湖南省岳阳市岳阳县2018-2019学年九年级期末数学试题
- 格式:docx
- 大小:123.88 KB
- 文档页数:5
九年级上册岳阳数学期末试卷达标训练题(Word 版 含答案)一、选择题1.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .32.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-13.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .44.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26°5.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④6.△ABC 的外接圆圆心是该三角形( )的交点.A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高7.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°8.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12 B .13 C .23 D .16 9.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .1510.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 11.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( ) A .4B .4.5C .5D .612.一元二次方程x 2﹣3x =0的两个根是( )A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣3二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 14.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 15.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________16.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .17.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.18.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).19.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.20.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.21.方程290x的解为________.22.若点 M(-1, y1),N(1, y2),P(72, y3 )都在抛物线 y=-mx2 +4mx+m2 +1(m>0)上,则y1、y2、y3大小关系为_____(用“>”连接).23.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.24.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.三、解答题25.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.26.从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分别计算甲、乙这两个样本的平均数和方差;(2)比较这两台包装机包装质量的稳定性.27.已知二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),若这个二次函数与x轴交于A.B 两点,与y轴交于点C,求出△ABC的面积.28.如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)29.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.30.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C处出发,沿线段CB匀速运动至点 B 处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△ DEC′与△ BOC 的重叠部分面积为S,点D的运动时间为t(秒),S与 t 的函数图象如图 2 所示.(1)V D= ,C 坐标为;(2)图2中,m= ,n= ,k= .(3)求出S与t 之间的函数关系式(不必写自变量t的取值范围).31.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88 (1)根据上述数据,将下列表格补充完整. 整理、描述数据: 成绩/分8889 90 91 95 96 97 98 99 学生人数 2132121数据分析:样本数据的平均数、众数和中位数如下表: 平均数 众数 中位数 9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为 分. 数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由. 32.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.2.C解析:C【解析】【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小.【详解】解:∵函数的对称轴为x=222b m m a -=-=-, 又∵二次函数开口向上,∴在对称轴的右侧y 随x 的增大而增大, ∵x >1时,y 随x 的增大而增大, ∴-m≤1,即m ≥-1 故选:C . 【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.3.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=42, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.4.B解析:B 【解析】 【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E 的方程,解方程即可求得答案. 【详解】解:如图,连接CO,∵CE =OB =CO=OD ,∴∠E =∠1,∠2=∠D ∴∠D=∠2=∠E +∠1=2∠E . ∴∠3=∠E +∠D =∠E +2∠E =3∠E .由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.5.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.6.A解析:A【解析】【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.7.C解析:C 【解析】∵∠BOC=2∠BAC ,∠BAC=40° ∴∠BOC=80°, ∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50° 故选C .8.B解析:B 【解析】 【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案. 【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种, ∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B . 【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.9.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.10.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.11.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.12.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x 2﹣3x =0,x (x ﹣3)=0,x =0或x ﹣3=0,x 1=0,x 2=3.故选:B .【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).二、填空题13.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.15.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵C解析:32【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵CF是⊙O的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.16.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.17.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.18.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.19.4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.20.16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠C解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA==,,DE AB220解得OA=16.故答案为16.21.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.x=±.故答案为3【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.22.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=mx2 +4mx+m2 +1(m>0),对称轴为x=,观察二次函数的图象可知:y1<y3<y2.故答案为:y解析:y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=-mx2 +4mx+m2 +1(m>0),对称轴为x=422mm-=-,观察二次函数的图象可知:y1<y3<y2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.23.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:3【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:22224223OA OH-=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163故答案为:3.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.24.1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.三、解答题25.(1)PD是⊙O的切线.证明见解析.(2)8.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD 和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=8.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.26.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,x乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,2 s甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键.27.【解析】【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=12×AB×OC,即可得答案.【详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=12×AB×OC=12×4×6=12.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.28.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据四边形ABCD是平行四边形可得AD∥BC,∠FGE=FBC,再根据已知∠FBC=∠DCE,进而可得结论;(2)作三角形FBC的外接圆交AD于点P即可证明.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC∴∠FGE=∠FBC∵∠FBC=∠DCE,∴∠FGE=∠DCE∵∠FEG=∠DEC∴∠D=∠F.(2)如图所示:点P即为所求作的点.证明:作BC和BF的垂直平分线,交于点O,作△FBC 的外接圆,连接BO 并延长交AD 于点P ,∴∠PCB =90°∵AD ∥BC∴∠CPD =∠PCB =90°由(1)得∠F =∠D∵∠F =∠BPC∴∠D =∠BPC∴△BPC ∽△CDP .【点睛】此题主要考查圆的综合应用,解题的关键是熟知平行四边形的性质、外接圆的性质及相似三角形的判定与性质.29.(1)21234y x x =-+;(2)相交,证明见解析 【解析】【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l 的解析式及B 、C 的坐标,分别求出直线AB 、BD 、CE 的解析式,再求出CE 的长,与到抛物线的对称轴的距离相比较即可.【详解】解:(1)设抛物线为y =a (x ﹣4)2﹣1,∵抛物线经过点()0,3A ,∴3=a (0﹣4)2﹣1,a =14; ∴抛物线的表达式为:21234y x x =-+; (2)相交. 证明:连接CE ,则CE ⊥BD ,14(x ﹣4)2﹣1=0时,x 1=2,x 2=6.()0,3A ,()2,0B ,()6,0C ,对称轴x =4,∴OB =2,AB BC =4,∵AB ⊥BD ,∴∠OAB +∠OBA =90°,∠OBA +∠EBC =90°,∴△AOB ∽△BEC ,∴AB OB BC CE =,即24CE =,解得CE 13=>2, 故抛物线的对称轴l 与⊙C 相交.【点睛】本题考查待定系数法求二次函数解析式、相似三角形的判定与性质、直线与圆的位置关系等内容,掌握数形结合的思想是解题的关键.30.(1)点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).(2;45;3)①当点C ′在线段BC 上时, S =14t 2;②当点C ′在CB 的延长线上,S=−1312t 2203;③当点E 在x 轴负半轴, S =t 2t +20. 【解析】【分析】(1)根据直线的解析式先找出点B 的坐标,结合图象可知当t C ′与点B 重合,通过三角形的面积公式可求出CE 的长度,结合勾股定理可得出OE 的长度,由OC =OE +EC 可得出OC 的长度,即得出C 点的坐标,再由勾股定理得出BC 的长度,根据CD =12BC ,结合速度=路程÷时间即可得出结论; (2)结合D 点的运动以及面积S 关于时间t 的函数图象的拐点,即可得知当“当t =k 时,点D 与点B 重合,当t =m 时,点E 和点O 重合”,结合∠C 的正余弦值通过解直角三角形即可得出m 、k 的值,再由三角形的面积公式即可得出n 的值;(3)随着D 点的运动,按△DEC ′与△BOC 的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S 关于t 的函数关系式;②由重合部分的面积=S △CDE−S △BC ′F ,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD 和DF 的值,结合三角形的面积公式即可得出结论.【详解】(1)令x =0,则y =2,即点B 坐标为(0,2),∴OB =2.当t B 和C ′点重合,如图1所示,此时S =12×12CE •OB =54, ∴CE =52, ∴BE =52. ∵OB =2,∴OE =2253222⎛⎫-= ⎪⎝⎭, ∴OC =OE +EC =32+52=4,BC =222425+=,CD =5, 5÷5=1(单位长度/秒),∴点D 的运动速度为1单位长度/秒,点C 坐标为(4,0). 故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t =k 时,点D 与点B 重合, 此时k =1BC =25; 当t =m 时,点E 和点O 重合,如图2所示.sin ∠C =OB BC 255,cos ∠C =25525OC BC ==, OD =OC •sin ∠C =45=455,CD =OC •cos ∠C =425=855. ∴m =1CD =855,n =12BD •OD =12×(5−855)×55=45. 故答案为:855;45;5(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①当点C′在线段BC上时,如图3所示.此时CD=t,CC′=2t,0<CC′≤BC,∴0<t≤5.∵tan∠C=12 OBOC=,∴DE=CD•tan∠C=12t,此时S=12CD•DE=14t2;②当点C′在CB的延长线上,点E在线段OC上时,如图4所示.此时CD=t,BC′=5,DE=CD•tan∠C=12t,CE=CDcos C∠5t,OE=OC−CE=5t,∵CC BCCE OC'⎧⎨≤⎩>,即22554t⎧≤>,5t≤855.由(1)可知tan∠OEF=232=43,∴OF=OE•tan∠OEF=162533-t,BF=OB−OF=51033-,∴FM=BF•cos∠C=4453t-.此时S=12CD•DE−12BC′•FM=−2138520123t-;③当点E 在x 轴负半轴,点D 在线段BC 上时,如图5所示.此时CD =t ,BD =BC−CD =5,CE 5t ,DF =2452BD BD t tan C==∠, ∵CE OC CD BC ⎧⎨≤⎩>,即545t ⎧⎪⎨⎪≤⎩>, 85<t ≤5 此时S =12BD •DF =12×5=5+20. 综上,当点C ′在线段BC 上时, S =14t2;当点C ′在CB 的延长线上, S=−1312t2+85203;当点E 在x 轴负半轴, S =5+20. 【点睛】本题考查了勾股定理、解直角三角形以及三角形的面积公式,解题的关键是:(1)求出BC 、OC 的长度;(2)根据图象能够了解当t =m 和t =k 时,点DE 的位置;(3)分三种情况求出S 关于t 的函数关系式.本题属于中档题,(1)(2)难度不大;(3)需要画出图形,利用数形结合,通过解直角三角形以及三角形的面积公式找出S 关于t 的函数解析式.31.(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.【解析】【分析】(1)由题意即可得出结果;(2)由20×50%=10,结合题意即可得出结论;(3)由20×30%=6,即可得出结论.【详解】(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分,∴众数是90分;故答案为:5;3;90;(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分;故答案为:91;(3)估计评选该荣誉称号的最低分数为97分;理由如下:∵20×30%=6,∴估计评选该荣誉称号的最低分数为97分.【点睛】本题考查了众数、中位数、用样本估计总体等知识;熟练掌握众数、中位数、用样本估计总体是解题的关键.32.(1)详见解析;(2)4;(3)252【解析】【分析】(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得出OD DE ⊥,即可得证;(2)首先连接BD ,得出AED ADB ∆∆∽,进而得出2A D A A E B =⋅,再根据勾股定理得出DE ;(3)首先连接DF ,过点D 作DG AB ⊥,得出AED AGD ∆∆≌,再得EDF GDB ∆∆≌,进而得出2AB AF EF =+,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接OD∵OD OA =∴12∠=∠∵AD 平分BAE ∠∴13∠=∠∴32∠=∠∴OD AE ∥∵DE AF ⊥∴OD DE ⊥又∵OD 是O 的半径∴DE 与O 相切(2)解:连接BD∵AB 为直径 ∴∠ADB=90°∵13∠=∠∴AED ADB ∆∆∽∴2A D A A E B =⋅∴280AD =∴Rt ADE ∆中2228084DE AD AE =-=-=(3)连接DF ,过点D 作DG AB ⊥于G∵13∠=∠,DE ⊥AE ,AD=AD∴AED AGD ∆∆≌∴AE AG =,DE=DG∴EDF GDB ∆∆≌∴EF BG =∴2AB AF EF =+即:210x y +=∴152y x =-+ ∴2152AF EF x x ⋅=-+ 根据二次函数知识可知:当5x =时,()max 252AF EF ⋅=【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.。
2018年湖南省岳阳市初中学业水平考试试卷数学(满分120分,考试时间90分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018湖南岳阳,1,3分)2018的倒数是A.2018B.20181 C.20181- D.-2018 【答案】D.【解析】解:0)2018(-=1.故选D.【知识点】零指数幂2.(2018湖南岳阳,2,3分) 下列运算结果正确的是A .325a a a ⋅=B .325()a a =C .325a a a +=D .22a a -=- 【答案】A.【解析】解:A 选项,a 3·a 2=a 3+2=a 5,故正确;B 选项(a 3)2=a 3×2=a 6,故错误;C 选项,a 3和a 2不是同类项,不能合并,故错误;D 选项,a -2=21a,故错误. 故选A.【知识点】同底数幂的乘法,幂的乘方,合并同类项,负整数指数幂3.(2018湖南岳阳,3,3分) 函数3-=x y 中自变量x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C.【解析】解:根据题意可得x -3≥0,解答x ≥3,故选C.【知识点】函数的自变量的取值范围4.(2018湖南岳阳,4,3分) 抛物线23(2)5y x =-+的顶点坐标是( )A .(2,5)-B .(2,5)--C .(2,5)D .(2,5)-【答案】C.【解析】解:因为23(2)5y x =-+为抛物线的顶点式, 根据顶点式的坐标特点可知,顶点坐标为(2,5).故选C.【知识点】二次函数的性质5.(2018湖南岳阳,5,3分) 已知不等式组2010x x -<⎧⎨+≥⎩,其解集在数轴上表示正确的是( )A .B .C .D .【答案】D.【解析】解:⎩⎨⎧≥+-②01①02x x <,解不等式①,得x <2,解不等式②,得x ≥-1,不等式组的解集为-1≤x <2,不等式组的解集在数轴上表示为:故选D .【知识点】解一元一次不等式组6.(2018湖南岳阳,6,3分) 在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A .90,96B .92,96C .92,98D .91,92【答案】 B【解析】解:将这组数按从小到大的顺序排列为:86,88,90,92,96,96,98,故该组数中的中位数为92,众数为96.故选B.【知识点】中位数,众数7.(2018湖南岳阳,7,3分) 下列命题是真命题的是( )A .平行四边形的对角线相等B .三角形的重心是三条边的垂直平分线的交点C .五边形的内角和是540oD .圆内接四边形的对角相等【答案】C.【解析】解:A 选项,平行四边形的对角线不一定相等,如菱形是平行四边形,但对角线不相等,故错误;B 选项,三角形的重心是三条边的中线的交点,故错误;C 选项,五边形的内角和为(5-2)×180°=540°,故正确;D 选项,圆内接四边形的对角互补,不一定相等,故错误.故选C.【知识点】平行四边形的性质,三角形重心的定义,多边形内角和,圆内接四边形的性质8.(2018湖南岳阳,8,3分) 在同一直角坐标系中,二次函数2y x =与反比例函数1(0)y x x=>的图象如图所示,若两个函数图象上有三个不同....的点1(,)A x m ,2(,)B x m ,3(,)C x m ,其中m 为常数,令123x x x ω=++,则ω的值为( )A .1B .mC .2mD .1m【答案】D.【解析】解:根据题意可得A ,B ,C 三点有两个在二次函数图象上,一个在反比例函数图象上,不妨设A ,B 两点在二次函数图象上,点C 在反比例函数图象上,∵二次函数2y x =的对称轴是y 轴,∴21x x +=0.∵点C 在反比例函数1(0)y x x =>上, ∴3x =m1, ∴m x x x 1321=++=ω. 故选D.【知识点】二次函数的性质,反比例函数的性质二、填空题:本大题共8小题,每小题4分,共32分.9.(2018湖南岳阳,9,4分) 因式分解:24x -= .【答案】(x -2)(x +2).【解析】解:原式=x 2-22=(x -2)(x +2).故答案为(x -2)(x +2).【知识点】应用公式法进行因式分解10.(2018湖南岳阳,10,4分)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所.数据120000000用科学记数法表示为 .【答案】1.2×108.【解析】解:120000000=1.2×108.故答案为1.2×108.【知识点】科学记数法11.(2018湖南岳阳,11,4分)关于x 的一元二次方程220x x k ++=有两个不相等的实数根,则k 的取值范围是 . 【答案】k <1.【解析】解:∵一元二次方程220x x k ++=有两个不相等的实数根,∴△=22-4k >0,解得k <1.故答案为k <1..【知识点】一元二次方程根的判别式的应用12.(2018湖南岳阳,12,4分)已知221a a +=,则23(2)2a a ++的值为 . 【答案】5.【解析】解:∵221a a +=,∴23(2)2a a ++=3+2=5.故答案为5.【知识点】求代数式的值——整体代入法的应用13.(2018湖南岳阳,13,4分) 在-2,1,4,-3,0这5个数字中,任取一个数是负数的概率是 . 【答案】52. 【解析】解:∵在-2,1,4,-3,0这5个数字中负数有2个,∴任取一个数是负数的概率P=52. 故答案为52. 【知识点】古典概率的计算14.(2018湖南岳阳,14,4分)如图,直线//a b ,160∠=o ,240∠=o,则3∠= .【答案】80°.【解析】解:如图,∵a ∥b ,∴∠1=∠4.∵∠1=60°,∴∠4=60°.∵∠2=40°,∴∠3=180°-∠4-∠2=180°-60°-40°=80°.故答案为80°.【知识点】平行线的性质,三角形内角和定理15.(2018湖南岳阳,15,4分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是 步.【答案】1760. 【解析】解:如图.设该直角三角形能容纳的正方形边长为x ,则AD=12-x ,FC=5-x根据题意易得△ADE ∽△EFC ,∴FCDE EF AD =, ∴x x x x -=-512,解得:x =1760. 故答案为1760.【知识点】相似三角形的性质16.(2018湖南岳阳,16,4分).如图,以AB 为直径的O e 与CE 相切于点C ,CE 交AB 的延长线于点E ,直径18AB =,30A ∠=o,弦CD AB ⊥,垂足为点F ,连接AC ,OC ,则下列结论正确的是 .(写出所有正确结论的序号)①»»BC BD =;②扇形OBC 的面积为274π;③OCF OEC ∆∆:;④若点P 为线段OA 上一动点,则AP OP ⋅有最大值20.25.【答案】①③④.【解析】解:∵AB 是⊙O 的直径,且CD ⊥AB ,∴»»BCBD =,故①正确; ∵∠A=30°,∴∠COB=60°,∴扇形OBC=ππ227)2(360602=AB ··,故②错误; ∵CE 是⊙O 的切线,∴∠OCE=90°,∴∠OCD=∠OFC ,∠EOC=∠COF ,∴OCF OEC ∆∆:,故③正确;设AP=x ,则OP=9-x ,∴AP ·OP=x (9-x )=-x 2+9x =481)29(2+-x -, ∴当x =29时,AP ·OP 的最大值为481=20.25,故④正确. 故答案为①③④.【知识点】垂径定理,扇形面积计算公式,相似三角形的判定,二次函数的性质三、解答题(本大题共8小题,满分64分,解答应写出文字说明、证明过程或演算步骤)17.(2018湖南岳阳,17,6分) 计算:20(1)2sin 45(2018)2π--+-+-o .【思路分析】首先利用乘方运算,特殊角的三角函数值,零指数幂以及绝对值的性质进行化简,然后将化简后的式子进行加减即可.【解题过程】解:原式=1-2×22+1+2=2. 【知识点】乘方运算,特殊角的三角函数值,零指数幂,绝对值的性质18.(2018湖南岳阳,18,6分)如图,在平行四边形ABCD 中,AE CF =,求证:四边形BFDE 是平行四边形.【思路分析】首先根据四边形ABCD 是平行四边形,可得AD=BC ,∠A=∠C ,AB=CD ,然后根据AE=CF 可得△ADE ≌△CBF ,进而得出DE=BF ,进而证明出结论.【解题过程】证明:∵四边形ABCD 是平行四边形,∴AD=BC ,∠A=∠C ,AB=CD.∵AE=CF ,∴BE=DF.∵在△ADE 和△CBF 中,⎪⎩⎪⎨⎧=∠=∠=BC AD C A CF AE ,∴△ADE ≌△CBF (SAS )∴DE=BF ,∴四边形BFDE 是平行四边形.【知识点】平行四边形的判定与性质,全等三角形的判定与性质19.(2018湖南岳阳,19,8分) 如图,某反比例函数图象的一支经过点(2,3)A 和点B (点B 在点A 的右侧),作BC y ⊥轴,垂足为点C ,连结AB ,AC.(1)求该反比例函数的解析式;(2)若ABC ∆的面积为6,求直线AB 的表达式.【思路分析】(1)首先设反比例函数的解析式为xk y =,然后把A 的坐标代入反比例函数的解析式即可求出答案;(2)根据三角形的面积求出B 的坐标,设直线AB 的解析式是y =mx +n ,把A 、B 的坐标代入得到方程组,求出方程组的解即可.【解题过程】解:(1)设反比例函数的解析式为xk y =, ∵点A 在反比例函数的图象上, ∴将(2,3)A 代入xk y =,得k =2×3=6, ∴反比例函数的解析式为xy 6=. (2)设B(x ,x 6),则C(0,x 6),点A 到BC 的距离d =3-x 6,BC=x, S △ABC =232)63(6-x x x =-, ∵S △ABC =6,∴623=6-x ,解得x =6, ∴B (6,1).设AB 的表达式为y =mx +n ,则⎩⎨⎧=+=+3216b k b k ,解得⎪⎩⎪⎨⎧==421b -k , ∴直线AB 的表达式为421+-=x y . 【知识点】待定系数法求一次函数的解析式和反比例函数的解析式,三角形的面积计算公式20.(2018湖南岳阳,20,8分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队.现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为_______人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【思路分析】(1)根据条形统计图中喜欢腰鼓的人数和扇形统计图中腰鼓所占的比例即可计算出总人数;(2)根据总人数和腰鼓,花鼓戏,划龙舟以及其他的项目的人数可计算出广场舞的人数,进而画出条形图;(3)根据“划龙舟”的人数以及总人数计算出“划龙舟”的人占总数的百分比,进而得出所在扇形的圆心角;(4)首先列出表格,然后根据表格得出所有的情况和恰好选中“花鼓戏、划龙舟”这两个项目的情况,进而得出概率.【解题过程】解:(1)∵从条形图中可以看出喜欢腰鼓的有24人,从扇形图中可以看出喜欢腰鼓占的比例为20%,∴这次参与调查的村民人数为24÷20%=120人.故答案为240人.(2)喜欢广场舞的人数为120-24-15-30-9=42人,补充如图所示.(3)图中“划龙舟”所在的扇形的圆心角的度数为:360°×12030=90°. (4)列表如下:广场舞 腰鼓 花鼓戏 划龙舟 广场舞无 (腰鼓,广场舞) (花鼓戏,广场舞) (划龙舟,广场舞) 腰鼓(广场舞,腰鼓) 无 (花鼓戏,腰鼓) (划龙舟,腰鼓) 花鼓戏(广场舞,花鼓戏) (腰鼓,花鼓戏) 无 (划龙舟,花鼓戏) 划龙舟 (广场舞,划龙舟) (腰鼓,划龙舟) (花鼓戏,划龙舟)无 由表格可知,共有12中情况,其中恰好选中“花鼓戏、划龙舟”这两个项目的有2种情况,故概率为:612=. 【知识点】列表法求概率,求扇形的圆心角 21.(2018湖南岳阳,21,8分) 为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?【思路分析】首先设原计划平均每天施工x 平方米,根据题意列出分式方程11213300033000=-x.x ,解出分式方程,然后根据“实际工作效率比原计划每天提高了20%”得出答案.【解题过程】解:设原计划平均每天施工x 平方米,则 11213300033000=-x.x ,解得x =500, 经检验,x =500是原分式方程的解,∴实际平均每天施工为500×(1+20%)=600平方米.答:实际平均每天施工为600平方米.【知识点】分式方程的应用22.(2018湖南岳阳,22,8分)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC 宽3.9米,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC 的距离为3.3米,灯臂OM 长为1.2米(灯罩长度忽略不计),60AOM ∠=o .(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:3 1.73≈,结果精确到0.01米)【思路分析】(1)首先过点M 作MN ⊥AB 于N ,根据三角函数的定义可得出ON 的长,然后根据线段的加减运算即可得出M 到地面的距离;(2)首先根据题意可得货车的右端应该在图中E 点处,此时BE=0.7m ,过E 点作EF ⊥BC 交OM 于F 点,过O 点作OG ⊥DF ,然后根据含30°角的直角三角形的性质可得出FG 的长,进而得出EF 的长,进而得出答案.【解题过程】解:(1)过点M 作MN ⊥AB 于N ,∵OM=1.2,∠MON=60°,∴ON=OM ·sin60°=533, ∴M 到地面的距离d =ON+OB=533+3.3=103633+. (2)根据题意可得货车的右端应该在图中E 点处,此时BE=0.7m ,∴EF=FG+GE=3.3+0.404=3.704>3.5,∴能通过.【知识点】锐角三角函数的定义,含30°角的直角三角形的性质23.(2018湖南岳阳,23,10分) 已知在Rt ABC ∆中,90BAC ∠=o,CD 为ACB ∠的平分线,将ACB ∠沿CD 所在的直线对折,使点B 落在点'B 处,连结'AB ,'BB ,延长CD 交'BB 于点E ,设2(045)ABC αα∠=<<o o.(1)如图1,若AB AC =,求证:2CD BE =;(2)如图2,若AB AC ≠,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(45α+o ),得到线段FC ,连结EF 交BC 于点O ,设COE ∆的面积为1S ,COF ∆的面积为2S ,求12S S (用含α的式子表示). 【思路分析】(1)首先根据轴对称的性质可得CE ⊥BB ′且BE=21BB ′,进而得出∠B ′=∠ADC ,进而得出△ABB ′≌△ACD ,然后根据全等三角形的性质可得BB ′=CD ,进而证明出结论; (2)首先根据(1)可得出∠B ′=∠ADC ,进而得出△ABB ′∽△ACD ,进而得出AC AB CD BB =',然后根据锐角三角函数的定义得出CD 与BE 的数量关系;(3)首先根据题意可得出∠ECF=90°,进而得出△OBE ∽△OCF ,然后根据等高的三角形的面积比等于底的比可得出OFOE S S =21,最后利用锐角三角函数的定义得出答案. 【解题过程】解:(1)根据题意可得CE ⊥BB ′且BE=21BB ′, ∵CE ⊥BB ′,∴∠EBD+∠BDE=90°.∵∠BDE=∠ADC ,∴∠ADC+∠EBD=90°.∵∠BAB ′=90°,∴∠EBD+∠B ′=90°,∴∠B ′=∠ADC ,在△ABB ′和△ACD 中⎪⎩⎪⎨⎧∠='∠=∠='∠ADC B ACAB CAD BAB ∴△ABB ′≌△ACD (ASA ),∴BB ′=CD ,∴CD=2BE.(2)由(1)可知,∠B ′=∠ADC ,∵∠BAB ′=∠CAD=90°,∴△ABB ′∽△ACD , ∴AC AB CD BB ='. ∵AB=BC ·cos ∠ABC==BCcos2α,AC=BC ·sin ∠ABC=BCsin2α,∴ααsin2cos CD BB 2=', ∴CD=BE cos 2sin2αα2. (3)由(1)(2)可知,CE ⊥BB ′,∠B ′BA=∠BCE ,∵∠EBC+∠BCE=90°,即∠B ′BA+∠ABC+∠BCE=90°,∴∠BCE=45°-α.∵∠BCF=45°+α,∴∠ECF=∠BCE+∠BCF=90°,∴CF ∥BE ,∴△OBE ∽△OCF ,∴CFBE OF OE =. ∵OF OE S S =21,sin ∠BCE=BCBE ,BC=CF , ∴21S S =sin (45°-α). 【知识点】轴对称的性质,锐角三角函数的定义,相似三角形的判定与性质,全等三角形的判定与性质24.(2018湖南岳阳,24,10分)已知抛物线F :2y x bx c =++的图象经过坐标原点O ,且与x 轴另一交点为3(,0)-.(1)求抛物线F 的解析式;(2)如图1,直线l :3(0)3y x m m =+>与抛物线F 相交于点11(,)A x y 和点22(,)B x y (点A 在第二象限),求21y y -的值(用含m 的式子表示);(3)在(2)中,若43m =,设点'A 是点A 关于原点O 的对称点,如图2. ①判断'AA B ∆的形状,并说明理由;②平面内是否存在点P ,使得以点A 、B 、'A 、P 为顶点的四边形是菱形.若存在,求出点P 的坐标;若不存在,请说明理由.【思路分析】(1)将原点和点3(3-代入抛物线2y x bx c =++,解出b 和c 即可; (2)首先联立m x y +=33与x x y 332+=,解出x 1和x 2,然后将x 1和x 2代入m x y +=33解出y 1和y 2,进而得出结果;(3)①首先根据题意得出A ′的坐标,进而得出A ′B 的长度,根据点A 的坐标得出OA 的长,进而得出AA ′,然后根据三角函数的定义得出sin ∠A ′,进而得出∠A ′的度数,进而得出△AA ′B 的形状;②分别以AA ′,A ′B 和AB 为菱形的对角线,根据菱形的性质得出点P 的坐标即可.【解题过程】解:(1)根据题意,得⎪⎩⎪⎨⎧=+-=033310c b c ,解得⎪⎩⎪⎨⎧==033c b , ∴F 的解析式为x x y 332+=. (2)联立m x y +=33与x x y 332+=,解得m x -=1,m x =2, ∴m m m x y +-=+=333311,m m m x y +=+=333322, ∴m m m m m y y 332333312=+--+=-)(, (3)①当43m =时,3321-=x ,3322=x , ∴321=y ,22=y∴A (332-,32),B (332,2). ∵点A 与点A ′关于原点对称,∴A ′(332,32-), ∴A ′B=2-(32-)=38. ∵OA=343233222=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-, ∴OA ′=34, ∴AA ′=38, ∴A ′B=AA ′.∵点A 到BA ′的距离d =332+332=334, ∴sin ∠A ′=2338334='AA d , ∴∠A ′=60°,∴△AA ′B 是等边三角形.②存在.若以AA ′为菱形的对角线,则点P 与点B 关于原点对称,此时点P 坐标为(-332,-2); 若以A ′B 为菱形的对角线,则点P 为将点A 向右移动2d 个单位长度,此时点P 的坐标为(334,32); 若以AB 为菱形的对角线,则点P 为将点A 向上移动A ′B 个单位长度,此时点P 的坐标为(332-,310).【知识点】待定系数法求二次函数的解析式,一次函数与二次函数的交点问题,中心对称图形的性质,锐角三角函数的定义,等边三角形的判定,在平面直角坐标平面内的点的平移,菱形的性质。
2019年下学期期末质量检测九年级数学一、选择题:(每小题3分,共计30分)1.已知32 )0,(0a b a b =≠≠,下列变形错误的是( ) A. 23a b = B. 23b a = C. 32b a = D. 23a b =2.下列关于反比例函数8y x=-,结论正确的是( ) A. 图象必经过()2,4B. 图象在二,四象限内C. 在每个象限内,y 随x 的增大而减小D. 当1x >-时,则8y >3.甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是22221.2, 1.1,0.6,0.9S S S S ====甲乙丁丙则射击成绩最稳定的是( )A. 甲B. 乙C. 丙D. 丁4.用配方法解方程2680x x --=时,配方结果正确的是( )A. 2(3)17x -=B. 2(3)14x -=C. 2(6)44x -=D. 2(3)1x -= 5.将抛物线 22y x = 的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是( ) A. ()2223y x =-- B. ()2223y x =-+ C. ()2223y x =+- D. ()2223y x =++ 6.已知关于x的一元二次方程2cos 0x α+=有两个相等的实数根,则锐角α等于( )A. 15oB. 30oC. 45oD. 60o7.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A. ()9121x -=B. ()2911x -=C. ()9121x +=D. ()2911x += 8.如图,等腰Rt ABC ∆与等腰Rt CDE ∆是以点O 为位似中心的位似图形,位似比为1:3,90,4k ACB BC =∠==o ,则点D 的坐标是( )A. ()18,12B. ()16,12C. ()12,18D. ()12,16二、填空题:(每题4分,共32分)9.方程2x x =的根是______________.10.已知ABC ∆DEF ∆:,相似比为2,且ABC ∆的面积为4,则DEF ∆的面积为__________.11.如图,某水坝的坡比为坡长AB 为20米,则该水坝的高度BC 为__________米.12.ABC ∆中, 如果锐角,A B ∠∠满足2cos 1 0tanA B ⎛+= ⎝⎭-,则C ∠=_________度 13.已知m 是方程2210x x +-=的一个根,则代数式()21m +的值为__________.14.抛物线2y cx bx c =++经过点()()2, 54, 5,,则这条抛物线的对称轴是直线__________. 15.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数k y x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .16.如图,ABCD Y 对角线AC BD ,交于点,O CE 平分BCD ∠交AB 于点E ,交BD 于点F ,且60,2ABC AB BC ∠==o ,连接OE .下列结论:①3tan CAB ∠=;②AOD COF ∆∆:;③ 3AOD OCF S S ∆∆=:④2.FB OF DF =g 其中正确的结论有__________(填写所有正确结论的序号)三.解答题:(共64分)17.计算:()1014sin 6020192π-⎛⎫+-- ⎪⎝⎭o 18.已知二次函数图象顶点是(12)-,, 且经过()1, 3-,求这个二次函数的表达式. 19.如图,已知ABC ∆中,90ACB ∠=︒, 点D 是边AB 上一点,且CDE CAB ∆∆:()1求证:CAD CBE ∆∆:;()2求证: EB AB ⊥.20.某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不的的合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.请根据图表信息,解答下列问题: ()1本次调查随机抽取了____ 名学生:表中m = ;n =()2补全条形统计图:()3若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀"和“良好”等级学生共有多少人21.如图①是图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂40AC cm =,灯罩30CD cm =,灯臂与底座构成的60CAB ∠=︒.CD 可以绕点C 上下调节一定的角度.使用发现:当CD 与水平线所成的角为30°时,台灯光线最佳.现测得点D 到桌面的距离为49.6cm .请通过计算说明此时台灯光线是否为最佳?(1.73).22.如图,在矩形ABCD 中,24BC cm P Q M N =,、、、分别从A B C D 、、、同时出发,分别沿边AD BC CB DA 、、、移动,当有一个点先到达所在边的另一个端点时,其它各点也随之停止移动.己知移动段时间后,若()0,2,3BQ xcm x AP xcm CM xcm =≠==,2DN x cm =.当x 为何值时,以P Q M N 、、、为顶点的四边形是平行四边形?的23.从三角形(不是等腰三角形)一个顶点引出一条射线 与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.()1如图1,在ABC ∆中,44, A CD ∠=o 是ABC ∆的完美分割线,且AD CD =, 则ACB ∠的度数是 ()2如图2,在ABC ∆中,CD 为角平分线,40 60A B ∠=∠=o o ,,求证: CD 为ABC∆完美分割线. ()3如图2,ABC ∆中,2, AC BC CD ==是ABC ∆的完美分割线,且ACD ∆是以CD 为底边的等腰三角形,求完美分割线CD 的长.24.如图,反比例函数ky x =图象经过点()A -,射线AB 与反比例函数的图象的另一个交点为()1, B a -,射线AC 与x 轴交于点E ,与y 轴交于点,75C BAC AD y ∠=⊥o ,轴, 垂足为D . ()1求反比例函数的解析式;()2求DC 的长()3在x 轴上是否存在点P ,使得APE ∆与ACD ∆相似,若存在,请求出满足条件点P 的坐标,若不存在,请说明理由.的的。
2018年湖南省岳阳市初中学业水平考试试卷数学(满分120分,考试时间90分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2018湖南岳阳,1,3分)2018的倒数是 A.2018 B.20181 C.20181- D.-2018【答案】D2.(2018湖南岳阳,2,3分) 下列运算结果正确的是A .325a a a ⋅=B .325()a a = C .325a a a += D .22a a -=-【答案】A3.(2018湖南岳阳,3,3分) 函数3-=x y 中自变量x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥ 【答案】C4.(2018湖南岳阳,4,3分) 抛物线23(2)5y x =-+的顶点坐标是( ) A .(2,5)- B .(2,5)-- C .(2,5) D .(2,5)- 【答案】C.5.(2018湖南岳阳,5,3分) 已知不等式组2010x x -<⎧⎨+≥⎩,其解集在数轴上表示正确的是( )A .B .C .D . 【答案】D6.(2018湖南岳阳,6,3分) 在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A .90,96B .92,96C .92,98D .91,92【答案】 B7.(2018湖南岳阳,7,3分) 下列命题是真命题的是( )A .平行四边形的对角线相等B .三角形的重心是三条边的垂直平分线的交点C .五边形的内角和是540D .圆内接四边形的对角相等 【答案】C.8.(2018湖南岳阳,8,3分) 在同一直角坐标系中,二次函数2y x =与反比例函数1(0)y x x=>的图象如图所示,若两个函数图象上有三个不同....的点1(,)A x m ,2(,)B x m ,3(,)C x m ,其中m 为常数,令123x x x ω=++,则ω的值为( )A .1B .mC .2m D .1m【答案】D.【解析】根据题意可得A ,B ,C 三点有两个在二次函数图象上,一个在反比例函数图象上, 不妨设A ,B 两点在二次函数图象上,点C 在反比例函数图象上, ∵二次函数2y x =的对称轴是y 轴, ∴21x x +=0.∵点C 在反比例函数1(0)y x x=>上, ∴3x =m1, ∴mx x x 1321=++=ω. 故选D.二、填空题:本大题共8小题,每小题4分,共32分.9.(2018湖南岳阳,9,4分) 因式分解:24x -= . 【答案】(x -2)(x +2).10.(2018湖南岳阳,10,4分)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所.数据120000000用科学记数法表示为 . 【答案】1.2×108.11.(2018湖南岳阳,11,4分)关于x 的一元二次方程220x x k ++=有两个不相等的实数根,则k 的取值范围是 . 【答案】k <1.12.(2018湖南岳阳,12,4分)已知221a a +=,则23(2)2a a ++的值为 .【答案】513.(2018湖南岳阳,13,4分) 在-2,1,4,-3,0这5个数字中,任取一个数是负数的概率是 . 【答案】52. 14.(2018湖南岳阳,14,4分)如图,直线//a b ,160∠=,240∠=,则3∠= .【答案】80°. 【解析】如图, ∵a ∥b ,∴∠1=∠4.∵∠1=60°,∴∠4=60°.∵∠2=40°,∴∠3=180°-∠4-∠2=180°-60°-40°=80°.故答案为80°.15.(2018湖南岳阳,15,4分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是 步.【答案】1760. 【解析】如图.设该直角三角形能容纳的正方形边长为x ,则AD=12-x ,FC=5-x 根据题意易得△ADE ∽△EFC ,∴FC DE EF AD =,∴x x x x -=-512,解得:x =1760. 故答案为1760.16.(2018湖南岳阳,16,4分).如图,以AB 为直径的O 与CE 相切于点C ,CE 交AB 的延长线于点E ,直径18AB =,30A ∠=,弦CD AB ⊥,垂足为点F ,连接AC ,OC ,则下列结论正确的是 .(写出所有正确结论的序号)①BC BD =;②扇形OBC 的面积为274π;③OCF OEC ∆∆;④若点P 为线段OA 上一动点,则AP OP ⋅有最大值20.25.【答案】①③④.【解析】∵AB 是⊙O 的直径,且CD ⊥AB , ∴BC BD =,故①正确; ∵∠A=30°, ∴∠COB=60°, ∴扇形OBC=ππ227)2(360602=AB ··,故②错误; ∵CE 是⊙O 的切线,∴∠OCE=90°,∴∠OCD=∠OFC ,∠EOC=∠COF , ∴OCF OEC ∆∆,故③正确; 设AP=x ,则OP=9-x ,∴AP ·OP=x (9-x )=-x 2+9x =481)29(2+-x -, ∴当x =29时,AP ·OP 的最大值为481=20.25,故④正确.故答案为①③④.三、解答题(本大题共8小题,满分64分,解答应写出文字说明、证明过程或演算步骤) 17.(2018湖南岳阳,17,6分) 计算:2(1)2sin 45(2018)2π--+-+-.解:原式=1-2×22+1+2=2. 18.(2018湖南岳阳,18,6分)如图,在平行四边形ABCD 中,AE CF =,求证:四边形BFDE 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AD=BC ,∠A=∠C ,AB=CD. ∵AE=CF , ∴BE=DF.∵在△ADE 和△CBF 中,⎪⎩⎪⎨⎧=∠=∠=BC AD C A CF AE , ∴△ADE ≌△CBF (SAS ) ∴DE=BF ,∴四边形BFDE 是平行四边形.19.(2018湖南岳阳,19,8分) 如图,某反比例函数图象的一支经过点(2,3)A 和点B (点B 在点A 的右侧),作BC y ⊥轴,垂足为点C ,连结AB ,AC .(1)求该反比例函数的解析式;(2)若ABC ∆的面积为6,求直线AB 的表达式. 解:(1)设反比例函数的解析式为xk y =, ∵点A 在反比例函数的图象上,∴将(2,3)A 代入xky =,得k =2×3=6, ∴反比例函数的解析式为xy 6=.(2)设B(x ,x 6),则C(0,x6),点A 到BC 的距离d =3-x6,BC=x ,S △ABC =232)63(6-x x x =-, ∵S △ABC =6, ∴623=6-x ,解得x =6, ∴B (6,1).设AB 的表达式为y =mx +n ,则⎩⎨⎧=+=+3216b k b k ,解得⎪⎩⎪⎨⎧==421b -k ,∴直线AB 的表达式为421+-=x y . 20.(2018湖南岳阳,20,8分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队.现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为_______人; (2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.解:(1)∵从条形图中可以看出喜欢腰鼓的有24人,从扇形图中可以看出喜欢腰鼓占的比例为20%, ∴这次参与调查的村民人数为24÷20%=120人. 故答案为240人.(2)喜欢广场舞的人数为120-24-15-30-9=42人,补充如图所示.(3)图中“划龙舟”所在的扇形的圆心角的度数为:360°×12030=90°. (4)列表如下: 广场舞 腰鼓花鼓戏划龙舟广场舞无(腰鼓,广场舞) (花鼓戏,广场舞) (划龙舟,广场舞)腰鼓 (广场舞,腰鼓) 无 (花鼓戏,腰鼓) (划龙舟,腰鼓)花鼓戏 (广场舞,花鼓戏) (腰鼓,花鼓戏)无(划龙舟,花鼓戏)划龙舟(广场舞,划龙舟) (腰鼓,划龙舟) (花鼓戏,划龙舟)无由表格可知,共有12中情况,其中恰好选中“花鼓戏、划龙舟”这两个项目的有2种情况,故概率为:61122=. 21.(2018湖南岳阳,21,8分) 为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米? 解:设原计划平均每天施工x 平方米,则11213300033000=-x.x ,解得x =500, 经检验,x =500是原分式方程的解,∴实际平均每天施工为500×(1+20%)=600平方米. 答:实际平均每天施工为600平方米.22.(2018湖南岳阳,22,8分)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC 宽3.9米,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC 的距离为3.3米,灯臂OM 长为1.2米(灯罩长度忽略不计),60AOM ∠=.(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.3 1.73≈,结果精确到0.01米)解:(1)过点M 作MN ⊥AB 于N , ∵OM=1.2,∠MON=60°, ∴ON=OM ·sin60°=533,∴M 到地面的距离d =ON+OB=533+3.3=103633+. (2)根据题意可得货车的右端应该在图中E 点处,此时BE=0.7m ,∴EF=FG+GE=3.3+0.404=3.704>3.5, ∴能通过.23.(2018湖南岳阳,23,10分) 已知在Rt ABC ∆中,90BAC ∠=,CD 为ACB ∠的平分线,将ACB ∠沿CD 所在的直线对折,使点B 落在点'B 处,连结'AB ,'BB ,延长CD 交'BB 于点E ,设2(045)ABC αα∠=<<.(1)如图1,若AB AC =,求证:2CD BE =;(2)如图2,若AB AC ≠,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(45α+),得到线段FC ,连结EF 交BC 于点O ,设COE ∆的面积为1S ,COF ∆的面积为2S ,求12S S (用含α的式子表示). 【思路分析】(1)首先根据轴对称的性质可得CE ⊥BB ′且BE=21BB ′,进而得出∠B ′=∠ADC ,进而得出△ABB ′≌△ACD ,然后根据全等三角形的性质可得BB ′=CD ,进而证明出结论; (2)首先根据(1)可得出∠B ′=∠ADC ,进而得出△ABB ′∽△ACD ,进而得出ACABCD BB =',然后根据锐角三角函数的定义得出CD 与BE 的数量关系;(3)首先根据题意可得出∠ECF=90°,进而得出△OBE ∽△OCF ,然后根据等高的三角形的面积比等于底的比可得出OFOE S S =21,最后利用锐角三角函数的定义得出答案. 解:(1)根据题意可得CE ⊥BB ′且BE=21BB ′, ∵CE ⊥BB ′,∴∠EBD+∠BDE=90°. ∵∠BDE=∠ADC , ∴∠ADC+∠EBD=90°. ∵∠BAB ′=90°,∴∠EBD+∠B ′=90°, ∴∠B ′=∠ADC , 在△ABB ′和△ACD 中⎪⎩⎪⎨⎧∠='∠=∠='∠ADC B ACAB CAD BAB ∴△ABB ′≌△ACD (ASA ), ∴BB ′=CD , ∴CD=2BE.(2)由(1)可知,∠B ′=∠ADC , ∵∠BAB ′=∠CAD=90°, ∴△ABB ′∽△ACD , ∴ACABCD BB ='. ∵AB=BC ·cos ∠ABC==BCcos2α,AC=BC ·sin ∠ABC=BCsin2α,∴ααsin2cos CD BB 2=', ∴CD=BE cos 2sin2αα2.(2)由(1)(2)可知,CE ⊥BB ′,∠B ′BA=∠BCE , ∵∠EBC+∠BCE=90°,即∠B ′BA+∠ABC+∠BCE=90°, ∴∠BCE=45°-α. ∵∠BCF=45°+α,∴∠ECF=∠BCE+∠BCF=90°, ∴CF ∥BE ,∴△OBE ∽△OCF , ∴CFBEOF OE =. ∵OF OE S S =21,sin ∠BCE=BC BE ,BC=CF , ∴21S S =sin (45°-α). 24.(2018湖南岳阳,24,10分)已知抛物线F :2y x bx c =++的图象经过坐标原点O ,且与x 轴另一交点为3(,0)3-.(1)求抛物线F 的解析式; (2)如图1,直线l :3(0)3y x m m =+>与抛物线F 相交于点11(,)A x y 和点22(,)B x y (点A 在第二象限),求21y y -的值(用含m 的式子表示); (3)在(2)中,若43m =,设点'A 是点A 关于原点O 的对称点,如图2. ①判断'AA B ∆的形状,并说明理由;②平面内是否存在点P ,使得以点A 、B 、'A 、P 为顶点的四边形是菱形.若存在,求出点P 的坐标;若不存在,请说明理由.【思路分析】(1)将原点和点3(,0)3-代入抛物线2y x bx c =++,解出b 和c 即可; (2)首先联立m x y +=33与x x y 332+=,解出x 1和x 2,然后将x 1和x 2代入m x y +=33解出y 1和y 2,进而得出结果;(3)①首先根据题意得出A ′的坐标,进而得出A ′B 的长度,根据点A 的坐标得出OA 的长,进而得出AA ′,然后根据三角函数的定义得出sin ∠A ′,进而得出∠A ′的度数,进而得出△AA ′B 的形状; ②分别以AA ′,A ′B 和AB 为菱形的对角线,根据菱形的性质得出点P 的坐标即可. 解:(1)根据题意,得⎪⎩⎪⎨⎧=+-=033310c b c ,解得⎪⎩⎪⎨⎧==33c b , ∴F 的解析式为x x y 332+=. (2)联立m x y +=33与x x y 332+=,解得m x -=1,m x =2,第 11 页 共 11 页 ∴m m m x y +-=+=333311,m m m x y +=+=333322, ∴m m m m m y y 332333312=+--+=-)(, (3)①当43m =时,3321-=x ,3322=x , ∴321=y ,22=y ∴A (332-,32),B (332,2). ∵点A 与点A ′关于原点对称,∴A ′(332,32-), ∴A ′B=2-(32-)=38. ∵OA=343233222=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-, ∴OA ′=34, ∴AA ′=38, ∴A ′B=AA ′.∵点A 到BA ′的距离d =332+332=334, ∴sin ∠A ′=2338334='AA d , ∴∠A ′=60°,∴△AA ′B 是等边三角形.②存在.若以AA ′为菱形的对角线,则点P 与点B 关于原点对称,此时点P 坐标为(-332,-2); 若以A ′B 为菱形的对角线,则点P 为将点A 向右移动2d 个单位长度,此时点P 的坐标为(334,32); 若以AB 为菱形的对角线,则点P 为将点A 向上移动A ′B 个单位长度,此时点P 的坐标为(332-,310).。
2018年岳阳市城区十二校联考九年级试卷数学一、选择题(本大题共8小题,每小题3分,满分24分)1. 整数5的倒数是()A. 5B.C. -5D. -【答案】B【解析】分析:根据倒数的概念进行回答即可.详解:整数5的倒数为.故选B.点睛:考查倒数的定义,乘积为1的两个数互为倒数.2. 下列运算正确的是()A. a+a2=a3B. a·a3=a4C. (3a)2=6a2D. a6÷a2=a3【答案】B【解析】分析:A、不是同类项,不能合并.B、根据同底数幂的乘法法则计算;C、根据积的乘法法则进行计算;D、根据同底数幂的乘法法则计算.详解:A、不是同类项,不能合并. 此选项错误.B、此选项正确;C、此选项错误;D、此选项错误.故选B.点睛:考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.3. 已知关于x的一元二次方程x2+4x-5=0。
下列说法正确的是()A. 方程有两个不相等的实数根B. 方程有两个相等的实数根C. 方程没有实数根D. 无法确定【答案】A【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.视频4. 如图所示几何体的主视图是()【答案】C【解析】分析:主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形.详解:在物体的正面内从前向后观察物体得到的图形有3列,且第一列有一个正方形,第二列有一个正方形,第三列有两个正方形.故选C.点睛:本题主要考查三视图的基本概念和三视图描述几何体,5. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,数据67500用科学计数法表示为()A. 6.75×104B. 6.75×103C. 6.75×1045D. 6.75×10-4【答案】A【解析】试题分析:科学计数法是指:a×,且,你为原数的整数位数减一.考点:科学计数法6. 下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③三角形的中位线平行于第三边且等于第三边的一半;④多边形的外角和是360o;⑤圆既是轴对称图形,又是中心对称图形。
2018-2019学年湖南省岳阳县、汨罗市高一上学期期末联考数学试题满分:150分 时间:120分钟一、选择题:本大题共12道小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卡中对应的位置. 1、 已知集体{}{}1,0,1,2,3,4,2,2,M N =-=-则下列结论成立的是( )A.N M ⊆B.MN M = C.M N N = D.{}2MN =2、方程220x y ax by c +-++=表示圆心为()1,2,半径为1的圆,则,,a b c 的值依次为( )A.2,4,4--B.2,4,4-C.2,4,4-- D.2,4,4--3、已知三个数3.0222,3.0log ,3.0===c b a ,则,,a b c 的大小关系为 ( )A. a c b >>B. b a c >>C. c a b >>D. c b a >> 4、下列函数中,既是奇函数又是减函数的是( )A.13()f x x =B.1()f x x=C.2()1x f x x =- D.()22x x f x -=-5、已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,下面四个结论中正确的是( )A.若,,m n m n αβ⊂⊂⊥则αβ⊥ B. 若//,m m n α⊥则n α⊥C.若//,//m m αβ则α∥βD. 若,m m αβ⊥⊥则α∥β 6、函数2ln y x x =+的图象大致为( )7、函数()ln(2)ln(4)f x x x =++-的单调递减区间是( )A.()2,4-B.()2,1-C.()1,4D.()1,28、一个正方体的展开图如图所示,A 、B 、C 、D 为原正方体的顶点,则在原来的正方体中A .AB ∥CD B .AB 与CD 相交C .AB ⊥CDD .AB 与CD 所成的角为60°9、已知空间四边形ABCD 中,M 、N 分别为AB 、CD 的中点,则判断:①MN ≥12(AC +BD );②MN >12(AC +BD);③MN =12(AC +BD);④MN <12(AC +BD).其中正确的是( )A.①③B.④C.②D. ②④10、过原点的直线l 与圆C :22650x y x +-+=相交于A 、B 两点,若三角形ABC 为正三角形,则直线l 的斜率为( )A B C. D.11、已知函数0,0(),0x x f x e x ≤⎧=⎨>⎩,则使函数()()g x f x x m =+-有零点的实数m 的取值范围是( )A.[)0,1B.(](),01,-∞+∞C.(),1-∞ D.(](),12,-∞+∞12、已知△ABC 的顶点()1,2A ,AB 边上的中线CM 所在的直线方程为210x y +-=,ABC ∠的平分线BH 所在直线方程为y x =,则直线BC 的方程为( )A.2310x y --= B.2310x y +-= C.3210x y --=D. 3210x y -+=二、填空题:本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上. 13、函数2y=31x a-+错误!未找到引用源。
2018 年岳阳市城区十二校联考九年级试卷数学一、选择题{本大题共8 小题,每题3 分,满分 24 分}1、整数 5 的倒数是{}A 、5B 、C 、 -5D 、-分析: a 的倒数是 ,所以 5 的倒数是,答案:B2、以下运算正确的选项是( ) 3 4、 22、 6÷a 2 3 、 +2 3、 ·A aa =aB a a =aC (3a) =6aD a =a 分析:此题考察整式的基本运算。
因 m nm +n3 4。
所以选 B. a · a =a故 a · a =a答案:B3、已知对于 x 的一元二次方程 x 2+4x-5=0。
以下说法正确的选项是() A 、方程有两个不相等的实数根 B 、方程有两个相等的实数根 C 、方程没有实数根 D 、没法确立分析:此题考察一元二次方程根的鉴别式 b 2- 4ac 。
b 2-4ac>0 时,方程有两个不相等的实 数根; b 2-4ac=0 时,方程有两个相等的实数根; b 2 -4ac<0时,方程没有实数根。
此题 b 2-4ac=42 - × ×(-5 ) ,所以选 。
4 1 >0A答案:A 。
4、如下图几何体的主视图是()分析:此题考察三视图。
选 C.答案:C 。
5、中国航母辽宁舰是中国人民海军第一艘能够搭载固定翼飞机的航空母舰,满载排水量为67500 吨,数据 67500 用科学计数法表示为( ) A 、× 104 B 、×103 C 、×1045 D 、× 10-4a分析:此题考察科学计数法。
科学计数法有两种。
一种是大数据的科学计数法,结果为 ×10m≤ < 此中 =数据的位数- ,一种是小数据的科学计数法。
结果为× (m>0),1 10, m 1a10m(m < 0),1≤ <10,此中 m =数据前面 0 的个数。
岳阳xx中学2018-2019学度初三上年中数学试卷含解析解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.将一元二次方程2x2=1﹣3x化成一般形式后,一次项系数和常数项分别为()A.﹣3x;1 B.3x;﹣1 C.3;﹣1 D.2;﹣12.一元二次方程x2﹣81=0的解是()A.x1=x2=9 B.x1=x2=﹣9 C.x1=﹣9,x2=9 D.x1=﹣1,x2=23.已知函数y=的图象过点(1,﹣2),则该函数的图象必在()A.第二、三象限B.第二、四象限C.第一、三象限D.第三、四象限4.如图,已知DE是△ABC的中位线,则△ADE的面积:四边形DBCE的面积是()A.1:2 B.1:3 C.1:4 D.1:85.一元二次方程x2+x+2=0的根的情况是()A.两个相等的实数根B.两个不相等的实数根C.无实数根D.无法确定6.下列四组线段中,不构成比例线段的一组是()A.2cm,3cm,4cm,6cm B.1cm,cm,,cmC.1cm,2cm,3cm,6cm D.1cm,2cm,3cm,5cm7.如图,DE∥BC,在下列比例式中,不能成立的是()A.=B.=C.=D.=8.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.二、填空题(每小题4分,共32分)9.如果,那么=.10.已知点Μ(7,b)在反比例y=的图象上,则b=.11.反比例函数的图象经过点(﹣2,3),则函数的解析式为.12.x2﹣x配成完全平方式需加上.13.若关于x的方程x2+2x+k=0的一个根是1,则方程的另一个根是.14.在Rt△ABC,若CD是Rt△ABC斜边AB上的高,AD=3,CD=4,则BC=.15.如图,在△ABC中,点D在AB上,请再添一个适当的条件,使△ADC∽△ACB,那么可添加的条件是.16.如图,反比例函数y=的图象上有两点A(2,4)、B(4,b),则△AOB的面积为.三、解答题(共64分)17.用适当的方法解下列方程:(1)(x﹣2)(x﹣3)=12;(2)3x2﹣6x+4=0.18.如图,在△ABC中,D、E分别是AC、AB边上的点,∠AED=∠C,AB=6,AD=4,AC=5,求AE的长.19.如图,在平面直角坐标系中,△ABC和△A'B'C'是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).(1)若点A(,3),则A′的坐标为;(2)若△ABC的面积为m,则△A′B′C′的面积=.20.若关于x的方程x2+4x﹣a+3=0有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根.21.矩形ABCD中,E为BC上一点,DF⊥AE于点F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,AE=10,求DF的长.22.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?23.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于第一象限C,D 两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).(1)利用图中条件,求反比例函数的解析式和m的值;(2)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.24.如图,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两点P、Q的分别从点A和点C同时出发,沿边AB,CB向终点B移动.已知点P,Q的速度分别为2cm/s,1cm/s,且当其中一点到达终点时,另一点也随之停止移动,设P,Q两点移动时间为xs.问是否存在这样的x,使得四边形APQC的面积等于16cm2?若存在,请求出此时x的值;若不存在,请说明理由.2016-2017学年湖南省岳阳XX中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.将一元二次方程2x2=1﹣3x化成一般形式后,一次项系数和常数项分别为()A.﹣3x;1 B.3x;﹣1 C.3;﹣1 D.2;﹣1【考点】一元二次方程的一般形式.【分析】要确定一次项系数和常数项,首先要把方程化成一般形式.【解答】解:由已知方程,得2x2+3x﹣1=0,则该方程的一次项系数是3,常数项是﹣1.故选C.2.一元二次方程x2﹣81=0的解是()A.x1=x2=9 B.x1=x2=﹣9 C.x1=﹣9,x2=9 D.x1=﹣1,x2=2【考点】解一元二次方程﹣直接开平方法.【分析】直接开平方法求解可得.【解答】解:∵x2﹣81=0,∴x2=81,解得:x1=﹣9,x2=9,故选:C.3.已知函数y=的图象过点(1,﹣2),则该函数的图象必在()A.第二、三象限B.第二、四象限C.第一、三象限D.第三、四象限【考点】反比例函数的性质.【分析】先将点(1,﹣2)代入函数解析式y=,求出k的取值,从而确定函数的图象所在象限.【解答】解:∵函数y=的图象过点(1,﹣2),∴﹣2=,k=﹣2,∴函数解析式为y=﹣,∴函数的图象在第二、四象限.故选:B.4.如图,已知DE是△ABC的中位线,则△ADE的面积:四边形DBCE的面积是()A.1:2 B.1:3 C.1:4 D.1:8【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由△ADE∽△ABC相似且相似比是1:2,相似三角形面积的比等于相似比的平方,即可解决问题.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴AD:AB=1:2,∴△ADE与△ABC的面积之比为1:4,∴△ADE与四边形DBCE的面积之比是1:3.故选B.5.一元二次方程x2+x+2=0的根的情况是()A.两个相等的实数根B.两个不相等的实数根C.无实数根D.无法确定【考点】根的判别式.【分析】先计算出根的判别式△的值,根据△的值就可以判断根的情况.【解答】解:△=b2﹣4ac=12﹣4×1×2=﹣7,∵﹣7<0,∴原方程没有实数根,故选C.6.下列四组线段中,不构成比例线段的一组是()A.2cm,3cm,4cm,6cm B.1cm,cm,,cmC.1cm,2cm,3cm,6cm D.1cm,2cm,3cm,5cm【考点】比例线段.【分析】若a,b,c,d成比例,即有a:b=c:d.只要代入验证即可.【解答】解:A、2:4=3:6,故本选项构成比例线段,B、1:=:,故本选项构成比例线段,C、1:2=3:6,故本选项构成比例线段,D、四条线段中,任意两条的比都不相等,因而不成比例,故本选项不构成比例线段,故选:D.7.如图,DE∥BC,在下列比例式中,不能成立的是()A.=B.=C.=D.=【考点】平行线分线段成比例;相似三角形的判定与性质.【分析】本题主要掌握相似三角形的定义,根据已知条件判定相似的三角形.【解答】解:根据题意,可得△ADE∽△ABC,根据相似三角形对应边成比例,可知B不正确,因为AE与EC不是对应边,所以B不成立.故选B.8.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.【考点】相似三角形的判定.【分析】设小正方形的边长为1,根据已知可求出△ABC三边的长,同理可求出阴影部分的各边长,从而根据相似三角形的三边对应成比例即可得到答案.【解答】解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为故选B.二、填空题(每小题4分,共32分)9.如果,那么=.【考点】分式的基本性质.【分析】由可知:若设a=2x,则b=3x.代入所求式子就可求出.【解答】解:∵,∴设a=2x,则b=3x,∴.故答案为.10.已知点Μ(7,b)在反比例y=的图象上,则b=3.【考点】反比例函数图象上点的坐标特征.【分析】把点Μ(7,b)代入y=中,即可得到关于b的方程,求解即可.【解答】解:∵点Μ(7,b)在反比例y=的图象上,∴b=,解得b=3.故答案为:3.11.反比例函数的图象经过点(﹣2,3),则函数的解析式为y=﹣.【考点】待定系数法求反比例函数解析式.【分析】直接把(﹣2,3)代入入y=求出k的值即可.【解答】解:把(﹣2,3)代入y=得k=﹣2×3=﹣6,所以反比例函数解析式为y=﹣.故答案为y=﹣.12.x2﹣x配成完全平方式需加上.【考点】完全平方式.【分析】多项式配方为完全平方式,必须加上一次项系数一半的平方.【解答】解:∵x2﹣x+=(x﹣)2,∴x2﹣x配成完全平方式需加上,故答案为:.13.若关于x的方程x2+2x+k=0的一个根是1,则方程的另一个根是﹣3.【考点】根与系数的关系.【分析】方程另一个根为t,根据根与系数的关系得到1+t=﹣2,然后解一次方程即可.【解答】解:设方程另一个根为t,根据题意得1+t=﹣2,解得t=﹣3,所以方程另一个根为﹣3.故答案为:﹣3.14.在Rt△ABC,若CD是Rt△ABC斜边AB上的高,AD=3,CD=4,则BC=.【考点】射影定理.【分析】根据射影定理求出BD的长,再根据射影定理计算即可.【解答】解:如图所示:∵CD是Rt△ABC斜边CD上的高,∴CD2=AD•DB,则16=3BD故BD=,可得AB=AD+BD=,∵BC2=BD•BA=×,∴BC=,故答案为:.15.如图,在△ABC 中,点D 在AB 上,请再添一个适当的条件,使△ADC ∽△ACB ,那么可添加的条件是∠ADC=∠ACB 或∠ACD=∠B 或AC 2=AD•AB .【考点】相似三角形的判定.【分析】已知△ADC 和△ACB 中有一个公共角,我们可以再添加一个角,从而利用有两组角对应相等的两个三角形相似来判定其相似.【解答】解:∵∠DAC=∠CAB ,∴当∠ADC=∠ACB 或∠ACD=∠B 或AC 2=AD•AB 时,均可得出△ADC ∽△ACB .故答案为:∠ADC=∠ACB 或∠ACD=∠B 或AC 2=AD•AB16.如图,反比例函数y=的图象上有两点A (2,4)、B (4,b ),则△AOB 的面积为6.【考点】反比例函数系数k 的几何意义.【分析】根据反比例系数k 的几何意义,得出S △AOD =S △BOE =|k |,然后根据S △AOB =S △AOD +S 梯形ADEB ﹣S △BOE =S 梯形ADEB 求得即可.【解答】解:∵反比例函数y=的图象上有两点A (2,4)、B (4,b ), ∴4b=2×8,∴b=2,∴B (4,2),作AD ⊥x 轴于D ,BE ⊥x 轴于E ,=S△BOE=|k|,∴S△AOD=S△AOD+S梯形ADEB﹣S△BOE=S梯形ADEB=(4+2)×(4﹣2)=6,∴S△AOB故答案为6.三、解答题(共64分)17.用适当的方法解下列方程:(1)(x﹣2)(x﹣3)=12;(2)3x2﹣6x+4=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【分析】(1)方程整理后,利用因式分解法求出解即可;(2)方程利用公式法求出解即可.【解答】解:(1)方程整理得:x2﹣5x﹣6=0,分解因式得:(x﹣6)(x+1)=0,解得:x1=6,x2=﹣1;(2)这里a=3,b=﹣6,c=4,∵△=36﹣48=﹣12<0,∴方程无解.18.如图,在△ABC中,D、E分别是AC、AB边上的点,∠AED=∠C,AB=6,AD=4,AC=5,求AE的长.【考点】相似三角形的判定与性质.【分析】利用有两角相等的三角形相似先判定△AED∽△ACB,再利用相似三角形的性质:对应边的比值相等即可求出AE的长.【解答】证明:在△AED和△ACB中,∵∠A=∠A,∠AED=∠C,∴△AED∽△ACB,∴,∵AB=6,AD=4,AC=5,∴∴AE=.19.如图,在平面直角坐标系中,△ABC和△A'B'C'是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).(1)若点A(,3),则A′的坐标为(5,6);(2)若△ABC的面积为m,则△A′B′C′的面积=4m.【考点】位似变换;坐标与图形性质;相似三角形的性质.【分析】(1)利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky).(2)利用面积比等于位似比的平方得出即可.【解答】解:(1)∵B(3,1),B′(6,2).∴点A(,3),则A′的坐标为:(×2,3×2)即(5,6);(2)∵△ABC的面积为m,∴△A′B′C′的面积为4m.故答案为:(1)(5,6)(2)4m.20.若关于x的方程x2+4x﹣a+3=0有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根.【考点】根的判别式.【分析】(1)因为方程有实数根,所以判别式大于或等于0,得到不等式,求出a的取值范围.(2)由a的范围得到a的最小整数,代入方程求出方程的根.【解答】解:(1)△=42﹣4(3﹣a)=4+4a.∵该方程有实数根,∴4+4a≥0.解得a≥﹣1.(2)当a为符合条件的最小整数时,a=﹣1.此时方程化为x2+4x+4=0,方程的根为x1=x2=﹣2.21.矩形ABCD中,E为BC上一点,DF⊥AE于点F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,AE=10,求DF的长.【考点】相似三角形的判定与性质.【分析】(1)由矩形的性质可得出∠AEB=∠DAF,∠ABE=∠AFD,可证得结论;(2)利用(1)中的结论,结合对应边的比相等可求出DF.【解答】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠AEB=∠DAF,∵DF⊥AE,∴∠B=∠AFD=90°,∴△ABE∽△DFA;(2)解:由(1)可知△ABE∽△DFA,∴=,∵AB=6,AD=12,AE=10,∴=,解得DF=7.2.22.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?【考点】一元二次方程的应用.【分析】根据设该校共购买了x棵树苗,由题意得:x[120﹣0.5(x﹣60)]=8800,进而得出即可.【解答】解:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x[120﹣0.5(x﹣60)]=8800,解得:x1=220,x2=80.当x=220时,120﹣0.5×=40<100,∴x=220(不合题意,舍去);当x=80时,120﹣0.5×(80﹣60)=110>100,∴x=80.答:该校共购买了80棵树苗.23.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于第一象限C,D 两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).(1)利用图中条件,求反比例函数的解析式和m的值;(2)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)把C(1,4)代入y=求出k=4,把(4,m)代入y=求出m即可,把C(1,4),D(4,1)代入y=ax+b得出解析式,求得出一次函数的解析式;=S△POD,这个点就是∠COD的平分线与双曲(2)双曲线上存在点P,使得S△POC=S△POD.线的y=交点,易证△POC≌△POD,则S△POC【解答】解:(1)把C(1,4)代入y=,得k=4,把(4,m)代入y=,得m=1;∴反比例函数的解析式为y=,m=1;把C(1,4),D(4,1)代入y=ax+b得出,解得,∴一次函数的解析式为y=﹣x+5;=S△POD,理由如下:(2)双曲线上存在点P(2,2),使得S△POC∵C点坐标为:(1,4),D点坐标为:(4,1),∴OD=OC=,∴当点P在∠COD的平分线上时,∠COP=∠POD,又OP=OP,∴△POC≌△POD,=S△POD.∴S△POC∵C点坐标为:(1,4),D点坐标为:(4,1),可得∠COB=∠DOA,又∵这个点是∠COD的平分线与双曲线的y=交点,∴∠BOP=∠POA,∴P点横纵坐标坐标相等,即xy=4,x2=4,∴x=±2,∵x>0,∴x=2,y=2,故P点坐标为(2,2),使得△POC和△POD的面积相等.利用点CD关于直线y=x对称,P(2,2)或P(﹣2,﹣2).24.如图,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两点P、Q的分别从点A和点C同时出发,沿边AB,CB向终点B移动.已知点P,Q的速度分别为2cm/s,1cm/s,且当其中一点到达终点时,另一点也随之停止移动,设P,Q两点移动时间为xs.问是否存在这样的x,使得四边形APQC的面积等于16cm2?若存在,请求出此时x的值;若不存在,请说明理由.【考点】一元二次方程的应用.【分析】根据四边形APQC的面积=△ABC的面积﹣△PBQ的面积,列出方程,根据解的情况即可判断.【解答】解:∵∠B=90°,AC=10,BC=6,∴AB=8.∴BQ=x,PB=8﹣2x;假设存在x的值,使得四边形APQC的面积等于16cm2,则×6×8﹣x(8﹣2x)=16,整理得:x2﹣4x+8=0,∵△=16﹣32=﹣16<0,∴假设不成立,四边形APQC面积的面积不能等于16cm2.2017年4月16日。
2018年岳阳县中考数学模拟测试试卷(一)一、选择题(本大题共8小题,每小题3分,满分24分)1、有理数-1,-2,0,3中,最小的数是( )A 、-1B 、-2C 、0D 、32、下列计算正确的是( )A 、3a+4b=7abB 、(ab 3)3= ab 6C 、(a+b)2=a 2+4D 、x 12÷x 6=x 63、若二次根式2 a 有意义,则a 的取值范围是( )A 、a ≥2B 、a ≤2C 、a >2D 、a <24、某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( ) A 、80分 B 、82分 C 、84分 D 、86分5、用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为()6、到三角形三个顶点的距离都相等的点是这个三角形的( )A 、三条高的交点B 、三条角平分线的交点C 、三条边的垂直平分线的交点D 、三条中线的交点7、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为( )A 、1B 、 1C 、1D 、3 9、2018的相反数是_________。
10、因式分解:a 2-a=_____________________。
11、已知圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为__________cm 2。
12、我国自主设计建造的世界最大球面射电望远镜落成启用。
该望远镜理论上能接收到13 700 000 000光年以外的电磁信号,数据13 700 000 000光年用科学记数法表示为________________光年。
13、不等式组的解集是________________。
14、数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若S EBMF =1,则S FGDN =__________。
2019年岳阳市初三数学下期末试题及答案一、选择题1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)2.下列计算正确的是()A.2a+3b=5ab B.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x53.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.4.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.95.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.76.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是()A10B5C.22D.37.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解8.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q9.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .10.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣23 B .13π﹣3 C .43π﹣23 D .43π﹣3 11.黄金分割数51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间 D .在1.4和1.5之间12.cos45°的值等于( ) A .2B .1C .3D .2 二、填空题13.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 14.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)15.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.16.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx =在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.17.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .19.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.20.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题21.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整(收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(整理数据)按如下分数段整理、描述这两组样本数据组别班级65.6~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5甲班224511乙班11a b20在表中,a=,b=.(分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差甲班80x8047.6乙班8080y26.2在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.22.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43ABAC=,DF+BF=8,如图2,求BF的长.23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=(),善于思考的小明进行了以下探索:设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2;(3)若()2433a m n +=+,且ab m n 、、、均为正整数,求a 的值.25.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数). (参考数据:2 1.414≈,3 1.732≈)26.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【参考答案】***试卷处理标记,请不要删除一、选择题解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 ADBG=,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴13 OA OB=∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.2.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.4.A解析:A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.5.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.6.C解析:C【解析】【分析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程.【详解】如图所示,路径一:AB22()22;211=++=路径二:AB22().21110=++=<,∴蚂蚁爬行的最短路程为22.∵2210故选C.【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.7.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.8.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.9.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.10.C解析:C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=1,在Rt△COD中利用勾股定理可知:22213-=,3∵sin∠COD=32 CDOC=,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=12B×AC=12×2×33S扇形AOC=2120243603ππ⨯⨯=,则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=423 3π-故选C.点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12 a•b(a、b是两条对角线的长度);扇形的面积=2360n rπ,有一定的难度.11.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴, 故选B . 【点睛】是解题关键.12.D解析:D 【解析】 【分析】将特殊角的三角函数值代入求解. 【详解】解:cos45° 故选D . 【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.二、填空题13.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2 【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0, ∴m 2﹣2m=0且m ≠0, 解得,m=2, 故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.14.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】 【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.15.y2>y1>y3【解析】【分析】根据图象上的点(xy )的横纵坐标的积是定值k 可得xy=k 据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y 2>y 1>y 3.【解析】【分析】根据图象上的点(x ,y )的横纵坐标的积是定值k ,可得xy=k ,据此解答即可.【详解】解:∵函数y=-3x 的图象上有三个点(-2,y 1),(-1,y 2),(12,y 3), ∴-2y 1=-y 2=12y 3=-3, ∴y 1=1.5,y 2=3,y 3=-6,∴y 2>y 1>y 3.故答案为y 2>y 1>y 3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .16.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2 解析:12x x【解析】【分析】设D(x,2)则E(x+2,1),由反比例函数经过点D、E列出关于x的方程,求得x的值即可得出答案.【详解】解:设D(x,2)则E(x+2,1),∵反比例函数kyx=在第一象限的图象经过点D、点E,∴2x=x+2,解得x=2,∴D(2,2),∴OA=AD=2,∴2222,OD OA OD=+=故答案为:2 2.【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.17.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.18.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=E B′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.19.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.20.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题21.【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【详解】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,故a=7,b=4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x=85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y=80,故答案为:85,80;(2)60×1015=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点睛】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.22.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到»»BD CD=,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt△DBP中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由»»BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12BD=3,PB=3PD=3,在Rt△DEP中,∵PD=3,DE=7,∴PE=22(7)(3)-=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:7,∴AE=57,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)2π⨯⨯-+⨯=932π-;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即23323x=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 25.该建筑物需要拆除.【解析】分析:根据正切的定义分别求出AB 、DB 的长,结合图形求出DH ,比较即可. 详解:由题意得,10AH =米,10BC =米,在Rt ABC ∆中,45CAB ∠=︒,∴10AB BC ==,在Rt DBC ∆中,30CDB ∠=︒,∴tan BC DB CDB==∠∴()DH AH AD AH DB AB =-=-- 101020 2.7=-=-≈(米), ∵2.7米3<米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.26.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,剟剟. 当1017a 剟时, (ⅰ)当10a =时,10010801200b ⨯+…,∴52b …, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+…,∴54b …, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a …时,1001200a …,即成人门票至少需要1200元,不合题意,舍去. 当110a <…时,(ⅰ)当9a =时,100980601200b ⨯++…,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++…,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.。
2019年岳阳县中考数学模拟测试试卷(二)一、选择题(本大题共8小题,每小题3分,满分24分)1、实数-2019的绝对值是( )A 、2019B 、-2019C 、 20181 D 、±2019 2、随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路运输量达8 200 000吨,将8 200 000用科学计数法表示为( )A 、8.2×105B 、82×105C 、8.2×106D 、82×1073、下列图形中,既是轴对称图形又是中心对称图形的是( )4、下列运算正确的是( )A 、2a+3b=5abB 、(3a 3)2=6a 6C 、a 6÷a 2=a 3D 、a 2·a 3=a 55、下列命题是真命题的是( )A 、有两边及一角对应相等的两个三角形全等B 、方程x 2 –x+1=0有两个不相等的实数根C 、面积之比为1:4的两相似三角形的周长之比也是1:4D 、圆的切线垂直于过切点的半径6、关于x 的分式方程112517--=+-x m x x 有增根,则增根是( ) A 、1 B 、2 C 、3 D 、47、如图,A 、B 、C 是⊙O 上的三个点,若∠AOC=100O ,则∠ABC=( )A 、100OB 、110OC 、120OD 、130O8、定义新运算:a ⊕b=,则函数y=3⊕x 的图象大致是( )二、填空题(本大题共8小题,每小题4分,满分32分)9、16的算术平方根是___________。
10、因式分解:x 2-4=_________________。
11、如图,∠O=30O ,C 为OB 上一点,且OC=6,以点C 为圆心,半径为3的圆与OA 的位置关系是____。
12、已知实数a 、b 在数轴上的对应点的位置如图所示,则a+b_____0。
(填“>”、“<”或“=”)13、一个n 边形的内角和是720O ,则n=_______。
湖南省岳阳市岳阳县2018-2019学年九年级期末数
学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 点A(﹣3,2)在反比例函数y=(k≠0)的图象上,则k的值是()A.﹣6
C.﹣1 D.6
B.﹣
2. 对于反比例函数y=﹣,下列说法不正确的是()
A.图象分布在第二、四象限B.y随x的增大而增大
C.图象经过点(1,﹣2)D.若x>1,则﹣2<y<0
3. 已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()
A.?2 B.2 C.?4 D.4
4. 关于的一元二次方程有两个实数根,则的取值范围是()
A.B.C.且D.且
5. 如图,已知则添加下列一个条件后,仍无法判定的是()
C.D.
A.B.
6. 在中,,如果,那么的值是
()
A.B.C.D.
7. 二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是
A.a<0,b<0,c>0,b2﹣4ac>0 B.a>0,b<0,c>0,b2﹣4ac<0 C.a<0,b>0,c<0,b2﹣4ac>0 D.a<0,b>0,c>0,b2﹣4ac>0
8. 如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别
交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()
A.﹣1 B.1
C.D.
二、填空题
9. 若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣1的值为
_____.
10. 抛物线y=3(x+2)2+5的顶点坐标是_____.
11. 如果两个相似多边形面积的比为1:4,则它们的相似比为_____.
12. 为考察甲、乙两种油菜的长势,分别从中抽取20株测其高度进行统计分
析,结果如下:
甲=1.29m,
乙
=1.29m,s
甲
2=1.6米2、s
乙
2=4.8米2,则油
菜花长势比较整齐的是_____.
13. 若点C为线段AB的黄金分割点,且AC<BC,若AB=10,则BC=_____.
14. 在△ABC中,∠C=90°,cosB=,a=2,则b=_____.
15. 若方程ax2+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a﹣b+c=0,则方程的根是_____.
16. 规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)
=sinx?cosy+cosx?siny.
据此判断下列等式成立的是____(写出所有正确的序号)
①cos(﹣60°)=﹣;
②sin75°=;
③sin2x=2sinx?cosx;
④sin(x﹣y)=sinx?cosy﹣cosx?siny.
三、解答题
17. (1)解方程:x2+4x﹣12=0
(2)计算:cos45°?tan45°﹣2cos60°?sin45°
18. 如图,在平面直角坐标系中,四边形ABCD的坐标分别为A(﹣6,6),B (﹣8,2),C(﹣4,0),D(﹣2,4).
(1)画出一个四边形A′B′C′D′,使四边形A′B′C′D′与四边形ABCD是以原点O为位似中心,相似比为1:2的位似图形.
(2)直接写出点的坐标:A′(),B′(),C′
(),D′().
19. 已知一个二次函数的图象经过点A(﹣1,0)、B(3,0)和C(0,﹣3)三点;求此二次函数的解析式.
20. 某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:
(1)求本次测试共调查了多少名学生?
(2)求本次测试结果为B等级的学生数,并补全条形统计图;
(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?
21. 如图,在正方形ABCD中,AB=2,P是BC边上与B、C不重合的任意一点,DQ⊥AP于点Q
(1)判断△DAQ与△APB是否相似,并说明理由.
(2)当点P在BC上移动时,线段DQ也随之变化,设PA=x,DQ=y,求y与x 间的函数关系式,并求出x的取值范围.
22. 某商场销售一批衬衫,平均每天可售出20件,每件可盈利40元,为扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,若每件衬衫每降价1元,则商场平均每天可多销售2件.
(1)若现在设每件衬衫降价x元,平均每天盈利为y元,求出y与x的函数关系式(不要求写出x的取值范围)
(2)当x为何值时,平均每天盈利最大,最大盈利是多少元?
(3)若商场每天平均需盈利1200元,每件衬衫应降价多少元?
23. 如图,某高速公路建设中需要确定隧道AB的长度.已知在C处的飞机上,测量人员测得正前方A,B两点处的俯角分别为60°和45°,AC的长为
1000m.求隧道AB的长.(结果保留根号)
24. (1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB=°,AB= .
(2)请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的
长.。