初中总复习专题一
- 格式:doc
- 大小:487.00 KB
- 文档页数:7
第一学期七年级数学期末复习专题有理数姓名:_______________班级:_______________得分:_______________一选择题:1.如果+20%表示增加20%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%2.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03mmB.0.02mmC.30.03mmD.29.98mm3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.452.010010001…中,有理数有()4.在-,3.1415,0,-0.333…,-,-,A.2个B.3个C.4个D.5个5.10月7日,铁路局“十一”黄金周运输收官,累计发送旅客640万人,640万用科学计数法表示为()A.6.4×102B.640×104C.6.4×106D.6.4×1056.若向北走27米记为-27米,则向南走34米记为()A.34米B.+7米C.61米D.+34米7.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大是()A.aB.bC.cD.d8.比较,,的大小,结果正确的是()A. B.C. D.9.如果,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<010.已知ab≠0,则+的值不可能的是()A.0B.1C.2D.﹣211.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若+=3,则原点是().A.M或NB.M或RC.N或PD.P或R12.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示-1的点B,则点A所表示的数是()A.-3或5B.-5或3C.-5D.313.已知=3,=4,且x>y,则2x-y的值为()A.+2B.±2C.+10D.-2或+1014.有理数a,b,c在数轴上的位置如图所示,则()A.-2bB.0C.2cD.2c-2b15.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣116.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、9517.下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推,则第6个图形中火柴棒根数是()A.60B.61C.62D.6318.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-719.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测32017+1的个位数字是()A.0B.2C.4D.820.计算(﹣2)2016+(﹣2)2015的结果是()A.﹣1B.﹣22015C.22015D.﹣22016二填空题:21.把下面的有理数填在相应的大括号里:15,-,0,-30,0.15,-128,,+20,-2.6.(1)非负数集合:{,…};(2)负数集合:{,…};(3)正整数集合:{,…};(4)负分数集合:{,…}.22.近似数3.06亿精确到___________位.23.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.24.已知(x﹣2)2+|y+4|=0,则2x+y=_______.25.绝对值不大于5的整数有个.26.小韦与同学一起玩“24点”扑克牌游戏,即从一幅扑克牌(去掉大、小王)中任意抽出4张,根据牌面上的数字进行有理数混合运算(每张牌只能用一次)使运算结果等于24或-24,小韦抽得四张牌如图,“哇!我得到24点了!”他的算法是__27.有理数在数轴上的对应点如图所示,化简:.28.观察下列各题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…根据上面各式的规律,请直接写出1+3+5+7+9+…+99=________.29.观察下列等式:,,,…则=.(直接填结果,用含n的代数式表示,n是正整数,且n≥1)30.观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是三计算题:31.32.33.34.35.小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).37.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下列图象并思考,完成下列各题:(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你求出终点B表示什么数?A,B两点间的距离为多少?38.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=.(2)若|x﹣2|=5,则x=.(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是.39.阅读材料:求1+2+22+23+24+…+2200的值.解:设S=1+2+22+23+24+…+2199+2200,将等式两边同时乘以2得2S=2+22+23+24+25+…+2200+2201,将下式减去上式得2S-S=2201-1,即S=2201-1,即1+2+22+23+24+…+2200=2201-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n.(其中n为正整数)40.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.第一学期七年级数学期末复习专题有理数参考答案1、C2、C3、B4、D5、C6、D7、A8、D9、C10、B11、B12、B13、D14、B15、A16、A17、D18、B19、C20、C21、(1)15,0,0.15,,+20(2)-,-30,-128,-2.6(3)15,+20(4)-,-2.622、百万;23、5524、0.25、1126、23(1+2)__.27、-b+c+a;28、502.29、30、4.31、32、.33、;34、原式=-1×[-32-9+]-2.5=-1×(-32-9+2.5)-2.5=+32+9-2.5-2.5=36.35、(1)抽取;(2)抽取;(3)抽取;(4)答案不唯一;例如抽取-3,-5,3,4;36、37、(1)4_7__(2)1_2__(3)—92__88__(4)m+n-p_38、【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.39、解:(1)211-1(2)设S=1+3+32+33+34+…+3n ,将等式两边同乘以3得3S=3+32+33+34+35+…+3n+1,所以3S-S=3n+1-1,即2S=3n+1-1,所以S=2131-+n ,即1+3+32+33+34+ (3)=2131-+n 40、【解答】解:(1)∵动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒,∴P 到点A 的距离为:PA=t,P 到点C 的距离为:PC=(24+10)﹣t=34﹣t;故答案为:t,34﹣t;(2)当P 点在Q 点右侧,且Q 点还没有追上P 点时,3t+2=14+t 解得:t=6,∴此时点P 表示的数为﹣4,当P 点在Q 点左侧,且Q 点追上P 点后,相距2个单位,3t﹣2=14+t 解得:t=8,∴此时点P 表示的数为﹣2,当Q 点到达C 点后,当P 点在Q 点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P 表示的数为3,当Q 点到达C 点后,当P 点在Q 点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P 表示的数为4,综上所述:点P 表示的数为﹣4,﹣2,3,4.第一学期七年级数学期末复习专题整式的加减姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法中错误的是()A.-x2y的系数是-B.0是单项式C.xy的次数是1D.-x是一次单项式2.下列说法:①最大的负整数是;②的倒数是;③若互为相反数,则;④=;⑤单项式的系数是-2;⑥多项式是关于x,y的三次多项式。
人教版初中数学2019-2020学年九年级上学期期末专题复习专题1:一元二次方程一、单选题1.下列方程中,关于x的一元二次方程是()A. x2+2y=1B. ﹣2=0C. ax2+bx+c=0D. x2+2x=12.一元二次方程x2-x-4=0的一次项系数和常数项分别是()A. 1,-1B. 1,-4C. -1,-4D. -1,43.将一元二次方程化为一般形式,正确的是()A. B. C. D.4.方程的解是()A. B. C. , D.5.关于x的一元二次方程kx2-2x-1=0有实数根,则k的取值范围是( )A. k>-1或k≠0B. k≥-1C. k≤-1或k≠0D. k≥-1且k≠06.一元二次方程x2+4x+2=0的根的判别式的值为()A. 8B. 24C.D.7.已知x1、x2、是一元二次方程x2+x-2=0的两个根,则x1+x2+x1x2的值为()A. 1B. -3C. 3D. -2二、填空题8.方程x2-2ax+3=0有一个根是1,a的值是________。
9.若代数式可化为,则=________,=________.10.定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a,如:min{1,-2)=-2,min{-3,-2)=-3,则方程min{x,-x}=x2-1的解是________.三、计算题11.解下列方程。
(1)x2-5x+6=0(2)(2x+1)(x-4)=5.12.(1)先化简,再求值:(x-2y)2-x(x+3y)-4y2,其中x=-4,y= .(2)已知:x+y=6,xy=4,求下列各式的值x2+y213.按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.(5)(6x-1)2=25;四、解答题14.如图,在宽为20m,长为27m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为450 ,求道路的宽.15.要组织一次篮球邀请比赛,参赛的队伍每两个队都要比赛一场.赛程安排7天,每天比赛4场,问组织者应该邀请多少个队参赛?五、综合题16.已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.17.在一次聚会上,规定每两个人见面必须握手,且握手1次.(1)若参加聚会的人数为3,则共握手________次;若参加聚会的人数为5,则共握手________次;(2)若参加聚会的人数为n(n为正整数),则共握手________次;(3)若参加聚会的人共握手28次,请求出参加聚会的人数.(4)嘉嘉由握手问题想到了一个数学问题:若线段AB上共有m个点(不含端点A,B),线段总数为多少呢?请直接写出结论.答案解析部分一、单选题1. D解:A、含有两个未知数,不是一元二次方程,故本选项不符合题意;B、分母中含有未知数,是分式方程,故本选项不符合题意;C、当a=0时不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故答案为:D.【分析】一元二次方程是指含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,根据定义判断即可.2. C解:一元二次方程x2-x-4=0的一次项系数时-1,常数项是-4,故C正确。
初中总复习专题一、实数与代数式一、知识回顾(一)有理数1.概念2.数轴在数轴上表示的两个数,右边的数总比左边的数大.比较法则:正数都大于零,负数都小于零,正数大于负数.两个负数,绝对值大的的反而小3.相反数只有符号不同的两个数称互为相反数在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等.0的相反数是0.4.绝对值我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值①一个正数的绝对值是它本身;② 0的绝对值是0;③一个负数的绝对值是它的相反数.5. 有理数的加法法则①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不等的异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得0;=④一个数同0相加,仍得这个数.有理数的减法法则:减去一个数,等于加这个数的相反数6.准确数:与实际完全符合的数。
近似数:与实际接近的数7.有理数乘法法则①两数相乘,同号得正,异号得负,并把绝对值相乘②任何数同0相乘,都得0有理数乘法法则:除以一个不等于0的数,等于乘这个数的倒数8.有理数的乘方负数的奇次幂是负数,负数的偶次幂是正数正数的任何次幂都是正数,0的任何正整数次幂都是09. 科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种方法叫做科学记数法。
注意:在科学记数法中,10的指数比原数的整数位数少1,如原数有8位整数,指数就是7。
10.近似数的精确度的两种表示方式:(1)一个近似数四舍五入到哪一位即精确到哪一位。
(2)用有效数字来表示一个近似数,从左边第一个不是零的数字起到末尾数字为止的所有数字。
(二)实数1、无理数:定义:无限不循环小数叫无理数。
分类;无理数可以分为正无理数和负无理数。
如3-32。
说明:(1)我们已知π=3.1415926…它是圆周率。
(2)不要说“开方开不尽的数”是无理数.开方开不尽的数有两种理解方法:2开方开不尽,但2是有理数,所以应该说:开不尽的方根是无理数。
(3)用根号形式表示的数(方根)不都是无理数,如3,都是有理数。
4272、实数:定义:有理数和无理数统称实数.分类:<i>按定义分类:3、实数性质简述:Ⅰ.实数序性质:<1>三歧性:两个任意实数a、b,它们之间的关系必然是下列三种情况这一:a=b,a>b,a<b<2>传递性:三个任意实数a,b,c,若a<b,b<c则a<c<3>332这一点和有理数是有区别的:虽然任意两个有理数之间也有无数个有理数存在但它们不连续即在这两个有理数之间还有无数个无理数存在. 即有理数在数轴上只具有稠密性,而不具备连续性.Ⅱ.实数集合对有理数集合来说在有关概念及运算性质,运算律方面具有继承性及连续性.如:实数的绝对值、相反数的意义与有理数的绝对值、相反数意义一致;运算性质方面有理数具有的,实数也都具有:象幂的运算性质,加、减、乘、除、乘方的运算顺序,运算符号方面的性质,等.运算律也完全一致:Ⅲ.实数集合在运算及性质方面有新的扩展:在实数集合内,不仅可进行加、减、乘、除(除数不为0)、乘方运算,而且可以进行除了负数开偶次方之外的开方运算.即运算结果总是实数.相应地因式分解,解方程等也随之加深,另外分数指数幂被定义等等.4、实数的运算实数运算中,当遇到无理数,并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.<1>既然都化为有理数,那就依有理数运算法则去运算.<2>有的情况,结果并没有要求精确度而要求准确值,那将新的法则作为依据<3> 由近似计算理论,最后一步参与运算的数要比结果的精确度多取一位或多取一个有效数字(用四舍五入法取得)5、实数大小的比较法则:正实数都大于0,负实数都小于0;正实数大于一切负实数,两个负实数绝对值大的反而小.在数轴上,右边的数要比左边的大.具体方法:<1>算术平方根法:都化为算术平方根后比较被开方数.<2>平方法:两个正数,比较平方后的结果.<3>倒数法:当两个数的大小不可比较时,可以比较这两个数的倒数.还有其它方法如:比差法,比商法等.(三)代数式1.代数式:单独一个数或者一个字母也是代数式。
2.整式:没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
3.合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4.整式的运算:加减运算时,如果遇到括号先去括号,再合并同类项。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
幂的运算:M N M N A A A +=g , ()M N MN A A =,()MM MA AB B=, M N M N A A A -÷=.(四)因式分解1.因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.分解因式与整式乘法是互逆过程. 分解因式要注意以下几点:(1)分解的对象必须是多项式.(2)分解的结果一定是几个整式的乘积的形式. (3)要分解到不能分解为止. 3、因式分解的方法提取公因式法:公式法:平方差公式 ,完全平方公式;十字相乘法.分组分解法。
(五)分式1.分式:有除法运算并且除式中含有字母的有理式叫做分式。
2.异分母分式的加减,关键是要找到公分母,然后进行通分.通常将各分母分解因式,以寻求公分母.分式运算的结果一般要化到最简;分式的乘除运算的实质为约分,约分的关键是找出分式中分子、分母的公因式.通常需对每个分式的分子、分母分解因式.(六)二次根式1.像()2b a -这样表示的算术平方根,且根号内含字母的代数式叫做二次根式。
为了方便,我们把一个数的算术平方根(如3)也叫做二次根式。
注意:二次根式被开方数不小于02.含二次根式的代数式有意义(1)二次根式被开方数不小于0 (2)分母含有字母的,分母不等于03.两个基本性质: )0()(2≥=a a a (0)(0)a a a aa ≥⎧==⎨-<⎩二、综合练习一、选择题1.-3的相反数是 ( )A 、31-B 、3C 、 31D 、-32、一个点从数轴上表示—2的点开始,向右移动6个单位长度,再向左移动5个单位长度,则此时这个点表示的数是: ( ) A 、0 (B)、2 ( C)、1 ( D)、-13.以下语句: ①任何数都有平方根 ②任何数都有立方根 ③一个数有两个平方根 ④一个数有一个立方根。
正确的有( )A 、1句B 、2句C 、3句D 、4句 4. 在4-,3.14 ,π ,10,••15.1 ,72中无理数的个数是 ( ) A 、 5个 B 、 4个 C 、 3个 D 、 2个5、下列计算正确的是: ( )A 、-1-5 = -4B 、 1-9=8C 、()255-= D 、 3662=-6、小明的身高1.57m ,表示它实际身高α的范围是 ( )A 、1.565≤α<1.575B 、1.565<α≤1.575C 、1.52≤α<1.62D 、1.52<α≤1.627、大于-2.5小于3的整数有多少个 ( )A、4个 B、 5个 C、6个 D、7个 8、若2020+=-+M M ,则M 一定是 ( )A 、任意一个有理数B 、任意一个非零有理数C 、任意一个实数D 、任意一个非零实数 9、若a ,b 表示两个实数,下列关系正确的是( )A 、若3a =3b ,则a = bB 、若a <b ,则a 2<b 2C 、若a >b ,则|a|>|b|D 、若a >b ,则3a >3b10、如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是 ( ) (A ) -2 (B )-1+2 (C )21-- (D )21--1A二、填空题1、数轴上到-3的距离等于2的数是 .2、如果2=x ,则x 2=_________,=x 4_______________.3、把-29800000四舍五入,保留4个有效数字的近似数是(用科学记数法表示)______________________________4、现定义一种新运算:2-+=⊗a ab b a ,则)4()3(-⊗-= 。
5、02)4(2=-+-b a ,则=ba _________.6、把2008个正整数1,2,3,4,…,2007按如图方式排列成一个表。
现类似于图中用一个正方形框出表中任意的4个数,记左上角的一个数为x ,则右下角的那个数用含x 的式子表示为___________。
765432114131211109821201918171615 (23)22…………7、(-8)2004 (-0.125)2003= ,22005-22004= .8、()()1333--⋅+-m m=_____9、分解因式:ab b a 8)2(2+- = .32627x x x +-= . 10、若关于x 的方程2x a22x 1x -=---无解,则a 的值为_____________________. 三、解答题1、计算54)2(87)]6.0(433)4(548[1-⨯+-⨯--÷⨯⨯-2、某市出租车收费标准为:起步价6元(即行驶距离不超过3km 都付6元车费),超过3km 后,每增加1km ,加收2.4元(不足1km 按1km 计算)。
某人乘坐了x km (x 为大于3的整数)路程。
(1)试用代数式表示他应付的费用; (2)求当km x 8=时的乘车费用;(3)若此人付了30元车费,你能算出此人乘坐的最远路程吗?3、若a 、b 、c 为△ABC 的三边,且满足a 2+b 2+c 2=ab +ac +bc ,试判断△ABC 的形状。