2015年绵阳市八年级数学期末考试模拟试题及答案
- 格式:docx
- 大小:134.87 KB
- 文档页数:5
2015春期末考试八年级数学试题1一、选择题(每空2 分,共14分)1、若为实数,且,则的值为(??? )A.1??????? B .????? C.2?????? D .2、有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为(?? )A、3????? B 、????? C、3或?????? D、3或?????3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是(??? )A.7,24,25??? B .,,???? C.3,4,5????? D.4,,4、如下图,在中,分别是边的中点,已知,则的长为(??? )A.3??? B.4????? C.5?????? ?????? D.65、已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是(???? )A.y1>y2>y3???? B.y1<y2<y3??? C.y3>y1>y2????D.y3<y1<y26、一次函数与的图像如下图,则下列结论:①k<0;②>0;③当<3时,中,正确的个数是(??? )A.0??? B.1??? ???? C.2??? ?????? D.37、某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是(?? )A.23,25??B.23,23 ???????C.25,23??????D.25,25二、填空题(每空2分,共20分)8、函数中,自变x的取值范,是_________9、计算:(+1)2000(﹣1)2000= .10、若的三边a、b、c满足0,则△ABC的面积为____.11、请写出定理:“等腰三角形的两个底角相等”的逆定理:? .12、如图,在□ABCD中,对角线AC,BD相交于O,AC+BD=16,BC=6,则△AOD的周长为_________。
八年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠02.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=43.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<26.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣67.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣18.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣210.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,1511.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.2612.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=.(提示:方差公式为s2=.)18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开小时.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;2.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=4考点:解分式方程.分析:首先分式两边同时乘以最简公分母2x(x﹣1)去分母,再移项合并同类项即可得到x的值,然后要检验.解答:解:,去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解,故原方程的解为:X=3,故选:C.点评:此题主要考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验,这是同学们最容易出错的地方.3.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得△ABC的周长等于三条中位线围成的三角形的周长的2倍,然后代入数据计算即可得解.解答:解:∵△ABC的周长是12cm,∴△ABC三条中位线围成的三角形的周长=×12=6(cm).故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.解答:解:由矩形的面积16=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选C.点评:本题考查了反比例函数的应用,注意反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<2考点:反比例函数的图象;反比例函数图象上点的坐标特征.专题:压轴题;数形结合.分析:先根据反比例函数的图象过点A(﹣1,﹣2),利用数形结合求出x<﹣1时y的取值范围,再由反比例函数的图象关于原点对称的特点即可求出答案.解答:解:∵反比例函数的图象过点A(﹣1,﹣2),∴由函数图象可知,x<﹣1时,﹣2<y<0,∴当x>1时,0<y<2.故选:D.点评:本题考查的是反比例函数的性质及其图象,能利用数形结合求出x<﹣1时y的取值范围是解答此题的关键.6.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣6考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:根据题意可知:S△AOB=|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.故选:C.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣1考点:解分式方程.分析:去分母根据的是等式的性质2,方程的两边乘以最简公分母,即可将分式方程转化为整式方程.解答:解:方程的两边同乘(x﹣1),得2﹣x=x﹣1.故选D.点评:本题主要考查了等式的性质和解分式方程,注意:去分母时,不要漏乘不含分母的项.8.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个考点:平行四边形的判定.专题:几何图形问题.分析:根据平面的性质和平行四边形的判定求解.解答:解:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选:C.点评:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系.注意图形结合的解题思想.9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣2考点:反比例函数图象上点的坐标特征;菱形的性质.专题:计算题.分析:根据菱形的性质,点A与点C关于OB对称,而OB在y轴上,则可得到A(2,1),然后根据反比例函数图象上点的坐标特征求k的值.解答:解:∵菱形OABC的顶点B在y轴上,∴点A和点C关于y轴对称,∴A(2,1),∴k=2×1=2.故选A.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.10.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,15考点:众数;中位数.专题:常规题型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:根据图表数据,同一年龄人数最多的是15岁,共6人,所以众数是15,18名队员中,按照年龄从大到小排列,第9名队员的年龄是15岁,第10名队员的年龄是16岁,所以,中位数是=15.5.故选B.点评:本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.11.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.26考点:直角三角形斜边上的中线;等腰三角形的性质.分析:根据等腰三角形三线合一的性质可得AD⊥BC,DC=,再根据直角三角形的性质可得DE=EC==6.5,然后可得答案.解答:解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC==6.5,∴△CDE的周长为:DC+EC+DE=13+5=18,故选:B.点评:此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.12.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6考点:翻折变换(折叠问题);勾股定理.专题:压轴题;探究型.分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解答:解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=1.考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0.解答:解:∵x﹣1=0,∴x=1,当x=1,时x+3≠0,∴当x=1时,分式的值是0.故答案为1.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为 2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是﹣2.考点:反比例函数的性质;反比例函数的定义.专题:计算题.分析:根据反比例函数的定义可知m2﹣5=﹣1,又图象在第二、四象限,所以m+1<0,两式联立方程组求解即可.解答:解:∵函数是反比例函数,且图象在第二、四象限内,∴,解得m=±2且m<﹣1,∴m=﹣2.故答案为:﹣2.点评:本题考查了反比例函数的定义及图象性质.反比例函数解析式的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,注意自变量x的次数是﹣1;当k>0时,反比例函数图象在一、三象限,当k<0时,反比例函数图象在第二、四象限内.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为4.考点:菱形的判定与性质;勾股定理的逆定理.分析:根据勾股定理的逆定理可得对角线互相垂直,然后根据菱形性质可求出面积.解答:解:解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.点评:本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=6.(提示:方差公式为s2=.)考点:方差.分析:先由平均数公式求得x的值,再由方差公式求解.解答:解:∵平均数=(﹣1+2+3+x+0)÷5=2∴﹣1+2+3+x+0=10,x=6∴方差S2=[(﹣1﹣2)2+(0﹣2)2+(2﹣2)2+(6﹣2)2+(3﹣2)2]÷5=6.故答案为6.点评:本题考查方差的定义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开15小时.考点:分式方程的应用.分析:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,根据题意可得,一个进水管(x+5)小时进的水量=两个出水管5个小时的出水量,一个进水管(x+3)小时进的水量=三个出水管3个小时的出水量,据此列方程组求解.解答:解:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,由题意得,,两式相除,得:,解得:x=15,经检验,x=15是原分式方程的解.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用二次根式性质化简,第三项利用零指数幂法则计算,第四项利用负整数指数幂法则计算,最后一项利用立方根定义计算即可得到结果.解答:解:原式=﹣1+3﹣2+1﹣3+4=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.考点:平行四边形的判定与性质.专题:探究型.分析:根据CE∥AB,DE交AC于点O,且OA=OC,求证△ADO≌△ECO,然后求证四边形ADCE 是平行四边形,即可得出结论.解答:解:猜想线段CD与线段AE的大小关系和位置关系是:相等且平行.理由:∵CE∥AB,∴∠DAO=∠ECO,∵在△ADO和△ECO中∴△ADO≌△ECO(ASA),∴AD=CE,∴四边形ADCE是平行四边形,∴CD AE.点评:此题主要考查了平行四边形的判定与性质等知识点的理解和掌握,解答此题的关键是求证△ADO≌△ECO,然后可得证四边形ADCE是平行四边形,即可得出结论.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=[﹣]•=•=•=.当x=2时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?考点:分式方程的应用.分析:根据:原计划完成任务的天数﹣实际完成任务的天数=4,列方程即可.解答:解:设原计划每天种x棵树,据题意得,,解得x=30,经检验得出:x=30是原方程的解.答:原计划每天种30棵树.点评:此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键.23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?考点:加权平均数;条形统计图;众数;极差.专题:图表型.分析:运用极差、众数、平均数的定义并结合条形统计图来分析和解决题目.解答:解:(1)专业知识方面3人得分极差是18﹣14=4分,工作经验方面3人得分的众数是15,在仪表形象方面丙最有优势;(2)甲得分:14×0.5+17×0.35+12×0.15=14.75分;乙得分:18×0.5+15×0.35+11×0.15=15.9分;丙得分:16×0.5+15×0.35+14×0.15=15.35分,∴应录用乙;(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在工作经验和仪表形象.点评:本题考查了从统计图中获取信息的能力和计算加权平均数的能力.24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)考点:全等三角形的判定与性质;矩形的判定与性质.专题:证明题.分析:作CF⊥BE,垂足为F,得出矩形CFED,求出∠CBF=∠A,根据AAS证△BAE≌△CBF,推出BF=AE即可.解答:证明:作CF⊥BE,垂足为F,∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∴四边形EFCD为矩形,∴CD=EF,∵∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,在△BAE和△CBF中,,∴△BAE≌△CBF(AAS),∴BF=AE,∴BE=BF+FE=AE+CD.点评:本题考查了全等三角形的性质和判定,矩形的判定和性质的应用,关键是求出△BAE≌△CBF,主要考查学生运用性质进行推理的能力.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.考点:反比例函数综合题.专题:数形结合.分析:(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式;(2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.解答:解:(1)由题意知,OA=3,OB=4在Rt△AOB中,AB=∵四边形ABCD为菱形∴AD=BC=AB=5,∴C(﹣4,﹣5).设经过点C的反比例函数的解析式为(k≠0),则=﹣5,解得k=20.故所求的反比例函数的解析式为.(2)设P(x,y)∵AD=AB=5,OA=3,∴OD=2,S△COD=即,∴|x|=,∴当x=时,y==,当x=﹣时,y==﹣∴P()或().点评:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.考点:一次函数综合题.分析:(1)根据平行四边形PQAB的对边相等的性质得到关于t的方程,通过解方程求得t的值;(2)由题意得到:OC=4cm,OA=16cm.利用梯形的面积公式求得S梯形OABC=62(cm2),S四边形PQOC=,结合限制性条件“PQ所在直线将四边形OABC分成左右两部分的面积比为1:2”列出关于t的方程,通过解方程来求t的值;(3)根据(2)中求得的t的值可以得到点P、Q的坐标,则利用待定系数法来求直线PQ的解析式.解答:解:(1)ts后,BP=(15﹣2t)cm,AQ=4t cm.由BP=AQ,得15﹣2t=4t,t=2.5(s).又∵OA∥BC,∴当t=2.5s时,四边形PQAB为平行四边形.(2)∵点C坐标为(0,4),点A坐标为(16,0),∴OC=4cm,OA=16cm.∴S梯形OABC=(OA+BC)•OC=×(16+15)×4=62(cm2).∵t秒后,PC=2tcm,OQ=(16﹣4t)cm,∴S四边形PQOC=,又∵PQ所在直线将四边形OABC分成左右两部分的面积比为1:2,∴,解得(s).当(s)时,直线PQ将四边形OABC分成左右两部分的面积比为1:2.(3)当s时,P(,4),Q(,0).设直线PQ的解析式为:y=kx+b(k≠0),则,解得所以,此时直线PQ的函数关系式为.点评:本题考查了一次函数综合题,解题时,利用了梯形的面积公式、待定系数法求一次函数的解析式、平行四边形的判定定理等知识点,题中运用动点的运动速度与运动时间求出相关线段的长是解题的关键.。
2015年秋期义务教育阶段教学质量监测八年级 数学(考试时间:120分钟,总分:120分)本试题卷共4页。
考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.考试结束,将本试题卷和答题卡一并交回。
注意事项:1.答题前,考生在答题卷上务必将自己的姓名、学校、班级、考号填写清楚,并贴好条形码。
请认真核准条形码上的考号、姓名和科目。
2.解答选择题时,每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.解答填空题、解答题时,请在答题卷上各题的答题区域内作答。
一、选择题(本大题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一个正确选项。
(注意:在试题卷上作答无效) 1.9的平方根是( )A . 3B .3-C .3±D .9 2。
下列计算正确的是( )A .532x x =)( B .232a a a =+ C .2235n m mn mn =-÷-)()( D .1243a a a =⋅ 3.下列每一组数据中的三个数值分别为三角形的三边长,能构成直角三角形的是( )A .3、4、5B 。
7、8、9C .1、2、3D 。
6、12、134.如图,在ABC ∆中,︒=∠==60,B DC AD AB ,则C ∠的度数为( )A 。
︒60B .︒30C .︒35D .︒405.已知甲、乙两班男、女生人数的扇形统计图如图,则下列说法正确的是( ) A .甲班男生比乙班男生多 B .乙班女生比甲班女生多 C .乙班女生与乙班男生一样多 D .甲、乙两班人数一样多 6.下列四个结论中正确的是( ) A .3762<<B .6723<<C .6273<<D .2673<<7.有下列命题:①两直线平行,同旁内角相等;②面积相等的两个三角形全等;③有一个角为45°的等腰三角形必为直角三角形;④直角三角形的两条边长分别为3和4,则斜边长为5或7。
2015年八年级数学(下)期末考试卷考试时间:120分钟 总分:120分 命题:Mr. Xiong 一、选择题 (10×3′=30分)1、已知a<b 且ab ≠0,化简二次根式b a 3-的正确结果是( ) A. -a ab - B.-a ab C.a ab D.a ab -2、三角形的三边长a 、b 、c ,由下列条件不能判断它是直角三角形的是( ) A. a:b:c=7:16:14 B.222c b a =-C.2a =(b+c)(b-c)D.a:b:c=15:9:123、如图,在矩形纸片ABCD 中,AB=5CM ,BC=10CM ,CD 上有一点E ,ED=2cm ,AD 上有一点P ,PD=3cm ,过点P 作PF ⊥AD ,交BC 于点F ,将纸片折叠,使点P 与点E 重合,折痕与PF 交于点Q ,则PQ 的长是( ). A.413 cm B.3cm C.2cm D.27cm 4、5、已知a-b=2+3,b-c=3-2,则ac bc ab c b a ---++222的值为( ) A 、310 B 、123 C 、10 D 、156、数据10,10,x ,8的众数与平均数相同,那么这组数的中位数是()A .10 B .8C .12D .47、已知每一个小时有一列速度相同的动车从甲地开往乙地,图中OA 、MN 分别是第一列动车和第二列动车离甲地的路程S (km )与运行时间t (h )的函数图象,折线DB ﹣BC是一列从乙地开往甲地速度为100km/h 的普通快车距甲地的路程S (km )与运行时间t (h )的函数图象.以下说法错误的是( )第3题8、已知一次函数y=(2k-1)x-k 的图像不经过第一象限,则k 的取值范围是( )A. 21 kB. 0<k<21C. 0≤k<21D. 0≤k ≤219、如图所示,一个圆柱高为8cm ,底面圆的半径为5cm ,则从圆柱左下角A 点出发.沿圆柱体表面到右上角B 点的最短路程为( )A .B.C.D .以上都不对10、如图所示.直线y=x+2与y 轴相交于点A ,OB 1=OA ,以OB 1为底边作等腰三角形A 1OB 1,顶点A 1在直线y=x+2上,△A 1OB 1记作第一个等腰三角形;然后过B 1作平行于OA 1的直线B 1A 2与直线y=x+2相交于点A 2,再以B 1A 2为腰作等腰三角形A 2B 1B 2,记作第二个等腰三角形;同样过B 2作平行于OA 1的直线B 2A 3与直钱y=x+2相交于点A 3,再以B 2A 3为腰作等腰三角形A 3B 2B 3,记作第三个等腰三角形;依此类推,则等腰三角形A 10B 9B 10的面积为( )A .3•48 B .3•49 C .3•410 D .3•411 二、填空题(每小题3分,共24分)11、已知2753n 是整数,则正整数n 的最小值是_____________.12、如图,正方形ABCD 的边长为4,点P 在DC 边上且DP=1,点Q 是AC 上一动点,则DQ+PQ 的最小值为______.A . 普通快车比第一列动车晚发车0.5hB . 普通快车比第一列动车晚到达终点1.5hC . 第二列动车出发后1h 与普通快车相遇D .普通快车与迎面的相邻两动车相遇的时间间隔为0.7h第7题第十题图13、如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴,y 轴上,顶点O 与原点O 重合连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在D 的位置,若B (1, 2)则点D 的坐标为_____________.14、如图,直线y=kx+b 经过A (-1,2)、B (-2, 0)两点,则0≤kx+b ≤-2x 的解集是____________.15、若a ,b ,c ,是直角三角形的三条边长,斜边c 上的高的长是h ,给出下列结论:(1)以a 2,b 2,c 2的长为边的三条线段能组成一个三角形;(2)以,,的长为边的三条线段能组成一个三角形; (3)以a +b ,c +h ,h 的长为边的三条线段能组成直角三角形;(4)以,,的长为边的三条线段能组成直角三角形;(5)以,,的长为边的三条线段能组成直角三角形.其中正确结论的序号为________.16、甲、乙、丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.设甲丙交手a 局,乙丙交手b 局,甲乙交手c 局,则4a ﹣1+b ﹣2c 0=________,a-2, b-15, c-5三数的方差为________.17、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A=30°,∠B=90°,BC=8米.当正方形DEFH 运动到什么位置,即当AE=________米时,有222BC AE DC +=.18、小王、小阳两人同时从甲、乙两地出发相向而行,小王先到达乙地后原地休息,她们二人的距离y (km )与步行的时间x (h )之间的函数关系的图像如图所示,则直线AB 的解析式为______________________. 三、解答题(共66分) 19、(6分)计算x x xx x 23)3221286÷+-(20、如图,三角形ABC 为等边三角形,D 、F 分别为BC 、AC 上的一点,且CD=BF,以AD 为边作等边三角形ADE 。
2015~2016学年度上学期期末教学质量检测试题八 年 级 数 学(考试时间90分钟,共120分)题号 一 二 三总分 20 21 22 23 24 25得分一.选择题:相信你一定能选对!(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案涂在答题卡上,每小题3分,共36分) 1.下面所给的交通标志图中是轴对称图形的是2.下列运算正确的是A. 734)(a a =B. 236a a a =÷C. 3336)2(b a ab = D. 1055a a a -=⋅-3.若三角形的三边长分别为3,4,1-x ,则x 的取值范围是 A .0<x <8 B .2<x <8 C .0<x <6 D .2<x <64.点A (x ,y )关于x 轴对称的点为(z ,x +3),关于Y 轴对称的点为(z -2,y ),则点A 的坐标为A.(1,4)B.(—1,4)C.(—1,—4)D.(1,—4)5.果把分式yx xy+中的x 和y 都扩大2倍,即分式的值···A.扩大4倍;B.扩大2倍; C 、不变; D.缩小2倍 6.已知m —n =—1,则(m —n )²—2m +2n 的值是A.2B.3C.1D.—17.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为A. 6B. 7C. 8D. 98. 若分式0392=+-x x ,则x 的值是 A. 3± B. 3 C. -3D. 09.化简的结果是A. 0B. 1C. -1D. 2(2)m +10.如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF ,结论:①EM =FN ;②CD =DN ;③∠F AN =∠EAM ;④△ACN ≌△ABM .其中正确的有( )A. 1个B. 2个C. 3个D. 4个 11.如图:在△ABC 内有一点D ,且DA =DB =DC ,若∠DAB =20°,∠DAC =30°,则∠BDC 的大小是 A .100° B .80° C .70° D .50°12. 如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别为R 、S ,若AQ =PQ ,PR =PS ,则这四个结论中正确的有①PA 平分∠BAC ;②AS =AR ;③QP ∥AR ;④△BRP ≌△CSP .A .4个B .3个C .2个D .1个二.填空题:你能填得又对又快吗?(把答案填在题中横线上,每小题3分,共21分) 13.计算:(2a 2)3•a 4= .14.化简:=-+-x x x 2422. 15.若1622++ax x 是一个完全平方式,则a =______. 16.若m =2n +1,则m 24-mn +4n 2的值是 .17.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为 .18.如图,已知点C 是∠AOB 平分线上一点,点E ,F 分别在边OA ,OB 上,如果要得到OE =OF ,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为 . ①∠OCE =∠OCF ;②∠OEC =∠OFC ;③EC =FC ;④EF ⊥OC . 19.观察下列运算过程:2320122013133333S =++++++ ①, ①×3得2320132014333333S =+++++ ②,②-①得20142014312312S S -=-=,.通过上面计算方法计算2320122013155555++++++= ________.三.解答题:一定要细心,你能行!(共63分) 20.计算(每小题5分,共10分):12第题图18第题图⑴)2)(2()(2x y x y y x -+--;(2) 31)3996(22+-÷+--+-m m m m m m m .21.因式分解(每小题5分,共10分): (1)xy y x y x 4423+-;(2)a a a 3223-+.22.解方程与化简(每小题5分,共10分) (1)解方程: 12+x x +13-x = 2;(2)当2x =时,求)311(96922++⋅+--x x x x 的值.23. (本题满分10分) 小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC =AD ,BC =BD ,则△ACB 与△ADB 有怎样的关系? (1)请你帮他们解答,并说明理由.(2)小明在解答的过程中,发现如果在AB 上任取一点E ,连接CE 、DE ,CE 与DE 有一定的数量关系,请你写出CE 与DE 的数量关系,并说明成立的理由(如图2); (3)小亮在小明说出理由后,提出如果在AB 的延长线上任取一点P ,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3)题图第2324. (本题满分11分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?25. (本题满分12分)如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE与AC相交于点F.(1)试判断△CDE的形状,并说明理由.(2)是否存在点D,使AE=AF?如果存在,求出此时AD的长,如果不存在,请说明理由.温馨提示:请仔细认真检查,千万不要因为自己的粗心大意造成失误而后悔哟!25第题图。
2015年秋期义务教育阶段教学质量监测八年级 数学(考试时间:120分钟,总分:120分)本试题卷共4页。
考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.考试结束,将本试题卷和答题卡一并交回。
注意事项:1.答题前,考生在答题卷上务必将自己的姓名、学校、班级、考号填写清楚,并贴好条形码。
请认真核准条形码上的考号、姓名和科目。
2.解答选择题时,每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.解答填空题、解答题时,请在答题卷上各题的答题区域内作答。
一、选择题(本大题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一个正确选项. (注意:在试题卷上作答无效) 1.9的平方根是( )A . 3B .3-C .3±D .9 2.下列计算正确的是( )A .532x x =)( B .232a a a =+ C .2235n m mn mn =-÷-)()( D .1243a a a =⋅ 3.下列每一组数据中的三个数值分别为三角形的三边长,能构成直角三角形的是( )A .3、4、5B .7、8、9C .1、2、3D .6、12、134.如图,在ABC ∆中,︒=∠==60,B DC AD AB ,则C ∠的度数为( )A .︒60B .︒30C .︒35D .︒405.已知甲、乙两班男、女生人数的扇形统计图如图,则下列说法正确的是( )A .甲班男生比乙班男生多B .乙班女生比甲班女生多C .乙班女生与乙班男生一样多D .甲、乙两班人数一样多 6.下列四个结论中正确的是( ) A .3762<<B .C .D .7.有下列命题:①两直线平行,同旁内角相等;②面积相等的两个三角形全等;③有一个角为45°的等腰三角形必为直角三角形;④直角三角形的两条边长分别为3和4,则斜边长为5或7.其中真命题的个数是( )A .0B .1C .2D .3 8.如图,在Rt △ABC 中,2,30,90=︒=∠︒=∠BC A ACB , 将ABC ∆绕点C 逆时针方向旋转n 度后得到EDC ∆,此时, 点D 在边AB 上,斜边DE 交边AC 于点F ,则n 的大小 和图中阴影部分的面积分别为( )A .30,2B . 60,2C .60,3D .60,23 二、填空题(本大题共8个小题,每小题3分,共24分).请把答案直接填在答题卡对应题中横线上.(注意: 在试题卷上作答无效) 9.计算:327- = .10.若m x x +-62是一个完全平方式,则m 的值是 .11.若04)3(2=-++b a ,则ab = .12.在一次调查中,出现A 种情况的频率为6.0,其余情况出现的频数之和为24,则这次数据调查的总数为 .13.如图:阴影部分(阴影部分为正方形)的面积 .14.如图,在Rt △ABC 中,∠B =90°,CD 平分∠ACB ,过点D 作DE ⊥AC 于点E ,若AE =4,AB =10,则△ADE 的周长为 .15.现有A ,B ,C 三种型号地砖,其规格如图所示,用这三种地砖铺设一个6723<<6273<<2673<<长为y x +,宽为y x 23+的长方形地面,则需要A 种地砖 块. 16.如图,M 为等边△ABC 内部的一点,且MA =8,MB =10,MC =6,将△BMC 绕点C 顺时针旋转得到△ANC .下列说法中:①MC =NC ;②AM =AN ;③S 四边形AMCN =ABM ABC S S ∆∆-;④︒=∠120AMC ,正确的有 .(请填上番号) 三、解答题(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤. (注意: 在试题卷上作答无效) 17.计算(每小题5分,共15分)(1)计算:34a a a ÷⋅ (2)计算:23)2(2816---+-(3)因式分解:)(4)(2y x y x a ---18.(6分)先化简,再求值:)3()2)(2()2(2m n n n m n m n m -⋅++--+,其中1,2-==n m . 19.(6分)已知:如图,点O 为AC 、BD 的交点,且D A DC AB ∠=∠=, 求证:OCB OBC ∠=∠20.(6分)如图,在ABC ∆中,︒=∠90C ,分别以B A ,为圆心,以相等长度(大于AB 21的长度)为半径画弧,得到两个交点N M 、,作直线MN 分别交AB AC 、于D E 、两点,连结EB ,若︒=∠28EBC ,求A ∠的度数.21.(8分)雾霾天气是一种大气污染状态,雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,尤其是PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶”。
数 学 试 卷(考试时间:100分钟 满分:100分)一、选择题。
(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案1.使分式21x -有意义...的x 的取值范围是( ). (A)x ≥21(B )x ≤21 (C )12x >(D )12x ≠2.如图,某反比例函数的图像过点M (2-,1),则此反比例函数 表达式为。
A .2y x =B .2y x =-C .12y x =D .12y x=- 3. 一位经销商计划进一批“运动鞋”,他到滨州的一所学校里对初二的100名男生的鞋号进行了调查,经销商最感兴趣的是这组鞋号的( )A .中位数B .平均数C .方差D .众数 4.下列各数据中,不能组成直角三角形的是( ) (A )3,4,5;(B )1,123,3;(C )1,113,213;(D )6,8,10 5、已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A 、当AB=BC 时,它是菱形 B 、当AC ⊥BD 时,它是菱形C 、当∠ABC=900时,它是矩形 D 、当AC=BD 时,它是正方形6、放学以后,小丽和小宏从学校分手,分别沿东南方向和西南方向回家,若小丽和小宏行走的速度都是40米/分,小丽用15分钟到家,小宏用20分钟到家,小丽和小宏家的距离为( )A. 600米B. 800米C. 1000米D. 不能确定 7、反比例函数xky =(k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和题号一二三总分2122 23 24 25 得分第7题图S 2 的大小关系为( )A . S 1> S 2B . S 1= S 2C . S 1 <S 2D . 无法确定 8.分式111(1)a a a +++的计算结果是( ) A .11a + B .1a a + C .1aD .1a a + 9.正比例函数kx y 2=与反比例函数)0(1≠-=k xk y 在同一坐标系中的图象不可能是( )10.如图,在平面直角坐标系中,以O (0,0),A (1,1),B (3,0)为顶点,构造平行四边形,下列各点中不能..作为平行四边形顶点坐标的是 ( ) A 、(4,1) B 、(-3,1) C 、(-2,1) D 、(2,-1) 二、填空题(每小师2分,共20分)11.x =_______时,分式4162+-x x 的值为零.12.数据2,x ,9,2,8,5的平均数为5,它的极差为 。
2015年绵阳市初中学业考试暨高中阶段学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项最符合题目要求.1.±2是4的( )A.平方根B.相反数C.绝对值D.算术平方根2.下列图案中,轴对称图形是( )3.若+|2a-b+1|=0,则(b-a)2015=( )A.-1B.1C.52015D.-520154.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为( )A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元5.如图,在△ABC中,∠B、∠C的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°6.要使代数式-有意义,则x的( )A.最大值是B.最小值是C.最大值是D.最小值是7.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( )A.6B.12C.20D.248.由若干个棱长为1cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是( )A.15cm2B.18cm2C.21cm2D.24cm29.要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发现只有两条鱼是刚才做了记号的鱼,假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为( )A.5000条B.2500条C.1750条D.1250条10.如图,要在宽为22米的九洲大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直.当灯罩的轴线DO通过公路路面的中心线时照明效果最佳.此时,路灯的灯柱BC高度应该设计为( )A.(11-2)米B.(11-2)米C.(11-2)米D.(11-4)米11.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=( )A.14B.15C.16D.1712.如图,D是等边△ABC边AB上的一点,且AD∶DB=1∶2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上,则CE∶CF=()A. B. C. D.第Ⅱ卷(非选择题,共104分)二、填空题:本大题共6个小题,每小题3分,共18分.13.计算:a(a2÷a)-a2= .14.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别是A(-2,1)和B(-2,-3),那么第一架轰炸机C的平面坐标是.15.在实数范围内因式分解:x2y-3y= .16.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .17.关于m的一元二次方程nm2-n2m-2=0的一个根为2,则n2+n-2= .18.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC 重合,点D旋转至点E,则∠CDE的正切值为.三、解答题:本大题共7个小题,共86分.解答应写出文字说明、证明过程或演算步骤.19.(本题共2个小题,每小题8分,共16分)(1)计算:|1-|+---+-;(2)解方程:=1-.20.(本题满分11分)阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46(1)前10株西红柿秧上小西红柿个数的平均数是,中位数是,众数是;(2)(3)通过频数分布直方图试分析此大棚中西红柿的长势.21.(本题满分11分)如图,反比例函数y=(k>0)与正比例函数y=ax相交于A(1,k),B(-k,-1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1)、D(x2,y2),且|x1-x2|·|y1-y2|=5,求b的值.22.(本题满分11分)如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于点D,连结DC、DA、OA、OC,四边形OADC为平行四边形.(1)求证:△BOC≌△CDA;(2)若AB=2,求阴影部分的面积.23.(本题满分11分)南海地质勘探队在南沙群岛的一小岛发现很有价值的A、B两种矿石,A矿石大约565吨、B 矿石大约500吨,上报公司,要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1000元,乙货船每艘运费1200元.(1)设运送这些矿石的总运费为y元,若使用甲货船x艘,请写出y和x之间的函数关系式;(2)如果甲货船最多可装A矿石20吨和B矿石15吨,乙货船最多可装A矿石15吨和B矿石25吨,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.24.(本题满分12分)已知抛物线y=-x2-2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x-a分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标;(2)将△NAC沿着y轴翻折,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连结CD,求a的值及△PCD的面积;(3)在抛物线y=-x2-2x+a(a>0)上是否存在点P,使得以Q、A、C、N为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.25.(本题满分14分)如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A、G重合),设运动时间为t秒.连结BM并延长交AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=NH;(3)过点M分别作AB、AD的垂线,垂足分别为E、F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.答案全解全析:一、选择题1.A 因为(±2)2=4,所以±2是4的平方根.故选A.2.D 选项D中的图案符合轴对称图形的特征.故选D.3.A 由题意得-解得--所以(b-a)2015=-1.故选A.4.C 把数242亿写成a×10n的形式,其中a=2.42,n是比整数位数少1的数,即n=10,所以242亿美元用科学记数法表示为2.42×1010美元.故选C.5.C 在△ABC中,∠ACB=180°-∠A-∠ABC=180°-60°-42°=78°.∵BE、CD分别平分∠ABC、∠ACB,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=180°-21°-39°=120°.故选C.评析本题主要考查三角形的内角和定理,角平分线的概念,属容易题.6.A 要使-有意义,应满足2-3x≥0,∴x≤,∴x的最大值为.故选A.7.D 在Rt△CBE中,CE==5,∴AE=AC-CE=5,∴AE=CE=5,又BE=DE=3,∴四边形ABCD为平行四边形.∴S▱ABCD=2S△CBD=2×·BD·BC=6×4=24.故选D.8.B 由三视图可知该几何体如图,∵各个小正方体的棱长为1cm,∴这个几何体的表面积是3×6×1×1=18(cm2).9.B 由题意可估计这个鱼塘的鱼数约为100÷=2500(条),故选B.10.D 延长BC、OD交于点E,∵CD⊥OD,∠DCB=120°,∴∠E=30°,∵∠B=90°,OB=22×=11米,∴EB=11米,在Rt△DCE中,CE=2DC=4米.∴BC=EB-CE=(11-4)米,故选D.11.C 根据每个“龟图”中的“○”的个数,得第n个“龟图”中的“○”的个数可表示为5+n(n-1),当5+n(n-1)=245时,解得n1=16,n2=-15(舍去),所以n=16.故选C.12.B设等边△ABC的边长为3,则AD=1,BD=2,由折叠的性质可知∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,在△AED中,∵∠A=60°,∴∠AED+∠ADE=120°,∴∠AED=∠BDF,又=,可得∵∠A=∠B,∴△AED∽△BDF,∴==,又∵CE=DE,CF=DF,∴-=,-2CE=3CF-CE·CF,CF=3CE-CE·CF,∴2CE-3CF=CF-3CE,∴=.故选B.二、填空题13.答案0解析原式=a·a-a2=a2-a2=0.14.答案(2,-1)解析本题主要考查平面直角坐标系中点的坐标表示,根据A与B两点的坐标容易确定坐标原点的位置,从而确定C(2,-1).15.答案y(x-)(x+)解析原式=y(x2-3)=y(x-)(x+).16.答案9.5°(或9°30')解析∵AB∥CD,∠CDE=119°,∴∠BED=∠D=119°.∵EF平分∠DEB,∴∠BEF=∠DEB=,∴∠AEF=.∴∠F=∠AGF-∠AEF=130°-=9.5°(或9°30').17.答案26解析把2代入原方程得,4n-2n2-2=0,显然n≠0,∴--=4-2n-=0,∴n+=2,∴=n2++2=28,∴n2+=26,即n2+n-2=26.18.答案3解析∵△ABC为等边三角形,∴∠BAD+∠DAC=60°,由旋转的性质可得△ABD≌△ACE.∴∠BAD=∠CAE,AE=AD=5,∴∠CAE+∠DAC=∠DAE=60°,∴△ADE为等边三角形,∴DE=AD=5,作EF⊥CD于点F,设DF=x,在Rt△EFD与Rt△EFC中,由勾股定理得DE2-DF2=EC2-CF2,即52-x2=62-(4-x)2,∴x=,∴EF=-=-=,∴tan∠CDE==3.三、解答题-+-(4分)19.解析(1)原式=-(1-)+-=-1+-+(-2)(6分)=-1+4--2=4-1-2=1.(8分)(2)原方程可变形为=-,即=.(2分)可得(2x+2)x=3x+3,整理得2x2-x-3=0.解得x1=-1,x2=.(6分)检验:x=-1时,原方程无意义.∴x=是原方程的解.(8分)20.解析(1)47;49.5;60.(3分)(2)(6分)(9分)(3)①此大棚中的西红柿长势普遍较好,最少都有28个;②西红柿个数最集中的株数在第三组,共有7株;③西红柿的个数分布合理,中间多,两端少.(11分) (3条信息任答一条,给满分2分)2=1,又k>0,所以k=a=1,(2分)21.解析(1)由题意得--即k故函数解析式分别为y=、y=x.(4分)(2)如图,过点C作CE垂直于x轴,过点D作y轴的垂线,交CE于点E.设直线y=x+b与x、y 轴分别交于点G、F,显然OF=OG,易知△FGO∽△CDE,∴△CDE 为等腰直角三角形,∴CE=DE, ∴|y 1-y 2|=|x 1-x 2|,(6分) ∵|y 1-y 2|·|x 1-x 2|=5, ∴|x 1-x 2|= .(8分) 由得x 2+bx-1=0, 解得x 1=-,x 2=- -,∴|x 1-x 2|=--- -=| |= ,(10分)解得b=±1.(11分)(此题也可用代数方法得出|x 1- x 2|= ,再利用韦达定理求解) 22.解析 (1)证明:∵O 为△ABC 的内心,∴∠2=∠3,∠5=∠6,∵∠1=∠2,∴∠1=∠3,(3分) ∵四边形OADC 为平行四边形, ∴AD CO,∴∠4=∠5,∴∠4=∠6, ∴△BOC ≌△CDA(AAS).(6分) (2)由(1)得BC=AC,∠3=∠4=∠6, ∴∠ABC=∠ACB,∴AB=AC, ∴△ABC 为等边三角形,(8分)∴△ABC 的内心O 也是外心,∴OA=OB=OC. 设E 为BD 与AC 的交点,则BE 垂直平分AC. 在Rt △OCE 中,CE= AC=AB=1,∠OCE=30°, ∴OA=OB=OC=,∵∠AOB=120°, ∴S 阴影=S扇形AOB -S △AOB = × - ×2× = -.(11分)23.解析(1)y=1000x+1200(30-x).(3分)(2)由题意可得--(5分)解得∴23≤x≤25.因为x为正整数,所以x=23、24、25.(7分)方案一:甲货船23艘、乙货船7艘,运费y=1000×23+1200×7=31400元;(8分)方案二:甲货船24艘、乙货船6艘,运费y=1000×24+1200×6=31200元;(9分)方案三:甲货船25艘、乙货船5艘,运费y=1000×25+1200×5=31000元.(10分)经分析得方案三运费最低,为31000元.(11分)24.解析(1)由题意联立---整理得2x2+5x-4a=0,(1分)由Δ=25+32a>0,解得a>-.∵a≠0,∴a>-且a≠0.(2分)令x=0,得y=a,∴A(0,a).(3分)由y=-(x+1)2+1+a,得M(-1,1+a).(4分)(2)设直线MA为y=kx+b,代入A(0,a)、M(-1,1+a),得-解得-故直线MA为y=-x+a.联立--解得-∴N-.(5分)由于P点是N点关于y轴的对称点,∴P--,代入y=-x2-2x+a,得-=-a2+a+a,解得a=或a=0(舍去).(6分)∴A、C-、M-,∴|AC|=.∴S△PCD=S△PAC-S△DAC=|AC||x P|-|AC||x D|=××(3-1)=.(8分)(3)①当点Q在y轴左侧时,由四边形AQCN为平行四边形,得AC与QN相互平分,则点Q与N 关于原点(0,0)中心对称,而N-,故Q-.(9分)代入y=-x2-2x+a,得=-a2+a+a,解得a=,∴Q-.(10分)②当点Q在y轴右侧时,由四边形ACQN为平行四边形,得NQ∥AC且NQ=AC,而N-、A(0,a)、C(0,-a),故Q-.(11分)代入y=-x2-2x+a,得-=-a2-a+a,解得a=,∴Q-,∴当点Q的坐标为-或-时,A、C、Q、N能构成平行四边形.(12分)25.解析(1)当点M为AC的中点时,有AM=BM,则△ABM为等腰三角形;(1分)当点M与点C重合时,AB=BM,则△ABM为等腰三角形;(2分)当点M在AC上且AM=2时,AM=AB,则△ABM为等腰三角形;(3分)当点M为CG的中点时,AM=BM,则△ABM为等腰三角形.(4分)(2)证明:在AB上取点K,使AK=AN,连结KN.∵AB=AD,BK=AB-AK,ND=AD-AN,∴BK=DN.又DH平分直角∠CDG,∴∠CDH=45°,∴∠NDH=90°+45°=135°,∴∠BKN=180°-∠AKN=135°,∴∠BKN=∠NDH.(6分)∵在Rt△ABN中,∠ABN+∠ANB=90°,又BN⊥NH,即∠BNH=90°,∴∠ANB+∠DNH=180°-∠BNH=180°-90°=90°.∴∠ABN=∠DNH,∴△BNK≌△NHD(ASA),∴BN=NH.(8分)(3)①当M在AC上,即0<t≤2时,易知△AMF为等腰直角三角形.∵AM=t,∴AF=FM=t.∴S=AF·FM=·t·t=t2.(10分)当M在CG上,即2<t<4时,CM=t-AC=t-2,MG=4-t.∵AD=DG,∠ADC=∠CDG,CD=CD,∴△ACD≌△GCD(SAS).∴∠ACD=∠GCD=45°,∴∠ACM=∠ACD+∠GCD=90°,∴∠G=90°-∠GCD=90°-45°=45°,∴△MFG为等腰直角三角形.∴FG=MG·cos45°=(4-t)·=4-t.∴S=S△ACG-S△CMJ-S△FMG=×4×2-·CM·CJ-·FG·FM=4-·(t-2)2-·-=-t2+4t-8.∴S=(12分)--②在0<t≤2范围内,当t=2时,S的最大值为×(2)2=2;在2<t<4范围内,S=--+,当t=时,S的最大值为.∵>2,∴当t=时,S的最大值为.(14分)。
八年级下学期数学期末试卷一、单选题(共12题;共24分)1.下列二次根式中,是最简二次根式的是()A. B. C. D.2.下列运算正确的是()A. B. 3 =3 C. =﹣2 D.3.一次函数y=4x﹣2的图象可以由正比例函数y=4x的图象()得到.A. 向上平移2个单位B. 向下平移4个单位C. 向下平移2个单位D. 向上平移4个单位4.下列哪个点在函数的图象上()A. B. C. D.5.下列性质中,菱形具有而平行四边形不具有的性质是()A. 对边平行且相等B. 对角线互相平分C. 每条对角线平分一组对角D. 对角互补6.下列各图中,表示y是x的函数的是()A. B. C. D.7.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC 的长为( )A. 8B. 10C. 12D. 148.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是()A. 6B.C. 2πD. 129.如图,顺次连接四边形ABCD各边的中点,得到四边形EFGH,在下列条件中,可使四边形EFGH 成为菱形的是()A. AB=CDB. AC=BDC. AC⊥BDD. AD//BC10.如图,已知O是矩形ABCD的对角线的交点,∠AOB=60°,作DE∥AC,CE∥BD,DE、CE相交于点E.四边形OCED的周长是20,则BC=()A. 5B. 5C. 10D. 1011.如图,在中,点分别在边,,上,且,.下列四个判断中,错误的是()A. 四边形是平行四边形B. 如果,那么四边形是矩形C. 如果平分平分∠BAC,那么四边形AEDF 是菱形D. 如果AD⊥BC 且AB=AC,那么四边形AEDF 是正方形12.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123;④乙的速度比甲的速度快1米/秒,其中正确的编号是( )A. ①②B. ②③C. ①②③D. ①②③④二、填空题(共6题;共7分)13.使式子有意义的x的取值范围是________.14.计算:=________.15.如图,四边形ABCD是菱形,AC=16,DB=12,DH⊥AB于点H,则DH等于________.16.函数y=kx与y=6﹣x的图象如图所示,则不等式6﹣x≥kx的解集为________.17.如图,在△ABC中,∠ACB=90°,M,N分别是AB,AC的中点,延长BC至点D,使CD= BC,连接DM ,DN,MN,若AB=6,则DN=________.18.如图,直线与轴、轴分别交于,将△沿过点的直线折叠,使点落轴正半轴的点,折在痕与轴交于点,则折痕所在直线的解析式为________.三、解答题(共6题;共61分)19.(1)计算:(2)已知a、b、c满足.判断以a、b、c为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.20.某校八年级一班要从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学联赛”,为此对两位同学进行了辅导,并在辅导期间进行了6次测验,两位同学测验成绩记录如下表:第1次第2次第3次第4次第5次第6次甲797886828178乙828080838075利用表中提供的数据,解答下列问题:(1)填写完成表格;平均成绩中位数众数甲8080________乙80________80(2)老师从测验成绩记录表中,求得甲的方差是8.33,请你计算出乙的方差.你认为老师应该派哪位同学参赛?21.如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.22.如图,在Rt ABC中,∠ACB=90°.过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC交直线m于点E,垂足为点F,连结CD、BE.(1)求证:CE=AD(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若点D是AB中点,当四边形BECD是正方形时,则∠A大小满足什么条件?23.已知点A(8,0)及在第一象限的动点B(x,y),且x+y=10,设OBA的面积为S.(1)求S关于x的函数关系式,并写出自变量x的取值范围;(2)求S=12时B点坐标;(3)在(2)的基础上,设点Q为y轴上一动点,当BQ+AQ的值最小时,求Q点坐标.24.为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:目的地车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.答案解析部分一、单选题1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】C7.【答案】B8.【答案】A9.【答案】B10.【答案】B11.【答案】D12.【答案】D二、填空题13.【答案】x≥﹣14.【答案】﹣6﹣215.【答案】16.【答案】x≤217.【答案】318.【答案】三、解答题19.【答案】(1)===4 ;(2)以a、b、c为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a、b、c满足,∴a﹣2 =0,3 ﹣b=0,c﹣=0,∴a=2 ,b=3 ,c=,∵2 +3 >,2 + >3 ,2 + >3 ,∴以a、b、c为边能组成三角形,∵a=2 ,b=3 ,c=,∴a2+b2=c2,∴以a、b、c为边能构成直角三角形,直角边是a和b,则此三角形的面积是=3 .20.【答案】(1)78;80(2)=×[(75﹣80)2+(80﹣80)2×3+(82﹣80)2+(83﹣80)2]=,∵=8.33,∴>,∴应该派乙同学参赛.21.【答案】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F分别是边AD,BC的中点,∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.22.【答案】(1)证明:∵m∥AB,∴EC∥AD,∵DE⊥BC,∴∠CFD=90°,∵∠BCD+∠DCA=90°,∠BCD+∠CDE=90°,∴∠DCA=∠CDE,∴DE∥AC,∴四边形DECA是平行四边形,∴CE=DA;(2)解:四边形BECD是菱形.理由如下:∵由(1)知:四边形DECA是平行四边形,∴CE=DA,CE∥AD,在Rt△ABC中,∵点D是AB的中点,∴BD=DC=DA,又∵CE=DA,∴CE=BD,∴四边形BECD是平行四边形,∵BD=CD,∴四边形BECD是菱形.(3)解:∠A=45°,理由如下:∵DE∥AC,∴∠EDB=∠A,∵四边形BECD是正方形,∴∠BDC=90°,∠EDB=∠BDC=45°,∴∠A=45°.23.【答案】(1)∵x+y=10∴y=10﹣x,∴S=8(10﹣x)÷2=40﹣4x,∵40﹣4x>0,∴x<10,∴0<x<10;(2)∵s=12,∴12=40﹣4x,x=7∴y=10﹣7=3,∴S=12时,B点坐标(7,3);(3)画出函数S的图形如图所示.作出A的对称点A′,连接BA′,此时BA′与y轴交于点Q,此时BQ+AQ的值最小,∵A点坐标为(8,0),∴A′(﹣8,0),∴将(﹣8,0),(7,3)代入y=kx+b,∴,解得:,∴y=x+ ,∴x=0时,y=,当BQ+AQ的值最小时,Q点坐标为:(0,).24.【答案】(1)解:设大货车用x辆,小货车用y辆,根据题意得:,解得:.∴大货车用8辆,小货车用7辆.(2)解:y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)解:由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.。
2015年绵阳市八年级数学期末考试模拟试题
(时间90分钟完卷 总分100分)
一.选择题(每小题3分,共36分) 1.对进行化简后正确的是( )
A .
B .
﹣
C .
﹣
D .
2.设
( )
. 5 C . 2 D . 2
ABCD 的面积是( )
A . 200
B . 225
C .
256 D . 150+10
(1)若直角三角形的两条边长为5和12,则第三边长是13; (2)如果a ≥0,那么
=a
(3)若点P (a ,b )在第三象限,则点P (﹣a ,﹣b+1)在第一象限;
(4)对角线互相垂直且相等的四边形是正方形;
(5)两边及第三边上的中线对应相等的两个三角形全等.
6.一个围棋盘由18×18个边长为1的正方形小方格组成,一块边长为1.5的正方形卡片放在棋盘上,被这(1)一个数的倒数等于自身,那么这个数是1; (2)对角线互相垂直且相等的四边形是正方形;
(3)a 2
的平方根是±|a|;
. B . C .
D .
10.已知直线y=﹣x+与x 轴,y 轴分别交于A ,B 两点,在坐标轴上取一点P ,使得△PAB 是等 A . 4 B . 6 C . 7 D . 8 11.如图,点A ,B 分别在一次函数y=x ,y=8x 的图象上,其横坐标分别为a ,b (a >0,b >0 ).若直线AB 为一次函数y=kx+m 的图象,则当是整数时,满足条件的整数k 的值共有( )
身高登记错误,将160厘米写成166厘米,正确的平均数为a 厘米,中位数为b 厘米.关于平均数a 的叙
二、填空题。
(每小题3分,共18分)
13.已知|a ﹣2007|+
=a ,则a ﹣20072
的值是
.
14.如图,已知AB=13,BC=14,AC=15,AD ⊥BC 于D ,则AD= .
15.如图,在△ABC 中,M 是BC 边的中点,AP 平分∠A ,BP ⊥AP 于点P 、若AB=12,AC=22,则MP 的长为 .
16.函数y=
+(x ﹣1)0
自变量的取值范围是 .
17.若直线y=kx+3不经过第三象限,则k 的取值范围为 .
18.在一次测验中,初三(1)班的英语考试的平均分记为a 分,所有高于平均分的学生的成绩减去平均分的分数之和记为m ,所有低于平均分的学生的成绩与平均分相差的分数的绝对值记为n ,则m 与n 的大小关系是 .
2015年绵阳市八年级数学期末考试模拟试题答题卷
(时间90分钟完卷 总分100分)
一、 选择题。
(每小题3分,共36分) 13、___ __。
14、 。
15、 。
16、 。
17、 。
18、 。
三、解答题。
19.(共10分)(1)计算:
+
﹣
(2)计算:﹣(2009)0+()﹣1
+|
﹣1|
(3)已知(x+1)2
﹣1=24,求x 的值 (4)若与|b+2|互为相反数,则(a ﹣b )2
的值
(5)已知x 、y 为实数,且y=﹣
+4.求
+
的值.
20(共7分).小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的
金键学生奶,金键酸牛奶,金键原味奶;
根据计算结果分析,你认为哪种牛奶销量最高;
(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定.金键学生奶,金键酸牛奶,金键原味奶;
(3)根据计算结果分析,你认为哪种牛奶销量最稳定.
21(共7分).如图,已知在四边形ABCD中,E、F分别为AD、DC的中点,AD∥BC,AD:DC=1:,AB=10、BC=6、EF=4.
(
1)求AD的长;
(2)△DEF是什么三角形?请你给出正确的判断,并加以说明;
(3)求四边形ABCD的面积.
22(共7分).如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F,D为BC中点,连接DE,DF.求证:DE=DF.23(共7分).已知O是矩形ABCD的对角线的交点,过点O作OE⊥AC交AB于E,△AOE的面积为5,AE比BC大1,求BD的长.
24(共8分).水果商李老板在高州市收购有香蕉120吨,在海口市收购有香蕉60吨,现要销往北京100吨,沈阳80吨(全部用汽车运输).已知从高州运一吨香蕉到北京和沈阳分别需800元和1000元;从海口运一吨香蕉到北京和沈阳分别需1000元和1300元.
(1)设从海口运往北京x吨,求总运费y(元)关于x(吨)的函数关系式;
(2)李老板计划用17万元开支运费,够用吗?
(3)若每辆车装10吨,且不能浪费车力.李老板要把总运费控制在不超过17.5万元,有多少种调运方案可实现?
(4)请根据前面的要求画出这一函数的图象.
参考答案
一、选择题:1-----5 BACCA 6------10DDADB 11---12BB
二、填空题:
13、2008 14、12
15、5 16、x≥﹣2且x≠3和117 k≤0..18、m=n.
三、解答题19、解:(1)原式=6+3﹣=;
(2)原式=2﹣1+2+﹣1=3;
(3)移项得:(x+1)2=25,
开平方得:x+1=±5,
解得:x=4或x=﹣6;
(4)∵与|b+2|互为相反数,
∴2a﹣2=0,b+2=0,
∴a=1,b=﹣2,
则(a﹣b)2=(1+2)2=9;
(5)∵y=﹣+4,
∴x=9,y=4,
则+=3+2=5.
20.解:金键学生奶的平均数=(2+1+0+1+0+9+8)÷7=3,方差S12=[(2﹣3)2+(1﹣3)2+(0﹣3)2+
(1﹣3)2+(0﹣3)2+(9﹣3)2+(8﹣3)2]=12.57;
金键酸牛奶的平均数=(70+70+80+75+84+81+100)÷7=80,方差S22=[(70﹣80)2+(70﹣80)2+(80﹣80)2+(75﹣80)2+(84﹣80)2+(81﹣80)2+(100﹣80)2]=91.71;
金键原味奶的平均数=(40+30+35+30+38+47+60)÷7=40,方差S32=[(40﹣40)2+(30﹣40)2+(35﹣
40)2+(30﹣40)2+(38﹣40)2+(47﹣40)2+(60﹣40)2]=96.86;
(1)学生奶=3,酸牛奶=80,原味奶=40,金键酸牛奶销量高;
(2)12.57,91.71,96.86;
(3)金键学生奶销量最稳定.
21、解:(1)如图:连接AC,
∵E、F分别为AD、DC的中点,∴AC=2EF,∵EF=4,∴AC=8,
∵AB=10,BC=6,∴△ABC为直角三角形,∴∠ACB=90°,∵AD∥BC,∴∠CAD=90°,
∵AD:DC=1:,∴设AD=x,则CD=x,
即x2+AC2=(x)2,解得x=8,
∴AD的长为8;
(2)∵EF是△ACD的中位线,∴EF∥AC,∴∠DFE=90°,
∵AD=8,E为AD的中点,
∴DF=EF=4
∴△DEF是等腰直角三角形;
(3)∵S四边形ABCD=S△ABC+S△ACD=AC•BC÷2+AC•AD÷2=8×6÷2+8×8÷2=56.
22.证明:连接AD(如图),
∵∠BAC=90°,PE⊥AB,PF⊥AC
∴四边形AEPF是矩形,
∴AE=FP,
∵AB=AC,∠BAC=90°,D为BC中点,
∴AD=DC,∠1=∠2=45°=∠3,
∴∠EAD=∠FCD=135°,∠CPF=45°=∠3,
∴CF=PF=AE,
∴△ADE≌△CDF(SAS)
∴DE=DF.
23.解:连接EC,由题意可得,OE为对角线AC的垂直平分线,
∴CE=AE,S△AOE=S△COE=5,
∴S△AEC=2S△AOE=10.
∴AE•BC=10,
又∵AE比BC大1,
∴设BC=x,则AE=(x+1),
∴,
解得x=4,
∴BC=4,AE=CE=5,
∴,
∴AB=AE+BE=5+3=8,
∴AC=BD=.。