图论+第3章+图的连通性
- 格式:pdf
- 大小:344.95 KB
- 文档页数:30
图连通性算法及应用图是计算机科学领域中常见的数据结构,用于表示对象之间的关系。
在图论中,图的连通性是一个重要的概念,指的是在图中任意两个顶点之间是否存在路径。
图连通性算法是为了判断图中的连通性而设计的算法,并且在实际应用中有着广泛的应用。
一、连通性的定义与分类在图论中,连通性有两种常见的定义方式:强连通性和弱连通性。
强连通性是指在有向图中,任意两个顶点之间存在互相可达的路径;弱连通性是指在有向图中,将其所有有向边的方向忽略后,剩下的无向图是连通的。
本文将重点介绍无向图的连通性算法及其应用。
二、连通性算法的原理1. 深度优先搜索(DFS)深度优先搜索是最常用的连通性算法之一。
它从图中的一个顶点开始,沿着一条未访问过的边深入图中的下一个顶点,直到无法深入为止,然后回溯至上一个顶点,继续深入其他未访问过的顶点。
通过深度优先搜索算法,我们可以得到一个图的连通分量,从而判断图是否连通。
2. 广度优先搜索(BFS)广度优先搜索同样是常用的连通性算法之一。
它从图中的一个顶点开始,沿着一条未访问过的边遍历与该顶点直接相邻的所有顶点,然后再以这些相邻顶点为起点,继续遍历它们的相邻顶点,直到遍历完所有连通的顶点。
通过广度优先搜索算法,我们可以得到一个图的层次遍历树,从而判断图是否连通。
三、连通性算法的应用1. 社交网络分析在社交网络分析中,连通性算法可以用来判断一个社交网络中是否存在分割成多个互不相连的社群。
通过判断社交网络的连通性,我们可以发现隐藏在社交网络背后的关系网络,从而更好地理解和分析社会关系。
2. 网络路由优化在计算机网络中,连通性算法可以用来判断网络节点之间的连通性。
通过分析网络的拓扑结构,我们可以选择合适的路由算法,从而实现快速且可靠的数据传输。
3. 图像分割在计算机视觉和图像处理中,连通性算法可以用来判断图像中的连通区域。
通过判断图像的连通性,我们可以对图像进行分割和提取,从而实现目标检测和图像识别等应用。
三、连通性3.1 连通性和Whitmey定理定义V真包含于V(G), G[V(G)-V'不连通,而G是连通图,则称V是G的顶剖分集。
最小顶剖分集中顶的个数,记成K (G)叫做G的连通度;规定K (Kv)=-U; K不连通图)=平凡图)=0。
由一个顶组成的顶剖分集叫割顶。
没有割顶的图叫做块,G中的成块的极大子图叫做G的块。
定义E包含于E(G),G为连通图,而G-E'从G中删除E'中的边)不连通,则称E'为G的边剖分集,若G中已无边剖分集E〃,使得|E 〃|v|E则称|E '为G的边连通度,记成K' (G归’|=时,E'中的边叫做桥。
规定K不连通图)=0,K' (Kv)= u1。
定义K (G)>=k时,G叫做k连通图;K' (G)>=k,G称为k边连通图。
k连通图,当k>1时,也是k-1连通图。
k边连通图,当k>1时,也是k-1边连通图。
上面就是顶连通与边连通的概念,好象不指明的就是指顶连通了。
定理1 K (G)=< K' 2)=可以复习一下第一章的1.2:S =min{d(v)})证:设d(v)=,则删除与v边关联的S条边后,G变不连通图,所以这S 条边形成一个边剖分集,故最小边剖分集边数不超过即K' (G)=<T证K =<K'分情形讨论之。
若G中无桥,则有K' >条边,移去它们之后,G变成不连通图。
于是删除这K条中的K'条后,G变成有桥的图。
设此桥为e=uv,我们对于上述K'条删去的每条边上,选取一个端点,删除这些(不超过K'个)端点,若G变得不边能,则K =<K-1;若仍连通,则再删去u或v,即可使G变得不连通,于是K =<K'证毕。
这个定理很好理解,图论中的一些定理常以这种友好”的面目出现。
F面就是Whitmey定理定理2(Whitney,1932) u >的图是2连通图的充要条件是任二顶共圈(在一个圈上)。
图论常考知识点总结1. 图的基本概念图是由顶点集合和边集合构成的。
顶点之间的连接称为边,边可以有方向也可以没有方向。
若图的边没有方向,则称图为无向图;若图的边有方向,则称图为有向图。
图的表示方式:邻接矩阵和邻接表。
邻接矩阵适合存储稠密图,邻接表适合存储稀疏图。
2. 图的连通性连通图:如果图中任意两点之间都存在路径,则称该图是连通图。
强连通图:有向图中,任意两个顶点之间都存在方向相同的路径,称为强连通图。
弱连通图:有向图中,去掉每条边的方向之后,所得到的无向图是连通图,称为弱连通图。
3. 图的遍历深度优先搜索(DFS):从起始顶点出发,沿着一条路往前走,走到不能走为止,然后退回到上一个分支点,再走下一条路,直到走遍图中所有的顶点。
广度优先搜索(BFS):从起始顶点出发,先访问它的所有邻居顶点,再按这些邻居顶点的顺序依次访问它们的邻居顶点,依次类推。
4. 最短路径狄克斯特拉算法:用于计算图中一个顶点到其他所有顶点的最短路径。
弗洛伊德算法:用于计算图中所有顶点之间的最短路径。
5. 最小生成树普里姆算法:用于计算无向图的最小生成树。
克鲁斯卡尔算法:用于计算无向图的最小生成树。
6. 拓扑排序拓扑排序用于有向无环图中对顶点进行排序,使得对每一条有向边(u,v),满足排序后的顶点u在顶点v之前。
以上就是图论中一些常考的知识点,希望对大家的学习有所帮助。
当然,图论还有很多其他的知识点,比如欧拉图、哈密顿图、网络流等,这些内容都值得我们深入学习和探讨。
图论在实际应用中有着广泛的应用,掌握好图论知识对于提升计算机科学和工程学的技能水平有着重要的意义。
离散数学中的图的连通性与欧拉路径问题图论是离散数学中的一个重要分支,研究对象是图。
图是由一组顶点和连接这些顶点的边组成的数学结构。
在图论中,连通性和欧拉路径问题是两个基本概念,对于理解和解决图相关的问题具有重要意义。
一、连通性在图论中,连通性是指图中任意两个顶点之间存在一条路径。
如果一个图中任意两个顶点都是连通的,则称该图是连通图;如果一个图不是连通图,那么它可以被分解为多个连通的子图,这些子图称为连通分量。
连通性在实际应用中具有广泛的应用。
例如,在社交网络中,连通性可以用来判断两个人之间是否存在关系链;在计算机网络中,连通性可以用来判断网络中的主机之间是否可以进行通信。
二、欧拉路径问题欧拉路径问题是图论中的一个经典问题,它要求找出一条路径,经过图中每条边一次且仅一次。
如果存在这样的路径,则称图具有欧拉路径。
欧拉路径问题有两种情况:1. 欧拉回路:如果存在一条路径,从起点出发,经过图中每条边恰好一次后回到起点,则称该图具有欧拉回路。
2. 半欧拉路径:如果存在一条路径,从起点出发,经过图中每条边恰好一次后到达终点,但不回到起点,则称该图具有半欧拉路径。
欧拉路径问题的解决方法有欧拉定理和深度优先搜索算法。
欧拉定理指出,一个连通图具有欧拉回路的充分必要条件是每个顶点的度数都是偶数;一个连通图具有半欧拉路径的充分必要条件是除了起点和终点外,其它顶点的度数都是偶数。
深度优先搜索算法(DFS)是一种用来遍历图或树的算法,它可以用来解决欧拉路径问题。
DFS从起点开始遍历图,当遍历到某个顶点时,选择一个未访问过的邻接顶点进行继续遍历,直到无法继续遍历为止。
通过DFS算法,可以找到图中的欧拉路径。
三、总结离散数学中的图的连通性与欧拉路径问题是图论中的两个基本概念。
连通性用来描述图中顶点之间的连接情况,欧拉路径问题则是要找出一条路径,经过图中每条边一次且仅一次。
这两个概念在实际应用中具有广泛的应用,对于理解和解决图相关的问题具有重要意义。
图论_连通_连通分量 强连通图 : 强连通分量就是本⾝ 有向图 ---> ⾮强连通图 : 多个强连通分量图---> 连通图 : 连通分量就是本⾝ ⽆向图 ---> ⾮连通图 : 多个连通分量路径 : 顾名思义.路径长度 : 路径上边的数量.路径 : 顾名思义.路径长度 : 路径上边的数量.连通 : ⽆向图顶点A可以到顶点B,则称A,B连通.强连通 : 有向图中,两个顶点间⾄少存在⼀条互相可达路径,则两个顶点强连通连通图 : 图中任意两点都连通的图.强连通图 : 有向图的任意两点都强连通.连通分量 : ⽆向图的极⼤连通⼦图称为连通分量.连通图只有⼀个连通分量,即⾃⾝强连通分量: 强连通图有向图的极⼤强连通⼦图.强连通图的强连通分量只有⼀个,即强连通图本⾝.基图 : 将有向图的所有边替换成⽆向边形成的图.弱连通图 : 基图是连通图的有向图.(即,连通的有向图)求图的连通分量的⽬的,是为了确定从图中的⼀个顶点是否能到达图中的另⼀个顶点,也就是说,图中任意两个顶点之间是否有路径可达。
求强连通分量有多种算法.我⽤的Tarjan算法. 复杂度O(V+E)这两个博客写得不错:https:///reddest/p/5932153.htmlhttps:///shadowland/p/5872257.htmlint dfn[16]; // 时间戳int dfn_num = 0; // 时间int low[16]; // 节点u所能访问到的最⼩时间戳int inSt[16]; // 节点u是否在栈中.int st[16];int top = 0;// 我们维护的信息.int col[16]; // 给节点染⾊, 同⼀个连通块的节点应该是同⼀个颜⾊的.int col_num = 0; // 颜⾊值.int size[16]; // 每个颜⾊值所拥有的块数./*第⼀步: 访问当前节点的所有⼦节点: ⼦节点有三种第⼀种: 未访问过的, 我们对它进⾏访问, 同时设置它的时间戳dfn[u]和low[u]为++ndfn_num,以及进栈.第⼆种: 访问过的,并且在栈中,我们直接更新我们当前节点的low[] --> 注意应该⽤low[u] 和 dfn[v]⽐较.第三种: 访问过的,并且不在栈中的, 我们直接跳过.因为这个时候,所以它已经染⾊了,属于⼀个连通块了.第⼆步: 如果dfn[u] == low[u] 说明已经找到⼀个连通块了.这时候我们要将栈顶元素弹出,直到当前节点. 记得也要修改inSt, 同时维护我们需要的信息.*/void Tarjan(int u) {int v, i;dfn[u] = low[u] = ++dfn_num; //添加时间戳.st[++top] = u; // 进栈inSt[u] = true; // 标⽰在栈for (i=head[u]; i; i=edge[i].lst) {v = edge[i].to;if (!dfn[v]) {Tarjan(v);low[u] = min(low[u], low[v]);} else if (inSt[v]) {low[u] = min(low[u], dfn[v]);}}if (dfn[u] == low[u]) {col_num++;do {inSt[st[top]] = false;col[st[top]] = col_num;size[col_num]++;} while (st[top--] != u);}}View Code加上2个板⼦题./problem/1332/题⽬很简单: 要你求出最⼤的强连通块,如果有多个则输出字典序最⼩的⼀个.#include <cstdio>#include <cstring>#include <algorithm>using namespace std;const int maxn = 5e4+500;struct Edge {int lst;int to;}edge[maxn<<1];int head[maxn];int qsz = 1;inline void add(int u, int v) {edge[qsz].lst = head[u];edge[qsz].to = v;head[u] = qsz++;}int dfn[maxn]; // 时间戳int dfn_num = 0; // 时间int low[maxn]; // 节点u所能访问到的最⼩时间戳int inSt[maxn]; // 节点u是否在栈中.int st[maxn];int top = 0;// 我们维护的信息.int col[maxn]; // 给节点染⾊, 同⼀个连通块的节点应该是同⼀个颜⾊的.int col_num = 0; // 颜⾊值.int size[maxn]; // 每个颜⾊值所拥有的块数.int id[maxn];void Tarjan(int u) {int v, i;dfn[u] = low[u] = ++dfn_num; //添加时间戳.st[++top] = u; // 进栈inSt[u] = true; // 标⽰在栈for (i=head[u]; i; i=edge[i].lst) {v = edge[i].to;if (!dfn[v]) {Tarjan(v);low[u] = min(low[u], low[v]);} else if (inSt[v]) {low[u] = min(low[u], dfn[v]);}}if (dfn[u] == low[u]) {col_num++;id[col_num] = u;do {inSt[st[top]] = false;col[st[top]] = col_num;size[col_num]++;id[col_num] = min(id[col_num], st[top]);} while (st[top--] != u);}}int main(){memset(id, 0x3f, sizeof(id));int n, i, u, v, m, t;scanf("%d%d", &n, &m);for (i=1; i<=m; ++i) {scanf("%d%d%d", &u, &v, &t);add(u, v);if (t==2) add(v, u);}for (i=1; i<=n; ++i)if (!dfn[i]) Tarjan(i);int mm = 0, tcol = -1;for (i=1; i<=col_num; ++i)if (mm < size[i]) {mm = size[i];tcol = i;} else if (m == size[i]) {if (id[tcol] > id[i])tcol = i;}// printf("%d \n", tcol);printf("%d\n", mm);for (i=1; i<=n; ++i)if (col[i] == tcol) printf("%d ", i);printf("\n");return0;}View Codehttps:///problem/HYSBZ-1051题⽬: 求出所有⽜都欢迎的⽜的个数. 我们可以把所有连通块求出,然后把⼀个连通块看成⼀个点,即缩点. 然后找到出度为零的点(连通块), 如果有且只有⼀个,那么连通块的点数就是答案,否则答案为零.#include <cstdio>#include <algorithm>using namespace std;struct Edge {int lst;int to;}edge[50500];int head[10100];int qsz = 1;inline void add(int u, int v) {edge[qsz].lst = head[u];edge[qsz].to = v;head[u] = qsz++;}int dfn[10100]; // 时间戳int dfn_num = 0; // 时间int low[10100]; // 节点u所能访问到的最⼩时间戳int inSt[10100]; // 节点u是否在栈中.int st[10100];int top = 0;// 我们维护的信息.int col[10100]; // 给节点染⾊, 同⼀个连通块的节点应该是同⼀个颜⾊的.int col_num = 0; // 颜⾊值.int size[10100]; // 每个颜⾊值所拥有的块数./*第⼀步: 访问当前节点的所有⼦节点: ⼦节点有三种第⼀种: 未访问过的, 我们对它进⾏访问, 同时设置它的时间戳dfn[u]和low[u]为++ndfn_num,以及进栈.第⼆种: 访问过的,并且在栈中,我们直接更新我们当前节点的low[] --> 注意应该⽤low[u] 和 dfn[v]⽐较. 第三种: 访问过的,并且不在栈中的, 我们直接跳过.因为这个时候,所以它已经染⾊了,属于⼀个连通块了. 第⼆步: 如果dfn[u] == low[u] 说明已经找到⼀个连通块了.这时候我们要将栈顶元素弹出,直到当前节点. 记得也要修改inSt, 同时维护我们需要的信息.*/void Tarjan(int u) {int v, i;dfn[u] = low[u] = ++dfn_num; //添加时间戳.st[++top] = u; // 进栈inSt[u] = true; // 标⽰在栈for (i=head[u]; i; i=edge[i].lst) {v = edge[i].to;if (!dfn[v]) {Tarjan(v);low[u] = min(low[u], low[v]);} else if (inSt[v]) {low[u] = min(low[u], dfn[v]);}}if (dfn[u] == low[u]) {col_num++;do {inSt[st[top]] = false;col[st[top]] = col_num;size[col_num]++;} while (st[top--] != u);}}bool ou[10010];int main(){// freopen("E:\\input.txt", "r", stdin);int n, i, j, u, v, m;scanf("%d%d", &n, &m);for (i=1; i<=m; ++i) {scanf("%d%d", &u, &v);add(u, v);}for (i=1; i<=n; ++i)if (!dfn[i])Tarjan(i);// 缩点操作int cnt = 0, res = 0;for (i=1; i<=n; ++i) {if (ou[col[i]]) continue;for (j=head[i]; j; j=edge[j].lst) {v = edge[j].to;if (col[i] != col[v]) {ou[col[i]] = true;break;}}}for (i=1; i<=col_num; ++i) {if (!ou[i]) {res = size[i];cnt++;}if (cnt > 1) {res = 0;break;}}printf("%d\n", res);return0;}View Code。
离散数学图论作业3-图的连通性离散数学图论作业3-图的连通性Problem1判断下列各图是否是强连通的,如果不是,再判断是否是弱连通的。
(1)(2)(3)Problem2证明:简单图G是二部图(bipartite graph),当且仅当G没有包含奇数条边的回路。
Problem3a)证明或反驳:存在函数f:N→N使得对于所有k∈N,最小度至少为f(k)的图一定是k-连通的。
b)证明或反驳:存在函数f:N→N使得对于所有k∈N,边连通度至少为f(k)的图一定是k-连通的。
Problem4。
(λ(G)表示G的边连通度)证明:κ(G)=1的r-正则图G,若r>1,总满足λ(G)≤r2Problem5证明:G是2-边连通图当且仅当G中任意两个顶点之间至少有两条不含公共边的通路。
(提示:证明过程中可使用Whitney定理,但需注意和本题的差异)Problem6证明:若G是k?边连通图,从G中任意删除k条边,最多得到2个连通分支。
Problem7对于任意的简单连通图G,1.证明V(G)=E(G)时,G中有且仅有1个简单回路。
(可直接使用V(G)=E(G)?1时图G中无简单回路的结论)2.该结论能否推广为E(G)≥V(G)时G中有且仅有E(G)?V(G)+1个简单回路?*题中简单回路不存在重复的边,可能存在大于1个重复顶点(见P573定义1)Problem8证明:若简单图G是不连通的,则G的补图是连通图。
Problem9证明:任意简单连通图G包含一条长度至少为min{2δ(G),|V(G)|?1}的顶点和边均不重复的通路。
(提示:证明过程中可以考虑图G中最长的[顶点和边均不重复的]通路)。
图论算法三、图的连通性算法求图的连通性之零:遍历欧拉路求图的连通性之一:判断两点是否连通1.Floyed算法时间复杂度:O(N3 )算法实现:不再赘述。
2.遍历算法时间复杂度:O(N2 )算法实现:从任意一个顶点出发,进行一次遍历,就可以求出此顶点和其它各个顶点的连通状况。
所以只要把每个顶点作为出发点都进行一次遍历,就能知道任意两个顶点之间是否有路存在。
可以使用DFS实现。
3.并查集算法时间复杂度:O(N*小常数)算法实现:只适用于无向图,即判断两点是否有相同的父亲。
例题:寻找满足条件的连通分支。
求图的连通性之二:求无向图的连通分量个数。
只要使用并查集即可,如果两个点的祖先相同,显然属于同一连通分量。
一遍循环,统计一共有多少个祖先即可。
求图的连通性之三:求有向图的强连通分量个数与收缩强连通分量。
主要采用Kosaraju算法,复杂度O(N)。
一个有向图的强连通分量,能够收缩为一个点,统计最后点的个数,即是强连通分量的个数。
(a)(b)Kosaraju 算法的思想讲解:1) 对原图进行深搜(DFS ),得到一个深搜出栈的顺序。
假设出栈顺序 3→5→2→4→1 2)将原图每条边进行反向。
3) 逆序,对反图进行搜索。
出栈顺序 3→5→2→4→1 逆序 1→4→2→5→3并且在每轮搜索中对搜到的点进行染色。
color:=0;for i:= p downto 1 do {得到的出栈顺序的逆序就是拓扑顺序}if col [a [i ]]=0 then {没染色过的点,就是没被搜索到的点} begin inc (color );DFS2(a [i ]); {按照1中生成顺序再进行DFS 染色染成同色的是一个强连通块} end ;显然,每条边都进行反向后,在反图中按出栈的逆序也能搜到的连通块一定是强连通块。
因为如果是强连通子图,那么反向没有任何影响,依然是强连通子图。
但如果是单向的边连通,反向后再按原序就无法访问了(因此反向处理是对非强连通块的过滤)。
图的连通性检测方法图论是数学的一个分支,研究图形结构以及图形之间的关系。
在图论中,连通性是一个重要的概念,用于描述图中的节点或顶点之间是否存在路径相连。
连通性检测方法是用来确定一个图是否是连通图的方法。
本文将介绍几种常用的图的连通性检测方法。
一、深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,也可以用来检测图的连通性。
该方法从图中的一个顶点开始,沿着一条路径尽可能深的搜索,直到到达无法继续搜索的节点,然后回溯到上一个节点,继续搜索其他路径。
具体步骤如下:1. 选择一个起始节点作为根节点。
2. 遍历该节点的邻接节点,并标记为已访问。
3. 递归的访问未访问过的邻接节点,直到所有节点都被访问过。
4. 如果所有节点都被访问过,则图是连通的;否则,图是不连通的。
DFS算法的时间复杂度为O(V+E),其中V是节点数,E是边数。
二、广度优先搜索(BFS)广度优先搜索也是一种常用的图遍历算法,同样可以用来检测图的连通性。
该方法从图中的一个顶点开始,先访问其所有邻接节点,然后再依次访问它们的邻接节点。
具体步骤如下:1. 选择一个起始节点作为根节点。
2. 将该节点加入一个队列中。
3. 从队列中取出一个节点,并标记为已访问。
4. 遍历该节点的邻接节点,将未访问过的节点加入队列中。
5. 重复步骤3和步骤4,直到队列为空。
6. 如果所有节点都被访问过,则图是连通的;否则,图是不连通的。
BFS算法的时间复杂度同样为O(V+E)。
三、并查集并查集是一种数据结构,常用于解决图的连通性问题。
它可以高效地合并集合和判断元素是否属于同一个集合。
具体步骤如下:1. 初始化并查集,每个节点都是一个独立的集合。
2. 遍历图中的每条边,将边的两个节点合并到同一个集合中。
3. 判断图是否连通的方法是查找两个节点是否属于同一个集合。
并查集的时间复杂度为O(V+E)。
四、最小生成树最小生成树是指一个连通图的生成树,其所有边的权值之和最小。