案为:45.16.已知函数232,1,()2(1), 1.x x f x a x a x ⎧--+≥⎪=⎨⎪--<⎩若函数1()()2g x f x =-恰有2个零点,则实数a 的取值范围是_____. 答案:1(,1]2-[解析]函数1()()2g x f x =-的零点等价于方程1()2f x =的根, 当31221122x x x --+=⇒-=⇒=或3x =, ∵函数1()()2g x f x =-恰有2个零点,∴21(1)2a x a --=在1x <无解,即21(1)02a x a ---=在1x <无解,当10a -=,即1a =时,方程无解; 当10a ->,即1a >时,13(1)1022a a -⋅--=-<,∴方程21(1)02a x a ---=在1x <有解,故1a >不成立;当10a -<,即1a <时,若方程无解,则11022a a --<⇒-<,∴112a -<<, 综上所述:1(,1]2a ∈-.故答案为:1(,1]2-. 四、解答题17.已知在平面直角坐标系xoy 中,锐角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边与单位圆交于点34,55P ⎛⎫⎪⎝⎭.(1)求sin 2cos sin cos αααα+-的值;(2)若π,02β⎛⎫∈-⎪⎝⎭,且1sin()3αβ+=-,求cos β的值.解:(1)由题意知,43sin ,cos 55αα==, 故432sin 2cos 551043sin cos 55αααα+⨯+==--. (2)由ππ(,)22αβ+∈-,1sin()3αβ+=-,得cos()3αβ+===所以,cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+⋅++⋅314()535=+-⨯=18.在平面直角坐标系xOy 中,已知点(2,1)A -,(1,0)B ,(,2)C k . (1)当3k =时,求||AB AC +u u u r u u u r的值;(2)是否存在实数k ,使AB u u u r 与AC u u u r的夹角为45︒?若存在,求出k 的值,若不存在,说明理由解:∵(1,1),(2,3)AB AC k =-=-u u u v u u u v,(1)当3k =时,(1,3)AC =u u u v ,(0,4)AB AC +=u u u v u u u v所以4AB AC +==u u u v u u u v(2)假设存在实数k ,满足AB u u u r 与AC u u u r的夹角为45︒. 因为(1)(2)135AB AC k k ⋅=-⨯-+⨯=-u u u v u u u v,又AB AC ===u u u r u u u r ,所以,cos45AB AC AB AC ⋅=⋅︒u u u r u u u r u u u r u u u r2=,解得2k =.所以存在实数2k =,使AB u u u r 与AC u u u r的夹角为45︒.19.如图,某正方形公园ABCD ,在ABD 区域内准备修建三角形花园BMN ,满足MN 与AB 平行(点N 在BD 上),且2AB AD BM ===(单位:百米).设ABM θ∠=,BMN ∆的面积为S (单位:百米平方).(1)求S 关于θ的函数解析式(2)求S 的最大值,并求出取到最大值时θ的值. 解:(1)依题意得,π,4ABD CBD ∠=∠=延长MN 交BC 于点H . 因为//MN AB ,且四边形ABCD 为正方形, 所以NMB ABM θ∠=∠=,π4HNB CBD ∠=∠=. 在Rt BMH V中,sin 2sin .BH BM θθ== cos 2cos .MH BM θθ==在Rt BNH V中,因为π4HNB CBD ∠=∠=,所以2sin NH BH θ==. 所以2(cos sin )MN MH NH θθ=-=- 所以1π()2sin (cos sin )((0,)24S MN BH θθθθθ=⋅=-∈(2)由(1)得,()2sin (cos sin )S θθθθ=-sin 2(1cos 2)θθ=--sin2cos21θθ=+-)14πθ=+-因为4πθ∈(0,),所以ππ32+)444πθ∈(,,所以当2+2π=4πθ,即π=8θ时,max ()1S θ=,答:()S θ1百米平方,此时8θπ=.20.在直角梯形ABCD 中,已知//AB CD ,90DAB ︒∠=,4AB =,2AD CD ==,对角线AC 交BD 于点O ,点M 在AB 上,且满足OM BD ⊥.(1)求AM BD ⋅u u u u r u u u r的值;(2)若N 为线段AC 上任意一点,求AN MN ⋅u u u r u u u u r的最小值.解:(1)在梯形ABCD 中,因为AB CD ∥,2AB CD =,所以2AO OC =,=()AM BD AO OM BD AO BD OM BD AO BD ⋅+⋅=⋅+⋅=⋅u u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u u r u u u r u u u r u u u r 23AC BD =⋅u u ur u u u r222=()()=()33AD DC AD AB AD DC AB +⋅--⋅u u ur u u u r u u u r u u u r u u u r u u u r u u u r 28(424)33=-⨯=-; (2)令=AM AB λu u u u r u u u r ,()AM BD AB BD AB AD AB λλ⋅=⋅=⋅-u u u u r u u u r u u u r u u u r u u u r u u u r u u u r 28163AB λλ=-=-=-u u u r则16λ=,即1=6AM AB u u u u r u u u r,22()cos45AN MN AN AN AM AN AN AM AN AN AM ⋅=⋅-=-⋅=-⨯⨯︒u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r221cos456AN AN AB AN =-⨯︒⨯⨯=-u u u r u u u r u u u r u u u r u u r令AN t =u u u r ,则0t ≤≤221(18AN MN t t ⋅==-u u u r u u u u r ,所以当AN =u u u r AN MN ⋅u u u r u u u u r 有最小值118-.21.已知函数2()(2)1f x x a x a =--++,()||g x x a =-,其中a ∈R . (1)若函数()f x 在[2,)+∞上单调递增,求a 的取值范围; (2)设()()()h x f x g x =-,求函数()h x 的最小值.解:(1)由222a -≤得6a ≤,所以a 的取值范围(,6]-∞; (2)2()(2)1||h x x a x a x a =--++--22(1)21,(3)1,x a x a x a x a x x a ⎧--++≥=⎨--+<⎩ ①若32a a -≤即3a ≤-, 当x a ≤时2()(3)1h x x a x =--+递减,且min ()()31h x h a a ==+,当x a >时2()(1)21h x x a x a =--++最小值为2min 11()()(5)724a h x h a -==--+, 此时有2131(5)74a a +>--+,所以21()(5)74a a ϕ=--+;②若3122a a a --<<即31a -<<-时, 当x a ≤时2()(3)1h x x a x =--+在32a x -=时取得最小值2min 31()()(3)124a h x h a -==--+, 当x a >时2()(1)21h x x a x a =--++在12a x -=时取得最小值为 2min 11()()(5)724a h x h a -==--+, 若21a -<<-,则2211(5)7(3)144a a --+>--+,此时21()(3)14a a ϕ=--+,若32a -<≤-,则2211(5)7(3)144a a --+≤--+,此时21()(5)74a a ϕ=--+; ③若12a a -≥即1a ≥-, 当x a ≤时2()(3)1h x x a x =--+在32a x -=时取得最小值2min 31()()(3)124a h x h a -==--+, 当x a >时,2()(1)21h x x a x a =--++递增()()31h x h a a >=+,此时有2131(1)14a a +>--+,所以21()(3)14a a ϕ=--+;综上,()()()22131,24157,24a a a a a ϕ⎧--+>-⎪⎪=⎨⎪--+≤-⎪⎩ 22.已知函数()2()log 21()xf x kx k =++∈R .(1)当0k =时,用定义证明函数()f x 在定义域上的单调性; (2)若函数()f x 是偶函数,(i)求k 的值;(ii)设211()log 2()22xg x a a x a ⎛⎫=⋅-+∈ ⎪⎝⎭R ,若方程()()f x g x =只有一个解,求a 的取值范围.解:(1)当0k =时,函数2()log (21)x f x =+定义域为R ,任取12x x <,121222()()log (21)log (21)x x f x f x -=+-+12221log 21x x +=+,因为12x x <,所以1212(21)(21)220x x x x+-+=-<,所以1202121x x <+<+,12210121+<<+x x ,所以12221log 021+<+x x ,所以12()()f x f x <,故函数()f x 在R 上单调递增;(2)(i)因为函数()f x 是偶函数,所以22log (21)log (21)x x kx kx -+-=++,即2221log log (21)2x x xkx kx +-=++, 即22log (21)(1)log (21)x xk x kx +-+=++,所以(1)k x kx -+=恒成立, 所以12k =-; (ii)由题意得22111log (21)log (2)222x x x a a x +-=⋅-+, 所以2221log (21)log (2)log 22x x x a a +=⋅-+,所以121422x x x a a +=⋅-⋅,即14(1)2102x x a a ⋅-+⋅-=,设2x t =,则t 与x 一一对应,原方程化为21(1)102a t a t ⋅-+-=,设21()(1)12h t a t a t =⋅-+-,因为112=(2)022x x a a a ⋅-->,所以a 与122x -符号相同,①当0a >时,122x t =>,则方程21(1)102a t a t ⋅-+-=在1(,)2+∞上只有一个正根,因为21()(1)12h t a t a t =⋅-+-开口向上,(0)10h =-<,13()022h =-<,136(+)02h a a=>, 当0a >时,所以方程在1(,)2+∞上只有一个正根;②当0a <时,1022x t <=<,则方程21(1)102a t a t ⋅-+-=在1(0,)2上只有一个正根, 因为21()(1)12h t a t a t =⋅-+-开口向下,(0)10h =-<,13()022h =-<,则2114021112022a a a a ⎧⎛⎫∆=++=⎪ ⎪⎝⎭⎪⎨+⎪⎪<<⎩,解得102a a ⎧=-±⎪⎨<-⎪⎩10a =-- 故当0a >或10a =--.。
2019-2020高一数学学年上学期期末复习备考黄金30题 专题05 小题易丢分(30题)苏教版一、填空题1.若关于x 的不等式23344a x xb ≤-+≤的解集恰好为[,a b ],那么b a -=_____. 【答案】42.设函数()()21ln 11f x x x=+-+,则使得()()21f x f x >-成立的x 的取值范围为 . 【答案】113x << 【解析】试题分析:由题意得,函数()()21ln 11f x x x=+-+的定义域为R ,因为()()f x f x -=,所以函数()f x 为偶函数,当0x >时, ()()21ln 11f x x x =+-+为单调递增函数,所以根据偶函数的性质可知:使得()()21f x f x >-成立,则21x x >-,解得113x <<.考点:函数的图象与性质.【方法点晴】本题主要考查了函数的图象与性质,解答中涉及到函数的单调性和函数的奇偶性及其简单的应用,解答中根据函数的单调性与奇偶性,结合函数的图象,把不等式()()21f x f x >-成立,转化为21x x >-,即可求解,其中得出函数的单调性是解答问题的关键,着重考查了学生转化与化归思想和推理与运算能力,属于中档试题. 3.下面四个命题: ①在定义域上单调递增; ②若锐角满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为__________. 【答案】②③④4.已知函数2sin cos 22y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭与直线12y =相交,若在y 轴右侧的交点自左向右依次记为123,,A A A …,则15A A =__________.【答案】2π【解析】2s i n c o s s i n 222y x x x ππ⎛⎫⎛⎫=+-=⎪ ⎪⎝⎭⎝⎭,当1s i n 22x =时, 22,6x k k Z ππ=+∈,或5226x k ππ=+,则12x k ππ=+或512x k Z ππ=+∈,,点151251,,,122122A A ππ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,所以152521212A A πππ=-= 。
点睛:本题主要考查诱导公式和三角函数求值,属于中档题。
本题关键是求出点15A A , 的坐标。
5.对于函数()[]()(),0,2{12,2,2sin x x f x f x x π∈=-∈+∞,有下列3个命题:①任取,都有()()122f x f x -≤恒成立;②()()()*22f x kf x k k N =+∈,对于一切[)0,x ∈+∞恒成立; ③函数()()ln 1y f x x =--在()1,+∞上有3个零点; 则其中所有真命题的序号是 . 【答案】①③.考点:1、分段函数;2、函数的图像及其性质.【思路点睛】本题主要考查了分段函数的应用和函数的图像及其性质,考查综合知识能力的应用,属高中档题.其解题的一般思路为:首先根据已知条件可画出函数的图像,然后结合函数的图像得出函数的最大值和最小值,并得出函数的零点问题,进而得出所求的结果即可.其解题的关键是正确地运用数形结合求解分段函数的问题.6.如图所示, 23BAC π∠=,圆M 与,AB AC 分别相切于点,D E , 1AD =,点P 是圆M 及其内部任意一点,且(),AP xAD yAE x y R =+∈,则x y +的取值范围是__________.【答案】44⎡⎡-+-+⎣⎣7.计算: 00000tan10tan50tan120tan10tan50++=__________.【答案】【解析】由()0000000tan10tan50tan60tan 10501tan10tan50+=+==-,可得)00tan10tan501tan10tan50+=-=。
8.如图,在中,,以O 为圆心、OB 为半径作圆弧交OP 于A 点.若圆弧等分的面积,且AOB α∠=弧度,则tan αα=________.【答案】129.已知锐角,αβ满足()()cos 2cos sin sin αββαββ+=+,当α取得最大值时, tan2α=_________.【解析】由题意可知: ()sin cos sin ααββ=+,∴()22,1sin cos cos sin sin sin sin sinsin cos cos sin ααββαβαβαββ=-∴+= ∴()21sin cos sin cos sin αββαβ=+. 22221221cos sin cos sin tan tan sin sin cos tan βββββαββββ∴===+++. 当α取得最大值时, tan α取得最大. 211212tan tan tan tan tan βαβββ==++,当2tan β=时, tan α有最大值为4.∴2221tan tan tan ααα==-.故答案为:.10.已知点()1,0A , ()0,1B -, P 是曲线y =则AP BP ⋅的最大值是__________.【答案】111.若()()sin 3f x A ωϕ=++(0ω>,πϕ<)对任意实数t 都有ππ33f t f t ⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭.记()()cos 2g x A x ωϕ=+-,则π3g ⎛⎫= ⎪⎝⎭__________.【答案】2- 【解析】()()()sin 30,π,f x A x ωϕωϕ=++><对于任意实数t ,都有ππ33f t f t ⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象关于直线3x π=对称,故有sin 33f A ππωϕ⎛⎫⎛⎫=⋅+⎪ ⎪⎝⎭⎝⎭3+为最大值或最小值,即sin 1,3πωϕ⎛⎫⋅+=± ⎪⎝⎭ cos 03πωϕ⎛⎫∴⋅+= ⎪⎝⎭,故有cos 2233g A ππωϕ⎛⎫⎛⎫=⋅+-=- ⎪ ⎪⎝⎭⎝⎭,故答案为2-. 12.已知O 为ABC ∆的外接圆圆心, 16AB =, 10AC =,若A O x A By A C =+,且322525x y +=,则AO =__________. 【答案】1013.化简000001cos201sin10tan52sin20tan5+⎛⎫-- ⎪⎝⎭的值为__________.【答案】2【解析】原式22c o s 10c os 5s in 5s i n 10s i n 14s i n 10c o s 10si n 5c⎛⎫=--=-⎪⎝⎭ ()13cos102cos10sin10cos102sin 3010232sin102sin102sin102⎛⎫-- ⎪--⎝⎭====.14.设函数()()sin f x A x ωϕ=+ (其中,,A ωϕ是常数).若函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上具有单调性,且244f f f πππ⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()f x 的对称中心坐标为(_______________),0)(其中k Z ∈). 【答案】34k π15.给出下列命题:①存在实数x ,使3sin cos 2x x +=;②若,αβ是第一象限角,且αβ>,则cos cos αβ<;③函数2sin sin sin 1x x y x -=-是奇函数;④函数1sin 2y x =-的周期是π;⑤函数ln 1y x =-的图象与函数()2cos y x π=-(24x -≤≤)的图像所有交点的横坐标之和等于6. 其中正确命题的序号是______(把正确命题的序号都填上) 【答案】⑤16.已知则=__________.【答案】【解析】而,,17.设x∈R,f(x)=,若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,则实数k的取值范围是________.【答案】k≥2【解析】不等式化为k≥+的最大值,因为∈(0,1],所以k≥2.点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.18.如图,点是正六边形的边上的一个动点,设,则的最大值为______.【答案】219.设是定义在上的奇函数,且,设,若函数有且只有一个零点,则实数t的取值范围是__________.【答案】【解析】是定义在上的奇函数,且,即,得,则, ,则当 时,函数为增函数,且当 时,,当时,函数为减函数,且,由得,作出函数 和的图象如图:要使函数 有且只有一个零点,则函数与只有一个交点,则,故答案为.20.已知O 为ABC ∆的外心, 2AB =, 3AC =,如果AO x AB y AC =+,其中x 、y 满足210x y xy +=≠且,则cos BAC ∠=_________.【答案】3421.若函数能够在某个长度为1的闭区间上至少两次获得最大值1,且在区间上为增函数,则正整数的值为__________. 【答案】7【解析】由题意得:,又由在区间上为增函数得,所以正整数的值为22.已知函数在上为增函数,则的取值范围是__________.【答案】23.已知函数和,若存在实数使得,则实数的取值范围为__________.【答案】【解析】当时,;当时,,若存在使,则,即,解得,故填.点睛:本题考查学生的是函数的应用问题,属于中档题目.首先求出分段函数的值域,一段根据对数函数的单调性,另外一段利用对勾函数的性质以及基本不等式和反比例的值域求得,根据题意,即方程有解问题,从而限制的范围,解出不等式即可.24.如图所示,在中,点是的中点,过点的直线分别交直线,于不同的两点,,若,,则的值为__________.【答案】 【解析】 由题意得,所以.25.当直线y =k (x -2)+4和曲线y =有公共点时,实数k 的取值范围是________.【答案】26.已知函数()()22,232,2x x f x x x ⎧<⎪=⎨⎪--+≥⎩,若关于x 的方程f (x )﹣k=0有唯一一个实数根,则实数k 的取值范围是 . 【答案】[0,1)∪(2,+∞) 【解析】试题分析:关于x 的方程f (x )-k=0有唯一一个实数根, 等价于函数y=f (x )与y=k 的图象有唯一一个交点, 在同一个坐标系中作出它们的图象可得:由图象可知实数k 的取值范围是[0,1)∪(2,+∞) 考点:函数的零点27.已知θ∈(,),若存在实数x,y同时满足=,+=,则tanθ的值为.【答案】把②代入①,化简得+=③;又tanθ==,所以③式化为tan2θ+=,解得tan2θ=2或tan2θ=;所以tanθ=±或tanθ=±;又θ∈(,),所以tanθ>1,所以取tanθ=.故答案为:.28.已知函数()y f x =是定义域为R 的偶函数. 当0x ≥时,5sin() (01)42()1() 1 (1)4x x x f x x π⎧≤≤⎪⎪=⎨⎪+>⎪⎩ ,则f(1)= 若关于x 的方程2[()]()0f x af x b ++=(,a b R ∈),有且仅有6个不同实数根,则实数a 的取值范围是 【答案】54; 599(,)(,1)244----关于x 的方程2[()]()0f x af x b ++=,解得6(),()5f x a f x ==,当01x ≤≤时,5()0,4f x ⎡⎤∈⎢⎥⎣⎦,当时,5()1,4f x ⎛⎫∈ ⎪⎝⎭,由65154<<,则6()5f x =有4个实根,于是由图像可得,当时,有两个实根,当54a =时,有两个实根,综上可得,599(,)(,1)244--⋃--考点:分段函数的应用及函数奇偶性和根的存在性以及根的分布29.已知函数f (x )满足f (x ﹣1)=﹣f (﹣x+1),且当x ≤0时,f (x )=x 3,若对任意的x ∈[t ,t+2],不等式f (x+t )≥2f (x )恒成立,则实数t 的取值范围是 .【答案】[,+∞)则t≥=,故实数t的取值范围[,+∞),故答案为:[,+∞)考点:函数恒成立问题;抽象函数及其应用.30.已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥0,m∈N*),则m的最小值为.【答案】8考点:正弦函数的图象.。