基因突变的特点
- 格式:ppt
- 大小:2.36 MB
- 文档页数:18
基因突变的类型及特点有哪些后果
从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。
下面小编整理了一些相关信息,供大家参考!
1 基因突变的类型有哪些1、碱基置换突变
指DNA 分子中一个碱基对被另一个不同的碱基对取代所引起的突变,也
称为点突变(point mutation)。
点突变分转换和颠换两种形式。
如果一种嘌呤被另一种嘌呤取代或一种嘧啶被另一种嘧啶取代则称为转换(transition)。
嘌呤取代嘧啶或嘧啶取代嘌呤的突变则称为颠换(transversion)。
由于DNA 分子中有四种碱基,故可能出现4 种转换和8 种颠换。
在自然发生的突变中,转换多于颠换。
2、移码突变
指DNA 片段中某一位点插入或丢失一个或几个(非3 或3 的倍数)碱基
对时,造成插入或丢失位点以后的一系列编码顺序发生错位的一种突变。
它可引起该位点以后的遗传信息都出现异常。
发生了移码突变的基因在表达时可使组成多肽链的氨基酸序列发生改变,从而严重影响蛋白质或酶的结构与功能。
吖啶类诱变剂如原黄素、吖黄素、吖啶橙等由于分子比较扁平,能插入到DNA 分子的相邻碱基对之间。
3、缺失突变
基因也可以因为较长片段的DNA 的缺失而发生突变。
缺失的范围如果包
括两个基因,那幺就好象两个基因同时发生突变,因此又称为多位点突变。
由缺失造成的突变不会发生回复突变。
所以严格地讲,缺失应属于染色体畸变。
基因突变的特点及类型有哪些
基因组DNA 分子发生的突然的、可遗传的变异现象(gene mutation)。
从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的
改变。
1 基因突变特性不论是真核生物还是原核生物的突变,也不论是什幺类型
的突变,都具有随机性、低频性和可逆性等共同的特性。
普遍性
基因突变在自然界各物种中普遍存在。
随机性
T.H.摩尔根在饲养的许多红色复眼的果蝇中偶然发现了一只白色复眼的果蝇。
这一事实说明基因突变的发生在时间上、在发生这一突变的个体上、在
发生突变的基因上,都是随机的。
以后在高等植物中所发现的无数突变都说
明基因突变的随机性。
在细菌中则情况远为复杂。
在含有某一种药物的培养
基中培养细菌时往往可以得到对于这一药物具有抗性的细菌,因此曾经认为
细菌的抗药性的产生是药物引起的,是定向的适应而不是随机的突变。
S.卢里亚和M.德尔布吕克在1943 年首先用波动测验方法证明在大肠杆菌
中的抗噬菌体细菌的出现和噬菌体的存在无关。
J.莱德伯格等在1952 年又用印影接种方法证实了这一论点。
方法是把大量对于药物敏感的细菌涂在不含
药物的培养基表面,把这上面生长起来的菌落用一块灭菌的丝绒作为接种工
具印影接种到含有某种药物的培养基表面,使得两个培养皿上的菌落的位置
都一一对应。
基因突变突变类型与产生原因基因突变是指DNA序列发生改变,可以导致基因功能的变异。
基因突变的类型和产生原因多种多样,本文将对其进行详细的论述,以便更好地理解基因突变的特点和成因。
一、点突变点突变是最常见的一种基因突变类型。
它发生在DNA的单个碱基上,导致氨基酸序列的改变。
点突变又分为以下几种类型:1. 单碱基突变:指一个碱基被替换为另一个碱基。
例如,腺嘌呤(A)被胸腺嘧啶(T)替换,或鸟嘌呤(G)被胞嘧啶(C)替换。
2. 插入突变:指一个或多个碱基被插入到DNA序列中。
这种突变会导致读码框架的改变,影响蛋白质合成。
3. 缺失突变:指一个或多个碱基从DNA序列中删除。
与插入突变类似,缺失突变也会导致读码框架的改变。
二、染色体结构性变异染色体结构性变异是指整个染色体或染色体区域的改变。
常见的染色体结构性变异包括:1. 染色体重排:指染色体之间的片段重组或重新排列。
这种变异可能会导致染色体区域的重复或缺失。
2. 染色体缺失:指整个染色体或染色体区域的缺失。
这种变异可能会导致严重的遗传病。
3. 染色体增多:指染色体的数目增加。
染色体增多是某些疾病的典型特征,如唐氏综合征。
三、基因组结构性变异基因组结构性变异是指整个基因组的改变,包括:1. 基因重复:指某些基因的重复出现,可能导致过度表达或功能改变。
2. 基因倒位:指染色体上一段序列被翻转,导致基因功能的改变。
3. 基因插入:指一个或多个基因插入到染色体的非正常位置,可能影响周围基因的表达。
基因突变的产生原因多种多样:1. 自发突变:DNA在复制和修复过程中出现错误,导致碱基的替换、插入或删除。
2. 物理或化学因素:辐射、化学物质等外界因素可以损害DNA分子,导致基因突变。
3. 遗传突变:某些基因本身就具有易突变的特性,这些突变可以遗传给后代。
4. 外源性因素:一些病毒或细菌可以插入宿主基因组并引起突变。
综上所述,基因突变的类型和产生原因多种多样。
准确了解基因突变的不同类型和成因,有助于我们更好地理解基因的功能和遗传疾病的发生、发展机制。
杂合和纯合基因突变简介基因突变是指DNA序列的改变,它是生物进化和个体间遗传差异的主要原因之一。
基因突变可以分为杂合和纯合两种类型。
本文将详细介绍杂合和纯合基因突变的概念、特点以及对生物个体的影响。
杂合基因突变定义杂合基因突变是指在一个个体的两个相同染色体上,某一基因发生了不同等位基因的改变。
也就是说,一个个体携带了两个不同版本的同一基因。
特点1.隐性性状表现:由于杂合状态下,两个等位基因之间可能存在着不同程度的互补或抑制作用,导致其中一个等位基因无法表达。
这种情况下,只有当两个等位基因都具有相同功能时,该性状才会表现出来。
2.显性性状表现:在某些情况下,杂合状态下的两个等位基因可以相互补充或协同作用,使得该性状能够显现出来。
3.基因多样性增加:杂合状态下,个体的基因组中包含了两个不同等位基因的序列,使得种群的遗传多样性增加。
影响1.进化:杂合基因突变是生物进化中重要的驱动力之一。
通过杂合基因突变,个体可以获得新的性状和适应环境的能力,从而提高其生存和繁殖的竞争力。
2.遗传病:某些杂合基因突变可能导致遗传病的发生。
在杂合状态下,如果两个等位基因中有一个是致病突变,则该个体可能携带遗传病的易感基因。
纯合基因突变定义纯合基因突变是指在一个个体的两个相同染色体上,某一基因发生了相同等位基因的改变。
也就是说,一个个体携带了两个相同版本的同一基因。
特点1.显性性状表现:纯合状态下,由于两个等位基因都具有相同功能,该性状会被充分表达出来。
2.隐性性状表现:如果纯合状态下某一等位基因发生了缺失或功能异常等突变,则该性状可能无法表达。
3.基因稳定性:纯合状态下,个体的基因组中只包含了一个等位基因的序列,使得种群的遗传稳定性增加。
影响1.遗传病:某些纯合基因突变可能导致遗传病的发生。
在纯合状态下,如果两个等位基因都是致病突变,则该个体携带遗传病的显性基因。
2.进化:纯合基因突变在进化中起到重要作用。
通过积累和固定有利基因突变,个体可以适应不同环境并提高生存和繁殖的竞争力。
基因突变的特性
1 什么是基因突变
基因突变是由于DNA序列发生变化而导致遗传特征发生变化的现象。
这种变化可导致具有不同遗传特征的生物出现,并可能影响能够
表达的某些基因的性状,如体形、色素、心率等。
由于它影响着细胞
的有机结构,因此可能引起正常遗传功能失调,甚至有可能引发疾病。
2 基因突变的类型
基因突变可以分为三种类型:毒性突变、非毒性突变和有害小突变。
毒性突变是指会对基因组具有毒性作用的突变。
这种突变会改变
基因组的结构,有可能损害基因组的正常功能,从而可能会诱发疾病。
非毒性突变是指不会对基因组具有毒性作用的突变。
它们会使遗
传特征发生变异,但不会造成有害的影响。
有害小突变是指基因组发生变异,但更有可能产生轻微的改变,
而不会影响基因组的正常功能。
3 基因突变的影响
基因突变可能会对基因组造成轻微或严重的毒性影响。
它们可以
改变某种物种的遗传特征,引发疾病等。
例如,有一些突变可以使某
种物种更容易受到病毒的感染,引起疾病。
因此,基因突变可能会造
成物种受损,甚至可能会导致物种的灭绝。
基因突变的特点有:1、普遍性:基因突变是普遍存在的。
2、随机性:基因突变是随机发生的。
3、不定向性:基因突变是不定向的。
4、低频性:对于一个基因来说,在自然状态下,因突变的频率是很低的。
5、多害少益性:大多数突变是有害的。
6、可逆性:基因突变可以自我回复(频率低)。
7、重复性:基因突变在同一生物不同细胞间、同种生物不同个体间有重复性。
1.普遍性由于自然界中诱发基因突变的因素很多,而且它还可以自发产生,因此,基因突变在生物界中是普遍存在的。
2.随机性随机性指基因突变发生的时间,发生的突变个体,发生突变的基因等,都是随机的。
在高等植物中所发现的无数突变都说明基因突变的随机性。
一般来说,在生物个体发育中,基因突变发生的时期越迟,生物体表现出来的突变的部分就越少。
3.不定向性基因突变的不定向性体现在一个基因可以向不同的方向发生突变,产生一个以上的等位基因。
4.稀有性突变是极为稀有的,即突变的频率很低。
一般来说,细菌的突变率为1(T4〜10—1G,高等生物的突变率为1CT5〜1CT8。
虽然基因突变频率低,但是当一个种群内有很多个体时,就可能产生各种各样的随机突变,足以提供丰富的可遗传的变异。
5.可逆性基因突变还具有可逆性。
突变基因可以通过突变而成为野生型基因,这一过程称为回复突变。
正向突变率总是高于回复突变率,一个突变基因的内部只有一个位置上的结构改变才能够使它恢复原状。
6.少利多害性一般基因突变都是会产生一些不利的影响,例
如被淘汰或是死亡。
只有极少数的基因突变是有利的,可能会使物种的适应性增强。
简述基因突变的特点
基因突变是指基因序列发生了某种变化,包括基因重组、基因缺失、基因插入、碱基替换等,这些变化可以影响基因的功能和表达。
基因突变是生物进化和个体遗传多样性的主要驱动力之一。
基因突变的特点如下:
1. 随机性:基因突变是随机发生的,不受外界环境的直接影响。
突变可以发生在任何时候,无论是在个体发育的早期阶段还是成熟后的阶段。
2. 多样性:基因突变引起了基因组的多样性。
每个个体的基因组都是独特的,即使是同一物种内的个体也会有一些基因差异。
3. 累积性:基因突变是可以累积的。
一个个体的突变可能会遗传给后代,从而进一步增加基因组的变异。
这种累积效应对于物种的进化非常重要。
4. 可逆性:虽然大多数突变是不可逆的,但有些突变是可逆的。
这意味着有些基因突变可以通过自然选择或其他机制被修复或消除。
5. 快速性:基因突变的发生是相对较快的。
相比于其他进化过程,
例如基因漂变或基因重组,基因突变是一种可以迅速改变基因组的方式。
基因突变对生物体的影响取决于突变的性质和位置。
一些突变可能对生物体产生有害影响,导致疾病或生存能力下降。
然而,一些突变也可以产生有利的效应,使生物体能够适应环境变化并提高生存竞争力。
总之,基因突变是基因组多样性产生的主要驱动力之一,它具有随机性、多样性、累积性、可逆性和快速性等特点。
通过基因突变,生物体可以适应环境变化并产生新的遗传变异。
ALK基因突变主要发生在肺腺癌中,尤其是印戒细胞癌,而在鳞状细胞癌中很少见。
这种突变主要影响年轻患者,其中不吸烟或轻度吸烟的患者更常见,与吸烟史无关。
ALK基因突变与其他驱动基因突变(如EGFR、KRAS等)的共存率很低,通常只有一种驱动基因突变。
此外,ALK基因突变的患者容易发生脑转移,其发生率高于其他类型的NSCLC患者。
ALK基因突变主要表现为融合突变,即该基因与其他基因融合形成的异常基因导致肺腺癌的发生。
相比融合突变,ALK基因的缺失突变非常罕见,只占ALK基因激活突变的万分之一。
大多数情况下,这种基因突变都可能被忽略,或者被认为无关紧要,实际情况却并非如此。