图的连通性判断
- 格式:doc
- 大小:77.50 KB
- 文档页数:2
图的连通性判断算法的时间复杂度图是数学中一种常见的数据结构,在计算机科学中也有广泛的应用。
图由节点(顶点)和边组成,表示了不同元素之间的关系。
在图中,如果每个节点都可以通过路径相互到达,则该图被称为连通图,否则被称为非连通图。
图的连通性判断算法指的是判断给定的图是否是连通图的问题。
常见的图的连通性判断算法包括深度优先搜索(DFS)和广度优先搜索(BFS)算法。
接下来,将分别介绍这两种算法,并分析它们的时间复杂度。
一、深度优先搜索(DFS)算法深度优先搜索算法是一种递归的算法,通过访问节点的方式来遍历整个图。
DFS算法首先选择一个节点作为起始节点,然后通过递归地访问与该节点相邻的节点,直到没有未访问过的节点。
如果所有的节点都被访问过,则图是连通的;否则,图是非连通的。
DFS算法的时间复杂度取决于图的大小和结构。
假设图有n个节点和m条边,那么DFS算法的时间复杂度为O(n + m)。
在最坏的情况下,每个节点都需要被访问一次,并且每个节点都需要遍历它的所有相邻节点。
二、广度优先搜索(BFS)算法广度优先搜索算法是一种迭代的算法,通过按层级的方式遍历整个图。
BFS算法首先选择一个节点作为起始节点,然后按照从起始节点开始的顺序,依次访问每个节点的所有相邻节点。
通过不断扩展搜索的范围,直到所有节点都被访问过。
如果所有的节点都被访问过,则图是连通的;否则,图是非连通的。
BFS算法的时间复杂度也取决于图的大小和结构。
假设图有n个节点和m条边,那么BFS算法的时间复杂度为O(n + m)。
在最坏的情况下,每个节点都需要被访问一次,并且每次访问时都需要遍历其所有相邻节点。
总结:图的连通性判断算法的时间复杂度分别为O(n + m)的DFS算法和BFS算法。
其中,n表示图的节点数,m表示图的边数。
这两种算法在连通性判断问题上表现良好,并且可以在较短的时间内找到问题的解答。
需要注意的是,虽然DFS和BFS可以用于判断图的连通性,但它们在处理大规模图时可能存在效率问题。
图的连通性判断(并查集+Bfs+Dfs+Floyd)有向图的连通性检查共4种⽅法,并查集性能最⾼,代码也短,优先推荐:⼀、并查集#include <bits/stdc++.h>using namespace std;const int N = 1010; //图的最⼤点数量/**共提供两组数据,样例1为不连通⽤例,样例2为连通⽤例样例1:不连通,5号结点为独⽴的5 41 22 33 41 4样例2:连通,不存在独⽴结点5 41 22 33 41 5检测各种算法是否能准确获取结果*/int n; //n个⼈int m; //m个亲戚int p; //询问p对亲戚关系int x, y; //输⼊两个⼈之间的关系int fa[N]; //并查集数组//要深⼊理解这个递归并压缩的过程int find(int x) {if (fa[x] != x)//如果x不是族长,递归找⽗亲,副产品就是找回的结果更新掉⾃⼰的家族信息。
fa[x] = find(fa[x]);//⾮常经典的更新,路径压缩⼤法!//返回族长是谁return fa[x];}//加⼊家族集合中void join(int c1, int c2) {int f1 = find(c1), f2 = find(c2);if (f1 != f2)fa[f1] = f2;//各⾃找家长,如果家长不⼀样,就把C1的族长,认C2的族长为爸爸,C1的族长强烈表⽰不满意}int cnt;int main() {//n个⼈员,m个关系cin >> n >> m;//并查集初始化for (int i = 1; i <= n; i++)fa[i] = i; //⾃⼰是⾃⼰的⽼⼤//录⼊m种关系,使⽤并查集来判断图的连通性for (int i = 1; i <= m; i++) {cin >> x >> y;//加⼊并查集join(x, y);}//图已经搭好了,接下来看它们根节点是否相同,如只有⼀个相同的根节点,则说明是⼀个连通图for (int i = 1; i <= n; i++) if (fa[i] == i)cnt++;if (cnt == 1)printf("图是连通的\n");else printf("图不是连通的\n");return 0;}⼆、dfs#include <bits/stdc++.h>using namespace std;const int N = 1010; //图的最⼤点数量struct Edge { //记录边的终点,边权的结构体int to; //终点int value; //边权};int n, m; //表⽰图中有n个点,m条边vector<Edge> p[N]; //使⽤vector的邻接表/**共提供两组数据,样例1为不连通⽤例,样例2为连通⽤例样例1:不连通,5号结点为独⽴的5 41 22 33 41 4样例2:连通,不存在独⽴结点5 41 22 33 41 5检测各种算法是否能准确获取结果*/bool st[N];int cnt;//深度遍历void dfs(int u) {st[u] = true;cnt++;//多⾛了⼀个结点for (int i = 0; i < p[u].size(); i++) {int x = p[u][i].to;if (!st[x]) dfs(x);}}int main() {//采⽤邻接表建图cin >> n >> m;//m条边for (int i = 1; i <= m; i++) {int u, v;cin >> u >> v;p[u].push_back({v, 1});//因本题不需要权值,默认权值为1 }//利⽤dfs进⾏检查是不是强连通的dfs(1);if (cnt == n) printf("图是连通的\n");else printf("图不是连通的\n");return 0;}三、bfs#include <bits/stdc++.h>using namespace std;const int N = 1010; //图的最⼤点数量struct Edge { //记录边的终点,边权的结构体int to; //终点int value; //边权};int n, m; //表⽰图中有n个点,m条边vector<Edge> p[N]; //使⽤vector的邻接表/**共提供两组数据,样例1为不连通⽤例,样例2为连通⽤例样例1:不连通,5号结点为独⽴的5 41 22 33 41 4样例2:连通,不存在独⽴结点5 41 22 33 41 5检测各种算法是否能准确获取结果*/bool st[N];int cnt;int main() {//采⽤邻接表建图cin >> n >> m;//m条边for (int i = 1; i <= m; i++) {int u, v;cin >> u >> v;p[u].push_back({v, 1});//因本题不需要权值,默认权值为1 }//利⽤bfs进⾏检查是不是强连通的//把1号结点放⼊队列queue<int> q;q.push(1);while (!q.empty()) {int u = q.front();q.pop();st[u] = true;cnt++;for (int i = 0; i < p[u].size(); i++) {int x = p[u][i].to;if (!st[x]) q.push(x);}}if (cnt == n) printf("图是连通的\n");else printf("图不是连通的\n");return 0;}四、floyd#include <bits/stdc++.h>using namespace std;const int N = 1010; //图的最⼤点数量int n, m;/**共提供两组数据,样例1为不连通⽤例,样例2为连通⽤例样例1:不连通,5号结点为独⽴的5 41 22 33 41 4样例2:连通,不存在独⽴结点5 41 22 33 41 5检测各种算法是否能准确获取结果*///⽤floyd来判断起点是否可以达到终点int dis[N][N]; //邻接矩阵void floyd() {for (int k = 1; k <= n; k++)for (int i = 1; i <= n; i++)for (int j = 1; j <= n; j++)dis[i][j] = dis[i][j] || (dis[i][k] && dis[k][j]);}int main() {//采⽤邻接矩阵建图cin >> n >> m;//m条边for (int i = 1; i <= m; i++) {int u, v;cin >> u >> v;//双向建边dis[u][v] = 1;dis[v][u] = 1;}//调⽤floydfloyd();for (int i = 1; i <= n; i++)for (int j = 1; j <= n; j++)if (!dis[i][j]) {printf("图不是连通的\n");cout << i << " " << j << endl;exit(0);}printf("图是连通的\n");return 0;}。
图连通性算法及应用图是计算机科学领域中常见的数据结构,用于表示对象之间的关系。
在图论中,图的连通性是一个重要的概念,指的是在图中任意两个顶点之间是否存在路径。
图连通性算法是为了判断图中的连通性而设计的算法,并且在实际应用中有着广泛的应用。
一、连通性的定义与分类在图论中,连通性有两种常见的定义方式:强连通性和弱连通性。
强连通性是指在有向图中,任意两个顶点之间存在互相可达的路径;弱连通性是指在有向图中,将其所有有向边的方向忽略后,剩下的无向图是连通的。
本文将重点介绍无向图的连通性算法及其应用。
二、连通性算法的原理1. 深度优先搜索(DFS)深度优先搜索是最常用的连通性算法之一。
它从图中的一个顶点开始,沿着一条未访问过的边深入图中的下一个顶点,直到无法深入为止,然后回溯至上一个顶点,继续深入其他未访问过的顶点。
通过深度优先搜索算法,我们可以得到一个图的连通分量,从而判断图是否连通。
2. 广度优先搜索(BFS)广度优先搜索同样是常用的连通性算法之一。
它从图中的一个顶点开始,沿着一条未访问过的边遍历与该顶点直接相邻的所有顶点,然后再以这些相邻顶点为起点,继续遍历它们的相邻顶点,直到遍历完所有连通的顶点。
通过广度优先搜索算法,我们可以得到一个图的层次遍历树,从而判断图是否连通。
三、连通性算法的应用1. 社交网络分析在社交网络分析中,连通性算法可以用来判断一个社交网络中是否存在分割成多个互不相连的社群。
通过判断社交网络的连通性,我们可以发现隐藏在社交网络背后的关系网络,从而更好地理解和分析社会关系。
2. 网络路由优化在计算机网络中,连通性算法可以用来判断网络节点之间的连通性。
通过分析网络的拓扑结构,我们可以选择合适的路由算法,从而实现快速且可靠的数据传输。
3. 图像分割在计算机视觉和图像处理中,连通性算法可以用来判断图像中的连通区域。
通过判断图像的连通性,我们可以对图像进行分割和提取,从而实现目标检测和图像识别等应用。
一笔画问题的判定法则
一笔画问题是一种经典的智力游戏,玩家需要用一笔连通所有的点,但不能重复经过同一个点。
在解决问题时,有一些判定法则可以帮助玩家更快地找到解答。
1. 判断顶点度数:顶点度数指的是一个点与多少条线段相连。
如果一个点的度数为奇数,则这个点必须作为起点或终点;如果一个点的度数为偶数,则这个点可以通行过去。
2. 判断连通性:判断图形是否连通是解决一笔画问题的关键。
如果图形不连通,则需要用多笔画才能将所有点连通。
而在连通的情况下,有些顶点是必须通过的,有些顶点则可以绕路绕开。
3. 判断欧拉路径和欧拉回路:欧拉路径指的是经过每条边一次的路径,而欧拉回路指的是在欧拉路径的基础上回到起点。
对于连通的无向图,如果存在欧拉路径,则所有点的度数均为偶数。
对于连通的有向图,如果存在欧拉路径,则所有点的入度等于出度。
4. 判断哈密顿回路:哈密顿回路指的是经过每个点一次的回路。
对于无向图,判断哈密顿回路可以使用Dirac定理:如果图中每个点的度数都大于等于n/2(n为顶点数),则图中存在哈密顿回路。
对于有向图,需要用到Ore定理:如果对于所有不相邻的点u和v,都有deg(u)+deg(v)>=n,则有向图存在哈密顿回路。
以上是几种判断一笔画问题的方法,不同的方法适用于不同的情况。
在实际解决问题时,可以根据具体情况选择合适的方法。
- 1 -。
离散数学中的图的连通性与欧拉路径问题图论是离散数学中的一个重要分支,研究对象是图。
图是由一组顶点和连接这些顶点的边组成的数学结构。
在图论中,连通性和欧拉路径问题是两个基本概念,对于理解和解决图相关的问题具有重要意义。
一、连通性在图论中,连通性是指图中任意两个顶点之间存在一条路径。
如果一个图中任意两个顶点都是连通的,则称该图是连通图;如果一个图不是连通图,那么它可以被分解为多个连通的子图,这些子图称为连通分量。
连通性在实际应用中具有广泛的应用。
例如,在社交网络中,连通性可以用来判断两个人之间是否存在关系链;在计算机网络中,连通性可以用来判断网络中的主机之间是否可以进行通信。
二、欧拉路径问题欧拉路径问题是图论中的一个经典问题,它要求找出一条路径,经过图中每条边一次且仅一次。
如果存在这样的路径,则称图具有欧拉路径。
欧拉路径问题有两种情况:1. 欧拉回路:如果存在一条路径,从起点出发,经过图中每条边恰好一次后回到起点,则称该图具有欧拉回路。
2. 半欧拉路径:如果存在一条路径,从起点出发,经过图中每条边恰好一次后到达终点,但不回到起点,则称该图具有半欧拉路径。
欧拉路径问题的解决方法有欧拉定理和深度优先搜索算法。
欧拉定理指出,一个连通图具有欧拉回路的充分必要条件是每个顶点的度数都是偶数;一个连通图具有半欧拉路径的充分必要条件是除了起点和终点外,其它顶点的度数都是偶数。
深度优先搜索算法(DFS)是一种用来遍历图或树的算法,它可以用来解决欧拉路径问题。
DFS从起点开始遍历图,当遍历到某个顶点时,选择一个未访问过的邻接顶点进行继续遍历,直到无法继续遍历为止。
通过DFS算法,可以找到图中的欧拉路径。
三、总结离散数学中的图的连通性与欧拉路径问题是图论中的两个基本概念。
连通性用来描述图中顶点之间的连接情况,欧拉路径问题则是要找出一条路径,经过图中每条边一次且仅一次。
这两个概念在实际应用中具有广泛的应用,对于理解和解决图相关的问题具有重要意义。
判断图的强连通性一、判断一个n阶图的强连通性分以下3步骤:<1>根据图写出图的邻接矩阵(n * n)。
<2>依次计算邻接矩阵的2至(n-1)次方。
<3>观察得到的矩阵,若存在一点在每一个矩阵中都是0,则该点对应的两个顶点不存在通路,可得该图不是强连通图。
若任一点在这些图中存在至少一个不为0,则任意两点总存在通路,可得该图是强连通图。
(程序中将得到每个矩阵相加得到d矩阵,将d矩阵中所有不为“0”的元素置为“1”,再由顶点到顶点是连通的性质得到可达矩阵)。
二、用程序实现<2><3>两个步骤:源代码如下:#include<stdio.h>int main(){int x,i,j,k;printf("请输入图的顶点数:");scanf("%d",&x);int a[x][x],b[x][x],c[x][x],d[x][x];//a是图的邻接矩阵由d得出图的可达矩阵printf("请依次输入每行数据:\n");for(i = 0 ; i < x ; i++){for(j = 0 ; j < x ; j++){scanf("%d",&a[i][j]);b[i][j] = a[i][j];c[i][j] = a[i][j];d[i][j] = a[i][j];}getchar();}//依次求出a的2至x-1次方int t = 2;while(t < x){printf("A的%d次方:\n",t++);for(i = 0 ; i < x ; i++){for(j = 0 ; j < x ; j++){int sum = 0;for(k = 0 ;k < x ; k++){sum = sum + b[i][k] * a[k][j];}c[i][j] = sum;d[i][j] += c[i][j];printf("%d\t",c[i][j]);}printf("\n");}for(i= 0 ; i < x ; i ++)for(j = 0 ; j < x ; j++)b[i][j] = c[i][j];}//输出可达矩阵并判断是否为强连通图int flag = 1;printf("可达矩阵为:\n");for(i= 0 ; i < x ; i ++){for(j = 0 ; j < x ; j++){if(d[i][j] > 0 || i == j)printf("1\t");else{printf("0\t");flag = 0;}}printf("\n");}if(flag == 1)printf("由可达矩阵知此图是强连通图!\n");elseprintf("由可达矩阵知此图不是强连通图!\n");return 0;}实例测试:教材p127图5-13教材p125 图5-9(a)。
数学离散数学常见题型解析数学离散数学是一门研究数学中离散性、不连续性的分支学科,它与连续性数学形成鲜明对比。
离散数学的研究对象包括离散结构和离散现象,如集合、关系、逻辑、图论等。
在离散数学中,常见的题型有集合论题、逻辑题、图论题等。
本文将对这些常见题型的解题方法进行详细的解析。
一、集合论题解析集合是离散数学的基础概念之一,集合论题主要考察集合的性质和运算。
其中常见的题型包括求交集、并集、补集等。
1.求交集求交集即求两个或多个集合中共有的元素。
解题时需要列出各个集合的元素,然后找出它们的公共元素,即为交集。
例如,已知集合A={1,2,3},B={2,3,4},求A和B的交集。
解答如下:交集A∩B={2,3}。
2.求并集求并集即求两个或多个集合中所有的元素的集合。
解题时需要列出各个集合的元素,然后将它们的元素合并起来即可。
例如,已知集合A={1,2,3},B={2,3,4},求A和B的并集。
解答如下:并集A∪B={1,2,3,4}。
3.求补集求补集即求一个集合中不包含在另一个集合中的元素。
解题时需要明确补集的参照集合。
例如,已知参照集合U={1,2,3,4,5},集合A={2,3,4},求A相对于U的补集。
解答如下:补集A'={1,5}。
二、逻辑题解析逻辑题主要考察命题逻辑和谓词逻辑的推理和判断。
常见的题型包括命题的合取、析取、蕴含关系等。
1.命题合取命题合取即多个命题同时成立,才能得出最终结论为真。
解题时需要逐个判断每个命题的真假,并根据合取关系得出最终结论。
例如,已知命题p:明天下雨,命题q:今天是周二。
判断命题p 合取q的真假。
解答如下:根据实际情况判断,如果p和q都为真,则p合取q为真;反之则为假。
2.命题析取命题析取即多个命题中至少有一个成立,就能得出最终结论为真。
解题时需要逐个判断每个命题的真假,并根据析取关系得出最终结论。
例如,已知命题p:明天下雨,命题q:今天是周二。
判断命题p析取q的真假。
稀疏图、稠密8.4 图的连通性判定一个图的连通性是图的一个应用问题,我们可以利用图的遍历算法来求解这一问题。
本节将重点讨论无向图的连通性、有向图的连通性、由图得到其生成树或生成森林以及连通图中是否有关节点等几个有关图的连通性的问题。
8.4.1 无向图的连通性在对无向图进行遍历时,对于连通图,仅需从图中任一顶点出发,进行深度优先搜索或广度优先搜索,便可访问到图中所有顶点。
对非连通图,则需从多个顶点出发进行搜索,而每一次从一个新的起始点出发进行搜索过程中得到的顶点访问序列恰为其各个连通分量中的顶点集。
例如,图8.5 (a)是一个非连通图G3,按照图8.18 所示G3 的邻接表进行深度优先搜索遍历,需由算法8.5调用两次DFS(即分别从顶点A 和D出发),得到的顶点访问序列分别为:A B F E C E这两个顶点集分别加上所有依附于这些顶点的边,便构成了非连通图G3的两个连通分量,如图8.5(b) 所示。
因此,要想判定一个无向图是否为连通图,或有几个连通分量,就可设一个计数变量count,初始时取值为0,在算法8.5的第二个for循环中,每调用一次DFS,就给count增1。
这样,当整个算法结束时,依据count的值,就可确定图的连通性了。
序号图8.18 G3的邻接表8.4.3 生成树和生成森林在这一小节里,我们将给出通过对图的遍历,得到图的生成树或生成森林的算法。
设E(G)为连通图G中所有边的集合,则从图中任一顶点出发遍历图时,必定将E(G)分成两个集合T(G)和B(G),其中T(G)是遍历图过程中历经的边的集合;B(G)是剩余的边的集合。
显然,T(G)和图G 中所有顶点一起构成连通图G 的极小连通子图。
按照8.1.2节的定义,它是连通图的一棵生成树,并且由深度优先搜索得到的为深度优先生成树;由广度优先搜索得到的为广度优先生成树。
例如,图8.17(a)和(b)所示分别为连通图G5的深度优先生成树和广度优先生成树。
基于MATLAB的实现,此方法可以知道有几个连通域,并且知道各个顶点的归属。
Branches中显示各个节点的归属,同一行的为同一连通分支中的节点。
其第一列为它的分类数。
例如下图,有五个连通分支,1、2、3在同一个连通分支中。
这是上图的邻接矩阵,同一节点间为0。
Branches中的显示内容,第一列为连通分支数,后边跟着的是给连通分支中的节点。
第一行就表示1、2、3为一个连通分支,4自己在一个连通分支中等等。
function [Branches,numBranch]=Net_Branches(ConnectMatrix)
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% This program is designed to count the calculate connected components in networks.
% Usage [Cp_Average, Cp_Nodal] = Net_ClusteringCoefficients(ConnectMatrix,Type)
% Input:
% ConnectMatrix --- The connect matrix without self-edges.
% Output:
% Branches --- A matrix, each rows of which represents the
% different connected components.
% numBranch --- The numbers of connected components in network
%
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % Refer:
% Ulrik Barandes <A faster algorithm for betweennes centrality>
% Written by Hu Yong, Nov,2010
% E-mail: carrot.hy2010@
% based on Matlab 2008a
% Version (1.0),Copywrite (c) 2010
% Input check-------------------------------------------------------------%
[numNode,I] = size(ConnectMatrix);
if numNode ~= I
error('Pls check your connect matrix');
end
% End check---------------------------------------------------------------%
Node = [1:numNode];
Branches = [];
while any(Node)
Quence = find(Node,1); %find a non-zero number in Node set
subField=[]; %one component
% start search
while ~isempty(Quence)
currentNode = Quence(1);
Quence(1) = []; %dequeue
subField=[subField,currentNode];
Node(currentNode)=0;
neighborNode=find(ConnectMatrix(currentNode,:));
for i=neighborNode
if Node(i) ~= 0 %first found
Quence=[Quence,i];
Node(i)=0;
end
end
end
subField = [subField,zeros(1,numNode-length(subField))];
Branches = [Branches;subField]; %save
end
numBranch = size(Branches,1);。