【新部编版】2019-2020年中考数学复习专题复习(四)多结论判断题练习
- 格式:doc
- 大小:227.41 KB
- 文档页数:7
第3关 多结论的几何及二次函数问题为背景的选择填空题【考查知识点】以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力;以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。
【解题思路】1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法,为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本图形。
大量积累基本图形,并在此基础上“截长补短”,“能割善补”,是学习几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以算做一个基本图形.2. 以二次函数为背景的选择填空题中,根据图象的位置确定a 、b 、c 的符号,a >0开口向上,a <0开口向下.抛物线的对称轴为x=2ba-,由图像确定对称轴的位置,由a 的符号确定出b 的符号.由x=0时,y=c ,知c 的符号取决于图像与y 轴的交点纵坐标,与y 轴交点在y 轴的正半轴时,c >0,与y 轴交点在y 轴的负半轴时,c <0.确定了a 、b 、c 的符号,易确定abc 的符号;根据对称轴确定a 与b 的关系;根据图象还可以确定△的符号,及a+b+c 和a -b+c 的符号。
【典型例题】【例1】(2019·新疆中考真题)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABMFDM SS=;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④【名师点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质【例2】(2019·湖北中考真题)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断: ①0ab >且0c <; ②420a b c -+>; ③8>0+a c ; ④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,则12125x x x x ++⋅=-.其中正确的个数有( )A .5个B .4个C .3个D .2个【名师点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab>0),对称轴在y 轴左侧;当a 与b 异号时(即ab<0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac>0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac<0时,抛物线与x 轴没有交点.【例3】(2019·辽宁中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF;③BCCG =﹣1;④HOM HOGS S =2)A.①②③B.①②④C.①③④D.②③④【名师点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.【例4】(2018·广西中考真题)如图,抛物线y=14(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4【名师点睛】本题考查了二次函数与圆的综合题,涉及到抛物线的对称轴、圆的面积、平行四边形的判定、待定系数法、两直线垂直、切线的判定等,综合性较强,有一定的难度,运用数形结合的思想灵活应用相关知识是解题的关键.【方法归纳】1.多结论的几何选择填空题考查的知识点较多,如相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、四边形的知识、圆的知识、等腰三角形的判定与性质以及特殊角三角函数等知识.这类题目的综合性很强,难度较大,解题的关键是注意数形结合思想的应用.2. 多结论的二次函数选择题主要考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.数形结合思想贯穿这类题目的始终,解题时应时时注意.【针对练习】1.(2018·四川中考真题)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形; ②∠PBA=∠APQ ; ③△FPC 为等腰三角形; ④△APB ≌△EPC ;其中正确结论的个数为( )A .1B .2C .3D .42.(2018·辽宁中考真题)已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论: ①abc >0;②该抛物线的对称轴在x=﹣1的右侧; ③关于x 的方程ax 2+bx+c+1=0无实数根; ④a b cb++≥2. 其中,正确结论的个数为( ) A .1个B .2个C .3个D .4个3.(2019·四川中考真题)如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.(2019·广西中考真题)如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为1S ,2S ,则下列结论错误的是( )A .212S S CP +=B .2AF FD =C .4CD PD = D .3cos 5HCD ∠=5.(2019·山东中考真题)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .46.(2019·黑龙江中考真题)如图,在正方形ABCD 中,E F 、是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且42AB EF =,=,设AE x =.当PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( )①当0x =(即E A 、两点重合)时,P 点有6个②当02x <<时,P 点最多有9个③当P 点有8个时,x =﹣2④当PEF 是等边三角形时,P 点有4个 A .①③B .①④C .②④D .②③7.(2019·广东中考真题)如图,正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①ANH GNF ∆≅∆;②AFN HFG ∠=∠;③2FN NK =;④:1:4AFN ADM S S ∆∆=.其中正确的结论有( )A .1个B .2个C .3个D .4个8.(2019·湖北中考真题)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有( )A .1个B .2个C .3个D .4个9.(2018·黑龙江中考真题)抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++. 其中正确的有( )A .5个B .4个C .3个D .2个10.(2018·黑龙江中考真题)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②③S 平行四边形ABCD =AB•AC ④OE=14AD ⑤S △APO =12,正确的个数是( )A .2B .3C .4D .511.(2018·山东中考真题)如图,在矩形ABCD 中,∠ADC 的平分线与AB 交于E ,点F 在DE 的延长线上,∠BFE=90°,连接AF 、CF ,CF 与AB 交于G ,有以下结论: ①AE=BC ②AF=CF ③BF 2=FG•FC ④EG•AE=BG•AB其中正确的个数是( )A .1B .2C .3D .412.(2019·四川中考真题)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个13.(2019·山东中考真题)如图,正方形ABCD ,点F 在边AB 上,且:1:2AF FB =,CE DF ⊥,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使12BG BC =,连接CM .有如下结论:①DE AF =;②4AN AB =;③ADF GMF ∠=∠;④:1:8ANF CNFB S S ∆=四边形.上述结论中,所有正确结论的序号是( )A .①②B .①③C .①②③D .②③④14.(2018·湖北中考真题)如图,在四边形ABCD 中,AB=AD=5,BC=CD 且BC >AB ,BD=8.给出以下判断:①AC 垂直平分BD ;②四边形ABCD 的面积S=AC•BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形; ④当A ,B ,C ,D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125. 其中正确的是_____.(写出所有正确判断的序号)15.(2019·广西中考真题)我们定义一种新函数:形如2y ax bx c =++(0a ≠,且240b a ->)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x 2-2x -3|223y x x =--的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为()1,0-,()3,0和()0,3;②图象具有对称性,对称轴是直线1x =;③当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大;④当1x =-或3x =时,函数的最小值是0;⑤当1x =时,函数的最大值是4.其中正确结论的个数是______.16.(2018·新疆中考真题)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).17.(2018·黑龙江中考真题)如图,抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,下列结论中: ①abc <0;②9a ﹣3b+c <0;③b 2﹣4ac >0;④a >b , 正确的结论是_____(只填序号)18.(2019·湖南中考真题)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则2k =④若25MF MB =,则MD =2MA .其中正确的结论的序号是_______.19.(2019·辽宁中考真题)如图,点P 是正方形ABCD 的对角线BD 延长线上的一点,连接PA ,过点P 作PE ⊥PA 交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F ,则下列结论中:①PA =PE ;②CE PD ;③BF ﹣PD =12BD ;④S △PEF =S △ADP ,正确的是___(填写所有正确结论的序号)20.(2019·内蒙古中考真题)如图,在Rt ABC ∆中,90,3,ABC BC D ︒∠==为斜边AC 的中点,连接BD ,点F 是BC 边上的动点(不与点B C 、重合),过点B 作BE BD ⊥交DF 延长线交于点E ,连接CE ,下列结论:①若BF CF =,则222CE AD DE +=;②若,4BDE BAC AB ∠=∠=,则158CE =; ③ABD ∆和CBE ∆一定相似;④若30,90A BCE ︒︒∠=∠=,则DE =其中正确的是_____.(填写所有正确结论的序号)21.(2018·湖北中考真题)如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA=OB=a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM′的对称点C ,画直线BC 交OM′于点D ,连接AC ,AD ,有下列结论:①AD=CD ;②∠ACD 的大小随着α的变化而变化;③当α=30°时,四边形OADC 为菱形;④△ACD a 2;其中正确的是_____.(把你认为正确结论的序号都填上).。
2017届中考复习多结论几何综合题专题试卷一、单选题1、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是()A、1个B、2个C、3个D、4个2、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②=;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE;其中正确的是( )A、①②④B、③④⑤C、①③④D、①③⑤3、如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD ,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE;其中正确的个数是().A、1B、2C、3D、44、如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A、①②B、②③C、①④D、③④5、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S四边形BEOF中,正确的有()A、1个B、2个C、3个D、4个6、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A、1B、2C、3D、47、如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A、1个B、2个C、3个D、4个8、如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A、②③B、②④C、①③④D、②③④9、如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A、1个B、2个C、3个D、4个10、如图,PA=PB,OE⊥PA,OF⊥PB,则以下结论:①OP是∠APB的平分线;②PE=PF③CA=BD;④CD∥AB;其中正确的有()个.A、4B、3C、2D、111、如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A、1个B、2个C、3个D、4个12、如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A、0B、1C、2D、313、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是( )A 、1B 、2C 、3D 、414、如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A 、4个B 、3个C 、2个D 、1个15、(2016•攀枝花)如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②tan ∠AED=2;③S △AGD =S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG ;⑥若S △OGF =1,则正方形ABCD 的面积是6+4 ,其中正确的结论个数为( )A 、2B 、3C 、4D 、516、如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP= ;④S四边形ECFG=2S △BGE .A 、4B 、3C 、2D 、117、如图所示,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD=MC ,连接AC 、BC 、AD 、BD ,某同学根据图象写出下列结论: ①a ﹣b=0;②当﹣2<x <1时,y >0; ③四边形ACBD 是菱形; ④9a ﹣3b+c >你认为其中正确的是()A、②③④B、①②④C、①③④D、①②③18、如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是()A、2B、3C、4D、519、如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足= ,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE= ;④S△DEF=4 ,其中正确的是()A、①②③B、②③④C、①②④D、①③④20、如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A、①③⑤B、②④⑤C、①②⑤D、①③④答案解析部分一、单选题1、【答案】D【考点】等腰三角形的性质,梯形中位线定理,锐角三角函数的定义【解析】【分析】①根据等腰直角三角形的性质及△ABC∽△CDE的对应边成比例知,;然后由直角三角形中的正切函数,得tan∠AEC=,再由等量代换求得tan∠AEC=;②由三角形的面积公式、梯形的面积公式及不等式的基本性质a2+b2≥2ab(a=b时取等号)解答;③、④通过作辅助线MN,构建直角梯形的中位线,根据梯形的中位线定理及等腰直角三角形的判定定理解答.【解答】解:∵△ABC和△CDE均为等腰直角三角形,∴AB=BC,CD=DE,∴∠BAC=∠BCA=∠DCE=∠DEC=45°,∴∠ACE=90°;∵△ABC∽△CDE∴①∴tan∠AEC=,∴tan∠AEC=;故本选项正确;②∵S△ABC=a2,S△CDE=b2,S梯形ABDE=(a+b)2,∴S△ACE=S梯形ABDE-S△ABC-S△CDE=ab,S△ABC+S△CDE=(a2+b2)≥ab(a=b时取等号),∴S△ABC+S△CDE≥S△ACE;故本选项正确;④过点M作MN垂直于BD,垂足为N.∵点M是AE的中点,则MN为梯形中位线,∴N为中点,∴△BMD为等腰三角形,∴BM=DM;故本选项正确;③又MN=(AB+ED)=(BC+CD),∴∠BMD=90°,即BM⊥DM;故本选项正确.故选D.【点评】本题综合考查了等腰直角三角形的判定与性质、梯形的中位线定理、锐角三角函数的定义等知识点.在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、【答案】C【考点】全等三角形的判定,勾股定理,相似三角形的判定,旋转的性质【解析】【分析】①根据旋转的性质知∠CAD=∠BAF,AD=AF,因为∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°=∠DAE,由此即可证明△AEF≌△AED;②当△ABE∽△ACD时,该比例式成立;③根据旋转的性质,△ADC≌△ABF,进而得出△ABC的面积等于四边形AFBD 的面积;④据①知BF=CD,EF=DE,∠FBE=90°,根据勾股定理判断.⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF;由此即可确定该说法是否正确;【解答】①根据旋转的性质知∠CAD=∠BAF,AD=AF,∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.∴∠EAF=45°,∴△AED≌△AEF;故本选项正确;②∵AB=AC,∴∠ABE=∠ACD;∴当∠BAE=∠CAD时,△ABE∽△ACD,∴=;当∠BAE≠∠CAD时,△ABE与△ACD不相似,即≠;∴此比例式不一定成立;故本选项错误;③根据旋转的性质知△ADC≌△AFB,∴S△ABC=S△ABD+S△ABF=S四边形AFBD,即三角形ABC的面积等于四边形AFBD的面积;故本选项正确;④∵∠FBE=45°+45°=90°,∴BE2+BF2=EF2,∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD,又∵EF=DE,∴BE2+DC2=DE2,故本选项正确;⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF,∴BE+DC=BE+BF>DE=EF,即BE+DC>DE,故本选项错误;综上所述,正确的说法是①③④;故选C.【点评】此题主要考查了图形的旋转变换以及全等三角形的判定等知识,解题时注意旋转前后对应的相等关系.3、【答案】D【考点】等边三角形的性质,菱形的判定与性质,平移的性质【解析】【解答】∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC =CD ,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC ,故①正确;由①可得AD=BC ,∵AB=CD ,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE ,故四边形ACED是菱形,即③正确;∵四边形ACED是菱形,∴AC⊥BD ,∵AC∥DE ,∴∠BDE=∠COD=90°,∴BD⊥DE ,故④正确;综上可得①②③④正确,共4个,故选D.【分析】先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD ,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.4、【答案】B【考点】勾股定理,翻折变换(折叠问题),相似三角形的判定与性质,特殊角的三角函数值【解析】【解答】①∵△ABD为直角三角形,∴BD2=AD2+AB2,不是BD=AD2+AB2,故说法错误;②根据折叠可知:DE=CD=AB,∠A=∠E,∠AFB=∠EFD,∴△ABF≌△EDF,故说法正确;③根据②可以得到△ABF∽△EDF,∴=,故说法正确;④在Rt△ABD中,∠ADB≠45°,∴AD≠BD•cos45°,故说法错误.所以正确的是②③.故选B.【分析】①直接根据勾股定理即可判定是否正确;②利用折叠可以得到全等条件证明△ABF≌△EDF;③利用全等三角形的性质即可解决问题;④在Rt△ABD中利用三角函数的定义即可判定是否正确.此题主要考查了折叠问题,也考查了勾股定理、相似三角形的性质、全等三角形的性质及三角函数的定义,它们的综合性比较强,对于学生的综合能力要求比较高,平时加强训练.5、【答案】C【考点】全等三角形的判定与性质,勾股定理,正方形的性质,锐角三角函数的定义【解析】【解答】解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°,∵AE=BF=1,∴BE=CF=4﹣1=3,在△EBC和△FCD中,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;若OC=OE,∵DF⊥EC,∴CD=DE,∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC= = ,故③正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故④正确.故选C.【分析】由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得③正确;由①易证得④正确.6、【答案】C【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.7、【答案】C【考点】等边三角形的判定与性质,含30度角的直角三角形,平行四边形的性质【解析】【解答】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选:C.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.8、【答案】D【考点】全等三角形的判定与性质,角平分线的性质,正方形的判定【解析】【解答】如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,∴①不正确;∵AD是△ABC的角平分线,∴∠EAD∠FAD,在△AED和△AFD 中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,∴④正确;在△AEO和△AFO中,,∴△AE0≌△AF0(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,∴②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,∴③正确.综上,可得正确的是:②③④.故选:D.【分析】①如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,所以①不正确.②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.③首先判断出当∠A=90°时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE成立,据此解答即可.9、【答案】B【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE ,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.10、【答案】A【考点】全等三角形的判定与性质,圆心角、弧、弦的关系,相似三角形的判定与性质【解析】【解答】连接OP、OC、OA、OD、OB、CD、AB.∵PC•PA=PD•PB(相交弦定理),PA=PB(已知),∴PC=PD,∴AC=BD;在△AOC和△BOD中,∵∠AOC=∠BOD(等弦对等角),OA=OB(半径),OD=OC(半径),∴△AOC≌△BOD,∴③CA=BD;OE=OF;又∵OE⊥PA,OF⊥PB,∴①OP是∠APB的平分线;∴②PE=PF;在△PCD和△PAB中,PC:PA=PD:PB,∠DPC=∠BPA,∴△PCD∽△PAB,∴∠PDC=PBA,∴④CD∥AB;综上所述,①②③④均正确,故答案选A.【分析】①通过证明△AOC≌△BOD,再根据全等三角形的对应高相等求得OE=OF;再根据角平分线的性质证明OP是∠APB的平分线;②由角平分线的性质证明PE=PF;③通过证明△AOC≌△BOD,再根据全等三角形的对应边相等求得CA=BD;④通过证明△PCD∽△PAB,再根据相似三角形的性质对应角相等证得∠PDC=PBA;然后由平行线的判定得出结论CD∥AB.11、【答案】C【考点】全等三角形的判定与性质,翻折变换(折叠问题),锐角三角函数的定义【解析】【解答】①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知) ∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,AB="CB" ,BO=BO ,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°-45°-67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;故正确的有3个.故选C.12、【答案】D【考点】等边三角形的性质,菱形的判定,旋转的性质【解析】【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.【分析】根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.本题考查了旋转的性质,菱形的性质和判定,等边三角形的性质和判定的应用,能灵活运用知识点进行推理是解此题的关键.13、【答案】D【考点】全等三角形的判定与性质,矩形的判定与性质,正方形的性质,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.14、【答案】B【考点】全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的性质,矩形的性质【解析】【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.15、【答案】B【考点】菱形的判定与性质,翻折变换(折叠问题),等腰直角三角形【解析】【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG= ∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF= OG,∴BE= EF= ×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG= ,∴BE=2OG=2 ,GF= ==2,∴AE=GF=2,∴AB=BE+AE=2 +2,∴S正方形ABCD=AB2=(2 +2)2=12+8 ,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.16、【答案】B【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x= ,∴sin=∠BQP= = ,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE= BC,BF= BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选:B.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.17、【答案】D【考点】二次函数的图象,二次函数的性质,菱形的判定【解析】【解答】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b,a﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(﹣2,0)、B(1,0),∴当﹣2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=﹣3时,y<0,即y=9a﹣3b+c<0,④错误.综上可知:正确的结论为①②③.故选D.【分析】①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=﹣=﹣0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当﹣2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=﹣3时,y<0,即可得出9a﹣3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.18、【答案】D【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题)【解析】【解答】解:∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG= ∠BAD=45°,所以①正确;设BG=x,则GF=x,C=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵CG2+CE2=GE2,∴(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3,CG=6﹣3=3∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:= ,∴S△FGC=S△GCE﹣S△FEC= ×3×4﹣×4×(×3)= =3.6,所以⑤正确.故正确的有①②③④⑤,故选:D.【分析】先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF,∠BAG=∠FAG,所以∠GAE= ∠BAD=45°;GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,则BG=CG=3,则点G为BC的中点;同时得到GF=GC,根据等腰三角形的性质得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根据三角形外角性质得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根据平行线的判定方法得到CF∥AG;过F作FH⊥DC,则△EFH∽△EGC,△EFH∽△EGC,由相似比为,可计算S△FGC.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.19、【答案】C【考点】垂径定理,圆周角定理,相似三角形的判定与性质,解直角三角形【解析】【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵= ,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG= = ,∴在Rt△AGD中,tan∠ADG= = ,∴tan∠E= ;故③错误;④∵DF=DG+FG=6,AD= = ,∴S△ADF= DF•AG= ×6×=3 ,∵△ADF∽△AED,∴=()2,∴= ,∴S△AED=7 ,∴S△DEF=S△AED﹣S△ADF=4 ;故④正确.故选C.【分析】①正确.由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:,DG=CG,继而证得△ADF∽△AED;②正确.由= ,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③错误.由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=.④首先求得△ADF的面积,由相似三角形面积的比等于相似比的平方,即可求得△ADE的面积,继而求得S△DEF=4 .20、【答案】D【考点】垂径定理,圆周角定理,相似三角形的判定与性质【解析】【解答】解:∵在⊙O中,点C是的中点,∴= ,∴∠CAD=∠ABC,故①正确;∵≠ ,∴≠ ,∴AD≠BC,故②错误;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°,∴∠ACE=∠ABC,又∵C为的中点,∴= ,∴∠CAP=∠ABC,∴∠ACE=∠CAP,∴AP=CP,∵∠ACQ=90°,∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC2=AE•AB,故④正确;如图,连接BD,则∠ADG=∠ABD,∵≠ ,∴≠ ,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC,又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC,∴CB与GD不平行,故⑤错误.故答案为:D.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,据此推理可得①正确,②错误;通过推理可得∠ACE=∠CAP,得出AP=CP,再根据∠PCQ=∠PQC,可得出PC=PQ,进而得到AP=PQ,即P为Rt△ACQ斜边AQ的中点,故P为Rt△ACQ 的外心,即可得出③正确;连接BD,则∠ADG=∠ABD,根据∠ADG≠∠BAC,∠BAC=∠BCE=∠PQC,可得出∠ADG≠∠PQC,进而得到CB与GD不平行,可得⑤错误.。
2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。
1. 2. 3. 4. 5. 6.7.变量与函数专题在平面直角坐标系中,点(-3,2)所在的象限是A.第一象限C.第三象限【答案】B函数y=VEE2中自变量X的取值范围是x-3A.x>2B.xN2【答案】CB.第二象限D.第四象限C.xN2且xU3若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则A.k<2B.k>2C.k>0D.k<0D.x"3【答案】B一次函数y=x+2的图象与y轴的交点坐标为A.(0,2)【答案】AB.(0,-2)C.(2,0)D.(-2,0)将直线y=2x-3向右平移2个单位长度,A.y=2x-4B.y=2x+4再向上平移3个单位长度后,所得的直线的表达式为C.y=2x+2D.y=2x-2【答案】A如图,在矩形A0BC中,A(-2,1A.--2【答案】A1B.-20),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为C.-2D.2如图,直线y二kx+b(k"0)经过点A(-2,4),则不等式kx+b>4的解集为A.x>-2 D.x<4【答案】A8.如图,直线1是一次函数y=kx+b 的图象,若点A (3, m)在直线1上,则m 的值是【答案】C9.反比例函数y=§的图象经过点(3, -2),下列各点在图象上的是xA. (-3, -2)B. (3, 2)C. ( - 2, - 3)D. ( -2, 3)【答案】D10.如图,已知直线y=k 1X (虹尹0)与反比例函数y=4 (k 2^0)的图象交于M, N 两点.若点M 的坐标x是(1, 2),则点N 的坐标是A. ( - 1> - 2)C. (1, -2)B. ( -1, 2)D. ( -2, - 1)【答案】A11.如图,点C 在反比例函数y=* (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A, B,且AB=BC,X△A0B 的面积为1,则k 的值为A. 1B. 2C. 3D. 4【答案】D12.某通讯公司就上宽带网推出A, B,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h)的函数关系如图所示,则下列判断错误的是65503012025 50 55ox(h)A. 每月上网时间不足25h 时,选择A 方式最省钱B. 每月上网费用为60元时,B 方式可上网的时间比A 方式多C. 每月上网时间为35h 时,选择B 方式最省钱D. 每月上网时间超过70h 时,选择C 方式最省钱【答案】D13.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的 节气白昼时长伺咽A.惊蛰B.小满C.立秋D.大寒【答案】D14.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是B.—°/(min)D.【答案】B15.在平面直角坐标系中,一个智能机器人接到如下指令:从原点0出发,按向右,向上,向右,向下的方向依次不断移动,每次移动Im.其行走路线如图所示,第1次移动到Au 第2次移动到A 2,…,第n 次移动到A ”.则左OA 2A 20i9的面积是16.17.A, 504m 2【答案】A22二次函数y=ax 2+bx+c (a^O)的部分图象如图所示,则下列结论错误的是A. 4a+b=0C. a : c= - 1 : 5【答案】DD.当-1W x W5 时,y>0如图,若二次函数y=ax 2+bx+c (a 尹0)图象的对称轴为x=l,与y 轴交于点C,与x 轴交于点A 、点B ( - 1, 0),则①二次函数的最大值为a+b+c ;②a - b+c<0;(3)b 2 - 4ac<0;④当y>0时,其中正确的个数是【答案】B18. P (3, -4)到x 轴的距离是【答案】419.抛物线y=2(x+2)纤4的顶点坐标为.【答案】(-2,4)20.如图,抛物线y=ax,与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax^bx+c的解是.【答案】xi=-2,x2=l21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.【答案】1503, 22.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-一尸.在2飞机着陆滑行中,最后4s滑行的距离是m.【答案】2423.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.【答案】(4扼-4)24.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S acod=|saboc,求点D的坐标.【解析】(1)当X=1时,y=3x=3,.•.点C 的坐标为(1, 3) .将 A ( - 2, 6)、C (1, 3)代入 y=kx+b,得:—2k + 〜=6k + b = 3,解徐’k = -l b = 4(2)由(1)得直线AB 的解析式为y=-x+4.当 y=0 时,有-x+4=0,解得:x=4,.•.点B 的坐标为(4, 0).设点D 的坐标为(0, m ) (m<0),1 nn 1 1 1S acod = — S aboc ,即m = — X — X 4X 3,3 2 3 2解得:m= - 4,.•.点D 的坐标为(0, -4).25.抛物线y=-|x +bx+c 经过点A (3 0, 0)和点B (0, 3),且这个抛物线的对称轴为直线1,顶点121 9 l【解析】(1) •抛物线y = +版+。
人教版(五四制)2019-2020七年级数学上册期中综合复习基础训练题4(含答案)1.如图,AB∥CD∥EF,则下列各式中正确的是( )A.∠1=180°﹣∠3 B.∠1=∠3﹣∠2C.∠2+∠3=180°﹣∠1 D.∠2+∠3=180°+∠12.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB 交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°3.的倒数与互为相反数,那么a的值是()A.B.C.3 D.-34.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°5.如图,直线l1,l2,l3交于一点,直线l4// l1,若∠1=∠2=36°,则∠3的度数为A.60°B.90°C.108°D.150°6.某人以每小时5千米的速度从家步行到单位上班,下班时以每小时4千米的速度按原路返回,结果下班时比上班时多用10分钟,如果设上班时所用的时间为小时,则下列根据题意所列方程正确的是()A.5x=4(x-10) B.5x=4(x+) C.5(x-)=4x D.5(x+)=4x7.如图②是图①将__________平移__________所得到的( )A.△AOB,BC的长度B.△COD,BC的长度C.△AOD,AD的长度D.△BOC,BA的长度8.根据“x比它的少4”可得方程()A.B.C.D.9.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产--“抖空竹”引入阳光特色大课间下面左图是某同学“抖空竹”时的一个瞬间,小聪把它抽象成右图的数学问题:已知,,,则的度数是A.B.C.D.10.如图,在三角形ABC中,∠C=90°,AC=5,点P是BC边上的动点,则AP的长不可能是()A.4.5 B.5 C.6 D.711.关于x的方程有解,则a的值应满足_________.12.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD 所在的直线与线段AB垂直相交于点P,且满足PC=P A.若点P沿AB方向从点A运动到点B,则点E运动的路径长为______.13.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是_____千米/时. 14.若4x 2m y n +1与-3x 4y 3的和是单项式,则m =________,n =________. 15.如图,已知直线a ∥b ,∠1=85°,则∠2=_____.16.“比x 的40%大6的数是13”用方程表示为______________.17.若关于x 的方程240x k +-=的解是3x =-,那么k 的值是________.18.编队飞行(即平行飞行)的两架飞机A 、B 在直角坐标系中的坐标分别为A (﹣1,2)、B (﹣2,3),当飞机A 飞到指定位置的坐标是(2,﹣1)时,飞机B 的坐标是_____. 19.甲、乙、丙三人进行100米赛跑,假设每人速度不变,当甲距离终点20米时,乙比甲落后3米,丙比乙落后2米,那么乙到达终点时,丙离终点的距离为__________米. 20.已知方程4320x m -+=的解是1x =,则m =_________.21.如图,已知AB ∥CD ,∠ABE 和∠CDE 的平分线相交于F ,∠E = 140º,求∠BFD 的度数.22.在某校举办的足球比赛中,规定:胜一场得3分,平一场得1分,•负一场得0分.某班足球队参加了12场比赛,共得22分,已知这个球队只输了2场,那么此队胜几场,平几场?23.如图,已知FCAB DE , ::2:3:4D B α∠∠=,求α、D ∠、B ∠的度数.24.已知关于x的方程mx+2=2(m—x)的解满足|x-|-1=0,则m的值.25.已知:∠CGD=∠CAB,∠1=∠2,AD⊥BC,求证:EF⊥BC.26.将连续偶数2,4,6,…排列成如图所示的数表.(1)十字框中5个数的和与中间数24有什么关系?(2)若将十字框上下左右平移可框住5个数,设中间的数为x,用代数式表示这5个数的和;(3)十字框中五个数的和能否分別为2005,1000,2000?若能,请写出这5个数;若不能,请说明理由.27.某镇枇杷园的枇杷除了运往市区销售外,还可以让市民亲自去园内采摘购买,已知今年3月份该枇杷在市区、园内的销售价格分别为6元/千克、4元/千克,一共销售了3000千克,总销售额为16000元,3月份该枇杷在市区、园内各销售了多少千克?28.请在如图所示的方格中,将“箭头”向右平移3个单位长度.参考答案1.D【解析】由图形可知,∠2+∠3-∠1=180°,所以∠2+∠3=180°+∠1,故选D.2.C【解析】∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°-90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°.故选C.【点睛】运用了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.3.C【解析】【分析】两数互为倒数,积为1,则的倒数为而两数互为相反数,和为0,即再根据一元一次方程的解法来解题.【详解】依题意得:去分母,得a+2a−9=0,所以3a=9,所以a=3,故选:C.【点睛】考查解一元一次方程,根据题意列出方程是解题的关键.4.B解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.5.C【解析】试题解析:∵直线l4∥l1,∴∠4=∠1=36°,∵∠2=36°,∴∠3=180°-∠4-∠2=108°,故选C.6.B【解析】【分析】设上班所用的时间为小时,则下班所用的时间为小时,根据上下班所走的路程一样列出方程。
实际问题与二次函数【基础】专项练习一、简答题1、某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?2、小明跳起投篮,球出手时离地面m,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?3、如图所示,某小区计划在一个长为40 m,宽为26 m的矩形场地ABCD上修建三条宽均为x m的通路,使其中两条与AB垂直,另一条与AB平行,剩余部分种草,设剩余部分的面积为y m2,求y关于x的函数表达式,并写出自变量的取值范围.4、.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半月内获得最大的利润?5、某水果店出售某种水果,已知该水果的进价为6元/千克,若以9元/千克的价格销售,则每天可售出200千克;若以11元/千克的价格销售,则每天可售出120千克.通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该水果店销售这种水果每天获取的利润达到280元?(利润=销售量×(销售单价﹣进价))(3)该水果店在进货成本不超过720元时,销售单价定为多少元可获得最大利润?最大利润是多少?6、如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计)。
代数综合题一:对于实数a,b,我们用符号min{a,b}表示a,b两数中较小的数,如min{3,5}=3,因此,min{-1,-2}=________;若{}22min(1),4+=,则x=___________.x x题二:对于实数c,d,我们用符号max{c,d}表示c,d两数中较大的数,如max{3,5}=5,因此,题四:在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y A、B,交抛物线C2:y于点C、D.(1)如图①,原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC 和QD,求△AOB与△CQD面积比为_______.(2)如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F,在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为_______.题七: 设函数y =⎩⎨⎧<+≥+-0130242x x x x x , ,,若互不相等的实数x 1,x 2,x 3,满足y 1=y 2=y 3, 求x 1+x 2+x 3的取值范围.题八: 在平面直角坐标系xOy 中,抛物线y =243x x ++与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C . (1)求直线AC 的表达式;(2)在x 轴下方且垂直于y 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线AC 交于点N (x 3,y 3),若x 1>x 2>x 3,结合函数的图象,求x 1+x 2+x 3的取值范围.参考答案题一:-2,-3或2.详解:∵-2<-1,∴min{-1,-2}=-2,∵{}22+=,x xmin(1),4当(x+1)2=x2时,解得:x=-0.5,(x+1)2=x2=0.25,这时不可能得出最小值为4,当x>-0.5,(x+1)2>x2,则x2=4,解得x1=2或x2=-2(舍去),当x<-0.5,(x+1)2<x2,则(x+1)2=4,解得x1=-3或x2=1(舍去),∴x=-3或x=2.题二:∵{}22++=,max22,2x x x当x2+2x+2=x2时,解得:x=-1,x2+2x+2=x2=1,这时不可能得出最大值为2,当x>-1,x2+2x+2>x2,则x2+2x+2=2,解得x1=0或x2=-2(舍去),∴x=0.题三:∴C (-3m ,m 2),D (3m ,m 2),∴CD =6m ,∵O 、Q 关于直线CD 对称, ∴PQ =OP ,∵CD ∥x 轴,∴∠DPQ =∠DPO =90°,∴△AOB 与△CQD 的高相等, PQ CD PO AB ⋅⋅2121=mm 64=32.AEM DFMS S=∵S △OEF +S △OFD =S △OEC +S 梯形ECDF ,而S △OFD =S △OEC =2, 2详解:先作出函数y =⎩⎨⎧<+≥+-0130242x x x x x , ,的图象,如图,不妨设x 1<x 2<x 3,∵y =242x x -+(x ≥0)的对称轴为x =2,y 1=y 2,∴x 2+x 3=4, ∵y =242x x -+(x ≥0)的顶点坐标为(2,-2),令y =-2,代入y =3x +1,解得:x =-1,∴-1<x 1<0,则x 1+x 2+x 3的取值范围是:-1+4<x 1+x 2+x 3<0+4,∴3<x 1+x 2+x 3<4.题八: (1)y =x +3;(2)-8<x 1+x 2+x 3<-7.详解:(1)由y =243x x ++得到:y =(x +3)(x +1),C,∴A (-3,0),B (-1,0),设直线AC 的表达式为:y =kx +b (k ≠0), ∴⎩⎨⎧==+303-b b k ,解得:⎩⎨⎧==31b k ,所以直线AC 的表达式为y =x +3,(2)由y =243x x ++得到:y =(x +2)2-1,∴抛物线y =243x x ++的对称轴是x =-2, 顶点坐标是(-2,-1),∵y 1=y 2,∴x 1+x 2=-4,令y =-1,代入y =x +3,解得:x =-4,∵x 1>x 2>x 3,∴-4<x 3<-3,∴-4-4<x 1+x 2+x 3<-3-4,∴-8<x 1+x 2+x 3<-7.代数几何综合题一:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式及顶点M坐标;(2)在抛物线的对称轴上找到点P,使得△P AC的周长最小,并求出点P 的坐标.题二:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-4,0),B(1,0),与y轴交于点D(0,4),点C(-2,n)也在此抛物线上.(1)求此抛物线的解析式及点C的坐标;(2)设BC交y轴于点E,连接AE,AC请判断△ACE的形状,并说明理由.题三:在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)=,d(B,⊙O)=.是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.参考答案题一: (1)y =214x --+(),M (1,4);(2)P (1,2). 详解:(1)∵抛物线y =ax 2+bx +c (a ≠0)过A (-1,0)、B (3,0),C (0,3)三点,∴93003a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得12c=3a b =-⎧⎪=⎨⎪⎩.故抛物线的解析式为222314y x x x =-++=--+(),故顶点M 为(1,4); (2)如图1,∵点A 、B 关于抛物线的对称轴对称,∴连接BC与抛物线对称轴交于一点,即为所求点P .设对称轴与x 轴交于点H ,题二: (1)y =-x 2-3x +4,C (-2,6);(2)△ACE 为等腰直角三角形.详解:(1)∵抛物线经过A 、B 、D 三点,∴代入抛物线解析式可得164004a b c a b c c -+⎧⎪++⎨⎪⎩===,解得134a b c -⎧⎪-⎨⎪⎩===,∴抛物线的解析式为 y =-x 2-3x +4, ∵点C (-2,n )也在此抛物线上,∴n =-4+6+4=6,∴C 点坐标为(-2,6);∴AE2+CE2=20+20=40=AC2,且AE=CE,∴△ACE为等腰直角三角形.。
2019年中考专题复习 第二讲 实数的运算【基础知识回顾】一、实数的运算.1、基本运算:初中阶段我们学习的基本运算有 、 、 、 、 、 和 共六种,运算顺序是先算 ,再算 ,最后算 ,有括号时要先算 ,同一级运算,按照 的顺序依次进行. 2、运算法则:加法:同号两数相加,取 的符号,并把 相加,异号两数相加,取 的符号,并用较大的 减去较小的 ,任何数同零相加仍得 。
减法,减去一个数等于 。
乘法:两数相乘,同号得 ,异号得 ,并把 相乘。
除法:除以一个数等于乘以这个数的 。
乘方:(-a )2n +1= (—a ) 2n=3、运算定律:加法交换律:a+b= 加法结合律:(a+b )+c= 乘法交换律:ab= 乘法结合律:(ab )c= 分配律: (a+b )c= 二、零指数、负整数指数幂。
0a = (a≠0) a -p= (a≠0)【名师提醒:1、实数的混合运算在中考考查时经常与0指数、负指数、绝对值、锐角三角函数等放在一起,计算时要注意运算顺序和运算性质。
2、注意底数为分数的负指数运算的结果,如:(31)-1= 】三、实数的大小比较:1、比较两个有理数的大小,除可以用数轴按照的原则进行比较以外,,还有比较法、比较法等,两个负数大的反而小。
2、如果几个非负数的和为零,则这几个非负数都为。
【名师提醒:比较实数大小的方法有很多,根据题目所给的实数的类型或形可以式灵活选用。
22的大小,可以先确定10和65的取值范围,然后得结论:10+2 65—2。
】【重点考点例析】考点一:实数的大小比较。
例1 (2018•福建)在实数|-3|,—2,0,π中,最小的数是()A.|-3| B.-2 C.0 D.π【思路分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.解:在实数|—3|,-2,0,π中,|—3|=3,则-2<0<|-3|<π,故最小的数是:—2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.考点二:估算无理数的大小例2 (2018•南京)下列无理数中,与4最接近的是()A B C D【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键. 考点三:实数与数轴例3(2018•北京)实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( ) A .|a |>4 B .c —b >0 C .ac >0 D .a+c >0【思路分析】本题由图可知,a 、b 、c 绝对值之间的大小关系,从而判断四个选项的对错. 解:∵—4<a <-3,∴|a |<4,∴A 不正确; 又∵a <0,c >0,∴ac <0,∴C 不正确; 又∵a <—3,c <3,∴a+c <0,∴D 不正确; 又∵c >0,b <0,∴c-b >0,∴B 正确; 故选:B .【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负. 考点四:实数的混合运算例4 (2018•怀化)计算:0112sin 3022|31|π-︒--+-+()()【思路分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=1213122⨯-+-+ =1+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 考点五:实数中的规律探索。
2020年中考数学复习专题练:《四边形综合 》1.如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 ;②直线DG 与直线BE 之间的位置关系是 ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).2.如图1,在正方形ABCD 中,点E 是CD 上一点(不与C ,D 两点重合),连接BE ,过点C 作CH ⊥BE 于点F ,交对角线BD 于点G ,交AD 边于点H ,连接GE ,(1)求证:△DHC ≌△CEB ;(2)如图2,若点E 是CD 的中点,当BE =8时,求线段GH 的长;(3)设正方形ABCD 的面积为S 1,四边形DEGH 的面积为S 2,当的值为时,的值为 .3.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(I)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).4.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.5.(1)【探索发现】如图1,在正方形ABCD中,点M,N分别是边BC,CD上的点,∠MAN=45°,若将△DAN 绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为8,则正方形ABCD的边长为.(2)【类比延伸】如图2,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M,N分别在边BC,CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,在四边形ABCD中,AB=AD=2,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,AN,△ABM是等边三角形,AM⊥AD于点A,∠DAN=15°,请直接写出△CMN 的周长.6.(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE 和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.7.如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.(1)当D′点落在AB边上时,∠DAE=°;(2)如图2,当E点与C点重合时,D′C与AB交点F,①求证:AF=FC;②求AF长.(3)连接D′B,当∠AD′B=90°时,求DE的长.8.在平面直角坐标系中,点O是坐标原点,A(0,m),B(n,O),AC∥OB,且AC=OB,连接BC交x轴于点F,其中m、n满足方程+n2+8n+16=0.(1)求A、B两点坐标;(2)过A做AE⊥BC于E,延长AE交x轴于点D,动点P从点B出发以每秒2个单位的速度向x轴正半轴方向运动,设△PFD的面积为S,请用含t的式子表示S,并直接写出t的取值范围;(3)在(2)的条件下,连接PE,将△PED沿PE翻折到△PEG的位置(点D与点G对应),当四边形PDEG为菱形时,求点P和点G的坐标.9.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD.①求∠BDE的度数;②若正方形ABCD的边长是,请求出△BCG的面积.10.【综合与实践】如图①,在正方形ABCD中,点E、F分别在射线CD、BC上,且BF=CE,将线段FA绕点F顺时针旋转90°得到线段FG,连接EG,试探究线段EG和BF的数量关系和位置关系.【观察与猜想】任务一:“智慧小组”首先考虑点E、F的特殊位置如图②,当点E与点D重合,点F与点C重合时,易知:EG与BF的数量关系是,EG与BF的位置关系是.【探究与证明】任务二:“博学小组”同学认为E、F不一定必须在特殊位置,他们分两种情况,一种是点E、F分别在CD、BC边上任意位置时(如图③);一种是点E、F在CD、BC边的延长线上的任意位置时(如图④),线段EG与BF的数量关系与位置关系仍然成立.请你选择其中一种情况给出证明.【拓展与延伸】“创新小组”同学认为,若将“正方形ABCD”改为“矩形ABCD,且=k(k≠1)”,点E、F分别在射线CD、BC上任意位置时,仍将线段FA绕点F顺时针旋转90°,并适当延长得到线段FG,连接EG(如图⑤),则当线段BF、CE、AF、FG满足一个条件时,线段EG与BF的数量关系与位置关系仍然成立.(请你在横线上直接写出这个条件,无需证明)11.在平面直角坐标系xOy中,四边形OADC为正方形,点D的坐标为(4,4),动点E沿边AO从A向O以每秒1cm的速度运动,同时动点F沿边OC从O向C以同样的速度运动,连接AF、DE交于点G.(1)试探索线段AF、DE的关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图①中补全图形,并说明理由.(3)如图②当点E运动到AO中点时,点M是直线EC上任意一点,点N是平面内任意一点,是否存在点N使以O,C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.12.综合与实践动手操作:第一步:在矩形纸片ABCD的边BC,AD上分别取两点E,F,使CE=AF;第二步:分别以DE,BF为对称轴将△CDE与△ABF翻折得到△C'DE与△A'BF,且边C'E 与A'B交于点G,边A'F与C'D交于一点H.问题解决:(1)求证:△BEG≌△DFH;(2)请判断四边形A'HC'G的形状,并证明你发现的结论;(3)已知tan∠EBG=,A'G=6,C'G=1,求矩形纸片ABCD的面积.13.如图1,矩形ABCD中,∠ACB=30°,将△ACD绕C点顺时针旋转α(0°<α<360°)至△A'CD'位置.(1)如图2,若AB=2,α=30°,求S△BCD′.(2)如图3,取AA′中点O,连OB、OD′、BD′.若△OBD′存在,试判定△OBD′的形状.(3)当α=α1时,OB=OD′,则α1=°;当α=α2时,△OBD′不存在,则α2=°.14.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE .(1)沿AE 翻折△ABE 使点B 落在点F 处,①连接CF ,若CF ∥AE ,求m 的值;②连接DF ,若≤DF ≤,求m 的取值范围.(2)△ABE 绕点A 顺时针旋转得△AB 1E 1,点E 1落在边AD 上时旋转停止.若点B 1落在矩形对角线AC 上,且点B 1到AD 的距离小于时,求m 的取值范围.15.如图1,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE 、DG .(1)BE 和DG 的数量关系是 ,BE 和DG 的位置关系是 ;(2)把正方形ECGF 绕点C 旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD 的边长为4,正方形ECGF 的边长为3,正方形ECGF 绕点C 旋转过程中,若A 、C 、E 三点共线,直接写出DG 的长.16.如图,正方形ABCD的边长为a,射线AM是∠BAD外角的平分线,点E在边AB上运动(不与点A、B重合),点F在射线AM上,且AF=BE,CF与AD相交于点G,连结EC、EF、EG.(1)求证:CE=EF;(2)求△AEG的周长(用含a的代数式表示);(3)试探索:点E在边AB上运动至什么位置时,△EAF的面积最大.17.问题情境:矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别与边AB、BC所在的直线相交,交点为E、F.探究1:如图1,当PE⊥AB,PF⊥BC时,则=.探究2:如图2,在(1)的基础上,将三角板绕点P逆时针旋转,旋转角为α,(0°<α<60°),试求的值.探究3:在(2)的基础上继续旋转,当60°<α<90°时,将顶点P在AC上移动且使=时,如图3,试求的值.18.在Rt△ABC中,∠B=90°,AB=6,BC=8,点D从点B出发,以每秒3个单位的速度沿B→A→C运动,到点C停止.在点D运动的过程中,过点D作DE⊥BC,垂足为E,以DE为一边在右侧作矩形DEFG,点F在BC边上,且EF:DE=4:3,连结AG,CG,设运动时间为t(秒),矩形DEFG与△ABC重叠部分面积为S.(1)当AG=CG时,求t的值.(2)当点D在边AB上运动时,求S与t的函数关系式.(3)当△ACG的面积为6时,直接写出t的值.19.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=32,DC=24,AD=42,动点P从点D出发,沿射线DA的方向以每秒4个单位长的速度运动,动点Q从点C出发,在线段CB 上以每秒2个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.20.(1)【发现证明】如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.小明发现,当把△ABE绕点A顺时针旋转90°至△ADG,使AB与AD重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=3,求AF的长.参考答案1.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.2.证明(1)∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS).(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DH∥BC,∴.∴GC=2GH,设GH=x,则,则CG=2x,∴3x=8,∴x=.即GH=.(3)解:∵,∴,∵DH=CE,DC=BC,∴,∵DH∥BC,∴,∴,,设S△DGH =9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG :S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.故答案为:.3.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠OAC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).4.证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,且BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS)∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,且GE=GH,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴∴DE×DE=4×(2+4)=24,∴DE=2,∴EO===2,∵AB∥CD,∴, ∴HO =2EO =4, ∴EH =6,且EG =GH , ∴EG =3,GO =EG ﹣EO =, ∴GB ===,∴BC =2=AD , ∴AD =DE ,∴点E 与点A 重合,如图2:∵S 四边形ABCD =2S △ABD ,∴S 四边形ABCD =2××BD ×AO =6×2=12;(3)如图3,过点O 作OF ⊥BC ,∵旋转△GDO ,得到△G ′D 'O ,∴OG =OG ',且OF ⊥BC ,∴GF =G 'F ,∵OF ∥AB ,∴==,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'==,=.5.解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=8,∴BM+CM+CN+DN=8,∴BC+CD=8,∴BC=CD=4,故答案为4;(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE(SAS),∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)如图3,延长BA,CD交于G,∵∠BAM=60°,∠MAD=90°,∴∠BAD=150°,∴∠GAD=30°,∵AD=2,∴DG=1,AG=,∵∠DAN=15°,∴∠GAN=45°,∴AG=GN=,∴BG=2+,∴BC=2BG=4+2,CG=BG=2+3,∴CD=CG﹣DG=2+2,由(2)得,MN=BM+DN,∴△CMN的周长=CM+CN+MN=CN+DN+CM+BM=BC+CD=4+2+2+2=6+4.6.解:(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)在AB上截取AM=AD=3,过M作MN∥BC交AC于N,把△AMN绕A逆时针旋转得△ADE,连接CE,如图所示:则MN⊥AC,DE=MN,∠DAE=∠BAC,∴∠AED=∠ANM=90°,∵AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ==,∴BC:AC:AB=3:4:5,同(2)得:△ABD∽△ACE,∴==,∵MN∥BC,∴△AMN∽△ABC,∴=,∴MN=×AM=×3=,∵∠BAC=∠ADC=θ,∴∠DAE=∠ADC=θ,∴AE∥CD,∴∠CDE+∠AED=180°,∴∠CDE=90°,∴CE===,∴BD=CE=×=.7.解:(1)由题意知△ADE≌△AD′E,∴∠DAE=∠D′AE,∵D′点落在AB边上时,∠DAE+∠D′AE=90°,∴∠DAE=∠D′AE=45°,故答案为:45;(2)①如图2,由题意知∠ACD=∠ACD′,∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠BAC,∴∠ACD′=∠BAC,∴AF=FC;②设AF=FC=x,则BF=10﹣x,在Rt△BCF中,由BF2+BC2=CF2得(10﹣x)2+62=x2,解得x=6.8,即AF=6.8;(3)如图3,∵△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B、D′、E三点共线,又∵△ABD′∽△BEC,AD′=BC,∴△ABD′≌△BEC,∴BE=AB=10,∵BD′===8,∴DE=D′E=10﹣8=2;如图4,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,∵,∴△ABD″≌△BEC,∴BE=AB=10,∴DE=D″E=8+10=18.综上所知,DE=2或18.8.解:(1)∵,,(n+4)2≥0,∴m﹣4=0,n+4=0,∴m=4,n=﹣4,∴A(0,4),B(﹣4,0);(2)∵AC∥OB,∴∠C=∠CBO,∠CAF=∠BOF,∵AC=OB,∴△ACF≌△OBF(ASA),∴AF=OF=2,∵OA=OB,∠OAD=∠OBF,∠BOF=∠AOD,∴△BOF≌△AOD(ASA),∴OF=OD=2,∴BD=6,①当0≤t<3时,S=PD•OF=(6﹣2t)×2=6﹣2t;②当t>3时,S=PD•OF=(2t﹣6)×2=2t﹣6;(3)①当0≤t<3,如图2,∵AO=4,OD=2,∴AD=,∵BD×OA=AD×BE,∴BE=,∴DE=,∵四边形PDEG为菱形,∴DP=DE=EG=,∵D(2,0),∴P(2﹣,0),作EH⊥BD于H,∵BE×DE=BD×EH,∴EH=,∴HD=,∴OH=,∴E(,),∵EG∥OB,∴G与E的纵坐标相同,∴G(﹣,)②当t>3时,如图3,同理求得P(2+,0),G(+,).9.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°.∴∠BCD+∠DCG=∠GCE+∠DCG,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS).∴BG=DE;(2)解:①连接BE,如图2所示:由(1)可知:BG=DE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°,∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE,在△BCG和△BCE中,,∴△BCG≌△BCE(SAS),∴BG=BE,∵BG=BD=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°;②延长EC交BD于点H,过点G作GN⊥BC于N,如图3所示:在△BCE和△DCE中,,∴△BCE≌△BCG(SSS),∴∠BEC=∠DEC,∴EH⊥BD,BH=BD,∵BC=CD=,∴BD=BC=2,∴BE=2,BH=1,∴CH=1,在Rt△BHE中,由勾股定理得:EH===,∴CE=﹣1,∵∠BCG=135°,∴∠GCN=45°,∴△GCN是等腰直角三角形,∴GN=CG=(﹣1),=BC•GN=××(﹣1)=.∴S△BCG10.【观察与猜想】解:∵四边形ABCD是正方形,∴∠B=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠ACB=∠ACD=45°,由旋转的性质得:GC=AC,∠ACG=90°,∴∠ACB=∠GCD=45°,在△ABC和△GDC中,,∴△ABC≌△GDC(SAS),∴AB=GD,∠GDC=∠B=90°,∴DG∥BC,△CDG是等腰直角三角形,∴DG=CD=BC,∵点E与点D重合,点F与点C重合,∴EG=BF,EG∥BF;故答案为:EG=BF,EG∥BF;【探究与证明】证明:点E、F分别在CD、BC边上任意位置时,如图③所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;点E、F在CD、BC边的延长线上的任意位置时,如图④所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;【拓展与延伸】解:==k(k≠1)时,线段EG与BF的数量关系与位置关系仍然成立;理由如下:作GM⊥BC,交BC延长线于M,如图⑤所示:则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,∠B=∠GMF,由旋转的性质得:∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,∴△ABF∽△FMG,∴==,∵==k,∴==k,==k,∴FM=BC,GM=CE,∴BF=CM,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;故答案为:==k(k≠1).11.解:(1)AF=DE.理由如下:∵四边形OADC是正方形,∴OA=AD,∠DAE=∠AOF=90°,由题意得:AE=OF,在△AOF和△DAE中,,∴△AOF≌△DAE(SAS),∴AF=DE.(2)四边形HIJK是正方形.理由如下:如图①所示:∵H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,HI∥AF,HK∥ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△AOF≌△DAE,∴∠ADE=∠OAF,∵∠ADE+∠AED=90°,∴∠OAF+∠AED=90°,∴∠AGE=90°,∴AF⊥ED,∵HI∥AF,HK∥ED,∴HI⊥HK,∴∠KHI=90°,∴四边形HIJK是正方形.(3)存在,理由如下:∵四边形OADC为正方形,点D的坐标为(4,4),∴OA=AD=OC=4,∴C(4,0),∵点E为AO的中点,∴OE=2,E(0,2);分情况讨论:如图②所示,①当OC是以O,C、M、N为顶点的菱形的对角线时,OC与MN互相垂直平分,则M为CE 的中点,∴点M的坐标为(2,1),∵点M和N关于OC对称,∴N(2,﹣1);②当OC是以O,C、M、N为顶点的菱形的边时,若M在y轴的左侧时,∵四边形OCM'N'是菱形,∴OM'=OC=4,M'N'∥OC,∴△M'FE∽△COE,∴==2,设EF=x,则M'F=2x,OF=x+2,在Rt△OM'F中,由勾股定理得:(2x)2+(x+2)2=42,解得:x=,或x=﹣2(舍去),∴M'F=,FN=4﹣M'F=,OF=2+=,∴N'(,);若M在y轴的右侧时,作N''P⊥OC于P,∵ON''∥CM'',∴∠PON''=∠OCE,∴tan∠PON''==tan∠OCE==,设PN''=y,则OP=2y,在Rt△OPN''中,由勾股定理得:y2+(2y)2=42,解得:y=,∴PN''=,OP=,∴N''(,﹣);综上所述,存在点N使以O,C、M、N为顶点的四边形是菱形,点N的坐标为(2,﹣1)或(,)或(,﹣).12.(1)证明:∵四边形ABCD为矩形,∴BC=AD,CD=AB,∠C=∠ABC=∠A=∠ADC=90°,∵CE=AF,∴BC﹣CE=AD﹣AF,即BE=DF,在△DCE和△BAF中,,∴△DCE≌△BAF(SAS),∴∠CDE=∠ABF,∠CED=∠AFB,由折叠的性质得:∠CDE=∠C′DE,∠ABF=∠A′BF,∠CED=∠C′ED,∠AFB=∠A′FB,∵∠CDE+∠C′DE+∠HDF=90°,∠ABF+∠A′BF+∠GBE=90°,∠CED+∠C′ED+∠GEB=180°,∠AFB+∠A′FB+∠HFD=180°,∴∠HDF=∠GBE,∠GEB=∠HFD,在△BEG和△DFH中,,∴△BEG≌△DFH(ASA);(2)解:四边形A'HC'G的形状是矩形;理由如下:由折叠的性质得:∠C=∠DC′E=∠A=∠BA′F=90°,由(1)得:△BEG≌△DFH,∴∠BGE=∠DHF,∵∠BGE=∠A′GC′,∠DHF=∠A′HC′,∴∠A′GC′=∠A′HC′,∵∠DC′E+∠BA′F+∠A′GC′+∠A′HC′=90°+90°+∠A′GC′+∠A′HC′=360°,∴∠A′GC′+∠A′HC′=180°,∴∠A′GC′=∠A′HC′=90°,∴∠DC′E=∠BA′F=∠A′GC′=∠A′HC′=90°,∴四边形A'HC'G是矩形;(3)解:由(2)知:∠BGE=∠A′GC′=90°,∵tan∠EBG=,∴设EG=3x,则BG=4x,BE==5x,由折叠的性质得:CE=C′E=EG+C′G=3x+1,CD=AB=A′B=BG+A′G=4x+6,∴BC=CE+BE=3x+1+5x=8x+1,S矩形ABCD=CD•BC=4×CD•CE+2×EG•BG﹣A'G•C'G,即(4x+6)(8x+1)=4×(3x+1)(4x+6)+2×3x•4x﹣6×1,整理得:x2﹣2x=0,解得:x1=2,x2=0(不合题意舍去),∴CD=4×2+6=14,CB=8×2+1=17,∴S矩形ABCD=CD•BC=14×17=238.13.解:(1)作D'E⊥BC交BC的延长线于E,如图2所示:则∠E=90°,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,AD∥BC,CD=AB=2,∴∠ACD=∠BAC,∠DAC=∠ACB=30°,∵∠ACB=30°,∴BC=AB=2,∠ACD=∠BAC=60°,由旋转的性质得:CD'=CD=2,∠ACA'=30°,∴∠D'CE=180°﹣30°﹣30°﹣60°=60°,∴∠CD'E=30°,∴CE=CD'=1,D'E=CE=,∴S=BC×D'E=×2×=3;△BCD′(2)△OBD′是直角三角形,理由如下:连接OC,如图3所示:由旋转的性质得:CA'=CA,∠AD'C=∠ADC=90°,∠D'A'C=∠DAC=30°,∵O是AA′的中点,∴OC⊥AA',∴∠AOC=∠AOC=90°=∠ABC=∠AD'C,∴∠ABC+∠AOC=180°,∴A、B、C、O四点共圆,∴∠BOC=∠BAC=60°,同理;A、D'、C、O四点共圆,∴∠D'OC=∠D'A'C=30°,∴∠BOD'=90°,∴△BOD'是直角三角形;(3)若B、C、D'三点不共线,如图3所示:由(2)得:∠OBC=∠OAC,∠OD'C=∠OA'C,∠OAC=∠OA'C,∴∠OBC=∠OD'C,∵OB=OD,∴∠OBD'=∠OD'B,∴∠CBD'=∠CD'B,∴CB=CD',∵CD'=CD,∴BC=CD,这与已知相矛盾,∴B、C、D'三点共线;分两种情况:当点D'在BC的延长线上时,如图4所示:=90°;α=α1当点D'在边BC上时,如图5所示:=360°﹣90°=270°;α=α1故答案为:90°或270;时,△OBD′不存在时,分两种情况:当α=α2当O与D'重合时,如图6所示:∵CA'=CA,∠CAD'=∠CA'D'=30°,∴∠ACA'=120°,=360°﹣120°=240°;∴α=α2当O与B重合时,如图7所示:则AA'=2AB=4,∵CA=CA'=2AB=4=AA',∴△ACA'是等边三角形,∴∠A'CA=60°,=360°﹣60°=300°;∴α=α2故答案为:240°或300.14.解:(1)①如图1,∵CF∥AE ∴∠FCE=∠AEB,∠CFE=∠AEF∵△ABE翻折得到△AFE∴EF=BE=1,∠AEF=∠AEB∴∠FCE=∠CFE∴CE=EF=1∴m=BC=BE+CE=2∴m的值是2.②如图2,过点F作GH⊥AD于点G,交BC于点H ∴GH⊥BC∴∠AGF=∠FHE=90°∵四边形ABCD是矩形∴∠BAD=∠B=90°∴四边形ABHG是矩形∴GH=AB=2,AG=BH∵△ABE翻折得到△AFE∴EF=BE=1,AF=AB=2,∠AFE=∠B=90°∴∠AFG+∠EFH=∠AFG+∠FAG=90°∴∠EFH=∠FAG∴△EFH∽△FAG∴设EH=x,则AG=BH=x+1∴FG=2EH=2x∴FH=GH﹣FG=2﹣2x∴解得:x=∴AG=,FG=∵AD=BC=m∴DG=|AD﹣AG|=|m﹣|∴DF 2=DG 2+FG 2=(m ﹣)2+2≥,即可把DF 2看作关于m 的二次函数,抛物线开口向上,最小值为∵∴∵(m ﹣)2+2= 解得:m 1=,m 2=1 ∴根据二次函数图象可知,1≤m(2)如图3,过点B 1作MN ⊥AD 于点M ,交BC 于点N ∴MN ∥AB ,MN =AB =2∵AC = ∴sin ∠ACB =∵AD ∥BC ,点B 1在AC 上∴∠MAB 1=∠ACB∴sin ∠MAB 1= ∴∵点B 1到AD 的距离小于∴MB 1= 解得:∵m>0 ∴m>如图4,当E1落在边AD上,且B1在AC上时,m最大,此时,∠ACB=∠B1AE1=∠BAE∴tan∠ACB=tan∠BAE∴∴m=BC=2AB=4∴m的取值范围是<m≤415.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.16.(1)证明:过点F作FH⊥AB于H,如图1所示:则∠AHF=90°,∵AM平分∠DAH,∴∠FAH=45°,∴△AFH是等腰直角三角形,∴FH=AH,AF=AH=FH,∵AF=BE,∴FH=AH=BE,∴AH+AE=BE+AE,∴HE=AB=BC,在△FEH和△ECB中,,∴△FEH≌△ECB(SAS),∴CE=EF;(2)解:∵△FEH≌△ECB,∴∠FEH=∠ECB,∵在Rt△BCE中,∠ECB+∠CEB=90°,∴∠FEH+∠CEB=90°,∴∠CEF=90°,由(1)知,CE=EF,∴△CEF是等腰直角三角形,∠ECF=∠EFC=45°,把Rt△CDG绕点C逆时针旋转90°至Rt△CBN位置,如图2所示:则∠GCN=90°,CG=CN,DG=BN,∴∠NCE=∠GCN﹣∠GCE=45°,∴∠NCE=∠GCE,在△CEG和△CEN中,,∴△CEG≌△CEN(SAS),∴GE=NE=EB+BN=EB+DG,∴△AEG的周长=AE+GE+AG=AE+EB+DG+AG=AB+AD=2a;(3)解:设AE=x,由(1)得:FH=BE=a﹣x,则△EAF的面积=AE×FH=x(a﹣x)=﹣(x﹣)2+,∴当x=,即点E在AB边中点时,△EAF的面积最大,最大值为.17.解:(1)∵矩形ABCD,∴AB⊥BC,PA=PC;∵PE⊥AB,BC⊥AB,∴PE∥BC,∴∠APE=∠PCF;∵PF⊥BC,AB⊥BC,∴PF∥AB,∴∠PAE=∠CPF.∵在△APE与△PCF中,,∴△APE≌△PCF(ASA),∴PE=CF.在Rt△PCF中,=tan30°=,∴=,故答案为:.(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.0°~30°时∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴=,由(1)知,=,∴=.同理30°~60°时,=;(3)当60°<α<90°时,将顶点P在AC上移动且使=时,如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN,∴△APM∽△PCN,∴==,得CN=2PM.在Rt△PCN中,==tan30°=,∴=.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴==.18.解:(1)∵四边形DEFG是矩形,∴DG=BF,GF=BD,∠BDG=∠BFG=90°,∴∠ADG=∠CFG=90°,由题意得:BD=3t,则AD=6﹣3t,DG=4t,CF=8﹣4t,FG=BD=3t,当AG=CG时,由勾股定理得:AG2=AD2+DG2,CG2=FG2+FC2,∴AD2+DG2=FG2+FC2,即(6﹣3t)2+(4t)2=(3t)2+(8﹣4t)2,解得:t=1,即当AG=CG时,t=1秒;(2)分两种情况:①当0<t≤1时,如图1所示:S=矩形DEFG的面积=3t×4t=12t2;即S=12t2(0<t≤1);②当1<t≤2时,如图2所示:∵∠ADH=∠B=90°,∠A=∠A,∴△ADH∽△ABC,∴=,即=,解得:DH=8﹣4t,同理得:FM=6﹣3t,∴S=×6×8﹣×2×(6﹣3t)(8﹣4t)=﹣12t2+48t﹣24;即S=﹣12t2+48t﹣24(1<t≤2);(3)分三种情况:①如图1所示:由题意得:×6×8﹣12t2﹣×4t×(6﹣3t)﹣×3t×(8﹣4t)=6,解得:t=;②如图3所示:由题意得:×4t×(6﹣3t)+×3t×(8﹣4t)+3t×4t﹣×6×8=6,解得:t=;③如图4所示:由勾股定理得:AC===10,∴CD=6+10﹣3t=16﹣3t,同(2)得:△CDE∽△CAB,∴==,即==,解得:DE=(16﹣3t),CE=(16﹣3t),由题意得EF=(16﹣3t),∴C与F重合,∴×8×(16﹣3t)=6,解得:t=;综上所述,当△ACG的面积为6时,t的值为秒或秒或秒.19.解:(1)如图1,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形.∴PM=DC=24.∵QB=32﹣t,∴S=×24×(32﹣2t)=384﹣24t(0≤t<16);(2)由图可知:CM=PD=4t,CQ=2t.以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ.在Rt△PMQ中,PQ2=4t2+242,由PQ2=BQ2得4t2+242=(32﹣2t)2,解得t=;②若BP=BQ.在Rt△PMB中,BP2=(32﹣4t)2+242.由BP2=BQ2得:(32﹣4t)2+242=(32﹣2t)2即3t2﹣32t+144=0.由于△=﹣704<0,∴3t2﹣32t+144=0无解,∴PB≠BQ.③若PB=PQ.由PB2=PQ2,得4t2+242=(32﹣4t)2+242整理,得3t 2﹣64t +256=0.解得t 1=,t 2=16(舍去)综合上面的讨论可知:当t =秒或t =秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形.(3)设存在时刻t ,使得PQ ⊥BD .如图2,过点Q 作QE ⊥AD 于E ,垂足为E .∵AD ∥BC∴∠BQF =∠EPQ ,又∵在△BFQ 和△BCD 中∠BFQ =∠C =90°,∴∠BQF =∠BDC ,∴∠BDC =∠EPQ ,又∵∠C =∠PEQ =90°,∴Rt △BDC ∽Rt △QPE , ∴=,即=,解得t =9.所以,当t =9秒时,PQ ⊥BD .20.(1)【发现证明】证明:把△ABE 绕点A 顺时针旋转90°至△ADG ,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)【类比引申】①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),。
2019 初三中考数学复习三角形内角和定理专题复习练习1. 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125° B.120° C.140° D.130°2. 如图所示,∠A,∠1,∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠13. 如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3等于( )A.180° B.360° C.540° D.无法确定4. 如图,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )A.50° B.60° C.70° D.80°5. 如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110° B.80° C.70° D.60°6. 下面四个图形中,能判断∠1>∠2的是( )7. 如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数为( )A.53° B.63° C.73° D.83°8. 已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )A.30° B.35° C.40° D.45°9. 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )A.40° B.35° C.30° D.25°10. 如图,a,b,c,d互不平行,对它们截出的一些角的数量关系描述错误的是( )A.∠1+∠5+∠4=180° B.∠4+∠5=∠2C.∠1+∠3+∠6=180° D.∠1+∠6=∠211. 如图所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线.若∠1=30°,∠2=40°,则∠BEF =____度.12. 如图,已知∠1=100°,∠2=140°,那么∠3=______.13. 如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=____度.14. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.15.如图所示,∠A+∠B+∠C+∠D+∠E+∠F等于_______.16.在△ABC中,∠A∶∠B=2∶1,∠C=60°,则∠A=____°.17. 如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.18. 如果等腰三角形的一个外角为110°,求它的底角.19. 在三角形ABC 中,∠BAE =12∠BAC ,∠C>∠B ,且FD ⊥BC 于D 点.(1)试推出∠EFD ,∠B ,∠C 的关系;(2)当点F 在AE 的延长线上时,其余条件不变,你在题(1)推导的结论还成立吗?请直接写出结论.20. 如图,CE 是△ABC 外角∠ACD 的平分线,CE 与BA 的延长线相交于点E ,求证:∠BAC>∠B.21. 如图所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,试说明:∠BOC =90°+12∠A.参考答案1---10 DBBCC DBCAD11. 3512. 60°13. 4514. 30°15. 360°16. 8017. 解:在△ABN中,∠A+∠B+∠1=180°,在△CDP中,∠C+∠D+∠3=180°,在△EFM中,∠E +∠F+∠2=180°,∴∠A+∠B+∠1+∠C+∠D+∠E+∠F+∠3+∠2=540°,在△MNP中,∠5+∠4+∠6=180°,∴∠1+∠2+∠3=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=540°-(∠1+∠2+∠3)=360°18. 解:①当110°是顶角的外角时,则底角为110°×12=55°,②当110°是底角的外角时,则底角为180°-110°=70°,即它的底角是55°或70°19. 解:(1)∠EFD=90°-∠FED=90°-(∠B+∠BAE)=90°-∠B-12∠BAC=90°-∠B-12(180°-∠B-∠C)=90°-∠B-90°+12∠B+12∠C=12(∠C-∠B)(2)在(1)中推导的结论成立,∠EFD=12(∠C-∠B)20. 证明:∵∠BAC>∠ACE,∠DCE>∠B,又∠ACE=∠DCE,∴∠BAC>∠B21. 证明:∠BOC=180°-(∠OBC+∠OCB)=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A2019-2020学年数学中考模拟试卷一、选择题1.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第10个图案由( )个▲组成.A .30B .31C .32D .332.如图,矩形ABCD 中,AB =4,AD =6,E 为AD 中点,分别以B 、E 为圆心,以AB 、AE 为半径画弧,两弧交于点F ,连接AF 、BE ,则AF 的长为( )A.125B.135C.245D.53.如图,AC 是平行四边形ABCD 的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B =∠3;④∠1=∠3中某一条件时,平行四边形ABCD 是菱形,这个条件是A.①或②B.②或③C.③或④D.①或④4.如图,在等边ABC △中,已知6AB =,N 为AB 上一点,且2AN =,BAC ∠的平分线交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM MN +的最小值是( )A .8B .10C .D .5.下列运算中,正确的是( )A.B.C.D.6.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x =8 B .若这5次成绩的众数是8,则x =8 C .若这5次成绩的方差为8,则x =8 D .若这5次成绩的平均成绩是8,则x =87.下面所示各图是在同一直角坐标系内,二次函数y =2ax +(a+c )x+c 与一次函数y =ax+c 的大致图象.正确的( )A. B. C. D.8.在下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .9.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( ) A .16B .13C .23D .1410.下列图像中既不是中心对称图形又不是轴对称图形的是( )A. B.C. D.11.下列运算正确的是:( ) A .(a ﹣b )2=a 2﹣b 2B .a 10÷a 2=a 5C .(2a 2b 3)3=8a 6b 9D .2a 2•3a 3=6a 612.定义:a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是112-=﹣1,﹣1的差倒数是()111--=12,已知a 1=﹣13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,以此类推,a 2009的值为( ) A .﹣13B .34C .4D .43二、填空题13.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为:“直角抛物线”.如图,直线l:y=15x+b经过点M(0,14),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n) (n为正整数),依次是直线l上的点,第一个抛物线与x轴正半轴的交点A1(x1,0)和A2(x2,0),第二个抛物线与x轴交点A2(x2,0)和A3(x3,0),以此类推,若x1=d(0<d<1),当d为_____时,这组抛物线中存在直角抛物线.14.如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于12BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为_____.15.﹣6的相反数等于_____.16.如果样本x1,x2,x3,…,x n的平均数为5,那么样本x1+2,x2+2,x3+2,…x n+2的平均数是_____ 17.在计算器上,按照下面如图的程序进行操作:如表中的x与y分别是输入的6个数及相应的计算结果:上面操作程序中所按的第三个键和第四个键分别是_____、_____.18.使分式有意义的x的取值范围是_____.三、解答题19.如图,在平面直角坐标系中,已知△AOB,A(0,﹣3),B(﹣2,0).将△OAB先绕点B 逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.20.如图,在矩形ABCD中,AE平分∠BAC交BC于E,CF平分∠ACD交AD于F.(1)试说明四边形AECF为平行四边形;(2)探索:当矩形ABCD的边AB和BC满足什么数量关系时,四边形AECF为菱形,并说明理由.21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=______,n=______;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?22.点A(-1,0)是函数y=x2-2x+m2-4m的图像与x轴的一个公共点.(1)求该函数的图像与x轴的另一个公共点的坐标以及m的值;(2)将该函数图像沿y轴向上平移个单位后,该函数的图像与x轴只有一个公共点.23.如图,在矩形ABCD中,点E是BC边上的一点,且AE⊥BD,垂足为点F,∠DAE=2∠BAE.(1)求证:BF:DF=1:3;(2)若四边形EFDC的面积为11,求△CEF的面积.24.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了如下的统计图1和图2,请根据图中相关信息,解决下列问题:(Ⅰ)图1中m 的值为____________,共有____________名同学参与问卷调查; (Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)全校共有学生1500人,根据样本数据,估计该校学生一个月阅读2本课外书的人数约为多少? 25.在Rt ABC ∆中,90ACB ∠=,点D 与点B 在AC 同侧,DAC BAC ∠>∠,且DA DC =,过点B 作//BE DA 交DC 于点,E M 为AB 的中点,连接,MD ME .(1)如图1,当90ADC ∠=时,线段MD 与ME 的数量关系是 ;(2)如图2,当ADC 60∠=时,试探究线段MD 与ME 的数量关系,并证明你的结论; (3)如图3,当ADC α∠=时,求MEMD的值.【参考答案】*** 一、选择题二、填空题 13.1120、1320、32014.2 15.6 16.717.+,118.x≠1.三、解答题19.(1)详见解析;(2)139 4π+【解析】【分析】(1)根据旋转的性质,结合网格结构找出点A、O的对应点A1、O1,再与点B顺次连接即可得到△BO1A1;再根据平移的性质,结合网格结构找出点B、A1、O1的对应点B1、A2、O2,然后顺次连接即可得解;(2)结合图形不难看出,变换过程所扫过的面积为扇形BAA1,与梯形A1A2O2B的面积的和,然后根据扇形的面积公式与梯形的面积公式列式进行计算即可求解.【详解】(1)如图所示;(2)在Rt△AOB中,AB==∴扇形BAA1134π=,梯形A1A2O2B的面积=12×(2+4)×3=9,∴变换过程所扫过的面积=扇形BAA1的面积+梯形A1A2O2B的面积=134π+9.【点睛】本题考查了利用旋转变换与平移变换作图,以及扇形的面积计算,熟悉网格结构找出对应点的位置是解题的关键.20.(1)见解析;(2)当BC=时,四边形AECF为菱形.【解析】【分析】(1)先证明EAC FCA∠=∠,再利用两组对边分别平行的四边形是平行四边形得证.(2)逆向推理,当四边形AECF为菱形时,则有EA=EC,进而可得到∠EAC=∠ACE=30°,所以可知BC=.【详解】(1)证明:在矩形ABCD中,AD∥BC,AB∥CD,∴BAC DCA∠=∠ ,∵AE平分∠BAC,CF平分∠ACD,∴12EAC BAC∠=∠,12FCA DCA∠=∠,∴EAC FCA∠=∠,∴AE∥CF,又AF∥CE,∴四边形AECF为平行四边形.(2)当BC=时,四边形AECF为菱形.理由如下:在Rt△ABC中,BC=,则∠BAC=60°,∠BCA=30°,∵AE平分∠BAC,∴12EAC BAC∠=∠=30°,∴∠EAC=∠ACE=30°,∴EA=EC,又由(1)已证,四边形AECF为平行四边形,∴四边形AECF为菱形.即,当BC=时,四边形AECF为菱形.【点睛】本题考查了平行四边形的判定和菱形的判定,熟练掌握判定定理是解题关键.21.(1)100,35 ;(2)见解析;(3)800.【解析】【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案.【详解】解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35,故答案为:100,35;(2)网购人数为100×15%=15人,微信对应的百分比为40100×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人. 【点睛】本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 22.(1)另一个公共点的坐标是(3,0).m 1=1,m 2=3.(2)4. 【解析】 【分析】(1)求出二次函数对称轴,根据二次函数图像的对称性可得与x 轴的另一个交点坐标,将x =-1,y =0代入函数解析式可求出m ;(2)求出函数图像顶点坐标,根据函数图像平移规律即可得到平移方式. 【详解】解:(1)在函数y =x 2-2x +m 2-4m 中, ∵a =1,b =-2,∴该二次函数图像的对称轴是过点(1,0)且平行于y 轴的直线. ∵点A (-1,0)是函数y =x 2-2x +m 2-4m 的图像与x 轴的一个公共点, 根据二次函数图像的对称性,∴该函数与x 轴的另一个公共点的坐标是(3,0).将x =-1,y =0代入函数y =x 2-2x +m 2-4m 中,得0=3+m 2-4m . 解这个方程,得m 1=1,m 2=3. (2)函数解析式为:y =x 2-2x -3, 当x=1时,y=-4,∴将该函数图像沿y 轴向上平移4个单位后,该函数的图像与x 轴只有一个公共点. 【点睛】本题考查了二次函数的图像和性质,熟练掌握二次函数的对称性以及对称轴的求法是解题关键. 23.(1)详见解析;(2)2. 【解析】 【分析】(1)根据已知条件得到∠DAE =60°,∠BAE =30°,又AE ⊥BD ,得到tan 30BF AF ︒==,DFtan 60AF︒== (2)根据已知条件得到△BEF ∽△BDC ,求得∠ABF =60°,得到∠FBE=30°,求得BF BE 2=,BE BF =,由于BD =4BF,得到BE BD =,根据三角形的面积公式即可得到结论. 【详解】(1)证明:∵四边形ABCD 为矩形,∠DAE =2∠BAE , ∴∠DAE =60°,∠BAE =30°, 又∵AE ⊥BD ,∴tan 303BF AF ︒==,DF tan 60AF ︒== ∴BF :DF =1:3;(2)解:∵∠FBE =∠CBD ,∠BFE =∠DCB , ∴△BEF ∽△BDC , ∵∠BAE =30°, ∴∠ABF =60°, ∴∠FBE =30°,∴BF BE 2=,∴BE BF 3=, ∵BD =4BF ,∴BE BD =, ∴BFEBCD S S ∆=112BFE B E EF FDC S S S ∆+=四边形,∵S 四边形EFDC =11, ∴S △BEF=1, ∵6BFBE BC BD ==,BF BE 2=, ∴13=BE BC , ∴12BE EC =, ∴S △CEF =1×2=2.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,特殊角的三角函数值,三角形的面积,正确的识别图形是解题的关键.24.(Ⅰ)41,100;(Ⅱ)平均数是2.54, 众数为2,中位数为2;(Ⅲ)估计这1500名学生一个月阅读2本课外书的人数约为:615 【解析】 【分析】(1)用1减去1本,3本,4本所占的比例减去即可;用阅读一本书的人数除以它占的比例即可求出总数. (2)平均数=书的总数总人数,阅读课外书的本书的人数的本书即为众数,将涉及到的本书从小到大排列最中间的就是中位数;(3)用总人数乘以样本中“阅读2本课外书”人数所占百分比可得 . 【详解】(Ⅰ)∵m%=1-15%-10%-34%=41%, ∴m=41; 10÷10%=100, ∴总人数是100人; (Ⅱ)∵1014123431542.54100x ⨯+⨯+⨯+⨯==,∴这组数据的平均数是2.54.∵在这组数据中,2出现了41次,出现的次数最多, ∴这组数据的众数为2.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是2,有2222+=, ∴这组数据的中位数为2.(Ⅲ)估计这1500名学生一个月阅读2本课外书的人数约为:411500615100⨯=(本). 【点睛】本题考查的是条形统计图和扇形统计图的综合运用及平均数,众数和中位数的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键. 25.(1) MD ME =;(2)见解析:(3)tan 2α.【解析】 【分析】(1)首先延长EM 交AD 于F ,由BE ∥DA ,得出∠FAM=∠EBM ,AM=BM ,∠AMF=∠BME ,得出△AMF ≌△BME ,进而得出AF=BE ,MF=ME ,又由DA=DC ,∠ADC=90°,得出∠BED=∠ADC=90°,∠AC D=45°,再根据∠ACB=90°,得出∠ECB=∠EBC=45°,得出CE=BE=AF ,DF=DE ,得出DM ⊥EF ,DM 平分∠ADC ,∠MDE=45°,即可得出MD=ME.(2)首先延长EM 交AD 于F ,由BE ∥DA ,得出∠FAM=∠EBM ,AM=BM ,∠AMF=∠BME ,得出△AMF ≌△BME,进而得出AF=BE,MF=ME,又由DA=DC,∠ADC=60°,得出∠BED=∠ADC=60°,∠ACD=60°,再根据∠ACB=90°,得出∠ECB=∠EBC=30°,得出CE=BE=AF,DF=DE,得出DM⊥EF,DM平分∠ADC,∠MDE=30°,在Rt△MDE中,即可得出MD=(3)首先延长EM交AD于F,由BE∥DA,得出∠FAM=∠EBM,AM=BM,∠AMF=∠BME,得出△AMF≌△BME,进而得出AF=BE,MF=ME,再延长BE交AC于点N,得出∠BNC=∠DAC,又由DA=DC,得出∠DCA=∠DAC=∠BNC,∠ACB=90°,得出∠ECB=∠EBC,CE=BE=AF,DF=DE,从而得出DM⊥EF,DM平分∠ADC,在Rt△MDE中,即可得出MEMD的值.【详解】(1)MD ME=.如图,延长EM交AD于F,//BE DA FAM EBM∴∠=∠,,AM BM AMF BME=∠=∠,,AMF BME∴∆∆≌AF BE MF ME∴==,90DA DC ADC=∠=︒,,9045BED ADC ACD∴∠=∠=︒∠=︒,,9045ACB ECB∠=︒∴∠=︒,,45EBC BED ECB ECB∴∠=∠∠=︒=∠﹣,CE BE AF CE∴=∴=,,DA DC DF DE=∴=,,DM EF DM∴⊥,平分45ADC MDE∠∴∠=︒,,MD ME∴=,故答案为:MD ME=;(2)MD=,理由:如图,延长EM交AD于F,//BE DA FAM EBM∴∠=∠,AM BM AMF BME =∠=∠,,AMF BME AF BE MF ME ∴∆∆∴==≌,,,60DA DC ADC =∠=︒,,6060BED ADC ACD ∴∠=∠=︒∠=︒,,9030ACB ECB ∠=︒∴∠=︒,,30EBC BED ECB ECB ∴∠=∠∠=︒=∠﹣, CE BE AF CE ∴=∴=,,DA DC DF DE =∴=,, DM EF DM ∴⊥,平分ADC ∠,30MDE ∴∠=︒,在Rt MDE ∆中,3ME tan MDE MD ∠==,MD ∴=.(3)如图,延长EM 交AD 于F ,//BE DA FAM EBM ∴∠=∠,,AM BM AMF BME =∠=∠,,AMF BME ∴∆∆≌,AF BE MF ME ∴==,,延长BE 交AC 于点,N BNC DAC ∴∠=∠,DA DC DCA DAC =∴∠=∠,, BNC DCA ∴∠=∠,90ACB ECB EBC ∠=︒∴∠=∠,, CE BE AF CE DF DE ∴=∴=∴=,,,DM EF DM ∴⊥,平分ADC ∠, 2ADC MDE αα∠=∴∠=,,在Rt MDE ∆中,tan tan 2ME MDE MD α=∠=. 【点睛】此题考查了平行的性质,等角互换,三角函数的问题,熟练运用,即可解题.2019-2020学年数学中考模拟试卷一、选择题1.如图,数轴上A 、B 两点分别对应数a 、b ,则下列各式正确的是( )A.ab >0B.a+b >0C.|a|﹣|b|>0D.a ﹣b >02.如图所示,点A 是双曲线y=1x(x >0)上的一动点,过A 作AC ⊥y 轴,垂足为点C ,作AC 的垂直平分线双曲线于点B ,交x 轴于点D .当点A 在双曲线上从左到右运动时,四边形ABCD 的面积( )A .不变B .逐渐变小C .由大变小再由小变大D .由小变大再由大变小3.关于x 的不等式组-0,10x a x >⎧⎨->⎩的整数解共有3个,则关于x 的一元二次方程-ax 2+2(a+1)x+1-a=0根的存在情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根D .无法确定4.如图,△ABC 中,BD 平分∠ABC,BC 的垂直平分线交BC 于点E,交BD 于点F,连接CF.若∠ACF=2∠ABD,∠BFC=132°,则cosA 的值为 ( )A .12B C D .5.13的倒数是( ) A.13B.3C.3-D.13-6.下列命题错误的是( ) A .平分弦的直径垂直于弦 B .三角形一定有外接圆和内切圆 C .等弧对等弦D .经过切点且垂直于切线的直线必经过圆心7.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A.55°B.60°C.65°D.70°8.若55+55+55+55+55=25n ,则n 的值为( ) A .10B .6C .5D .39.如图,AB 是⊙O 的直径,点C 是圆上任意一点,点D 是AC 中点,OD 交AC 于点E ,BD 交AC 于点F ,若BF =1.25DF ,则tan ∠ABD 的值为( )A .23B .3C .35D .410.如图,在ABC ∆中,30ABC ∠=︒,10AB =,那么以A 为圆心、6为半径的⊙A 与直线BC 的位置关系是( )A .相交B .相切C .相离D .不能确定11.下列计算正确的是( ) A .3362a a a +=B .236()a a -=C .623a a a ÷=D .538a a a ⋅=12.如图所示几何体的左视图是( )A. B. C. D.二、填空题13.在梯形ABCD 中,AB ∥DC ,∠B =90°,BC =6,CD =2,tanA =34.点E 为BC 上一点,过点E 作EF ∥AD 交边AB 于点F .将△BEF 沿直线EF 翻折得到△GEF ,当EG 过点D 时,BE 的长为_____.14.不等式组29611x xx k+>+⎧⎨-<⎩的解集为2x<,则k的取值范围为_____.15.方程3223x x+=--的解是_____.16.二次函数y=12(x-2)2+3的顶点坐标是_____.17.从-2,-1,0,1这四个数中任取两个不同的数作为一次函数y=kx+b的一次项系数k 和常数项b.那么一次函数y=kx+b图象不经过第三象限的概率为 ____.18.计算的结果是_____.三、解答题19.如果关于x的一元二次方程ax2+bx+c=0有2个实数根,且其中一个实数根是另一个实数根的3倍,则称该方程为“立根方程”.(1)方程x2﹣4x+3=0 立根方程,方程x2﹣2x﹣3=0 立根方程;(请填“是”或“不是”)(2)请证明:当点(m,n)在反比例函数y3x=上时,关于x的一元二次方程mx2+4x+n=0是立根方程;(3)若方程ax2+bx+c=0是立根方程,且两点P(3,2)、Q(6,2)均在二次函数y=ax2+bx+c上,求方程ax2+bx+c=0的两个根.20.在△ABC中,AC=4,BC=2,点D在射线AB上,在构成的图形中,△ACD为等腰三角形,且存在两个互为相似的三角形,则CD的长是_____.21.先化简,再求值:22222244x y x yx y x xy y--÷-+++,其中2x=-,y=12xx-1.22.如图,∠BCA=90°,点O在△ABC的斜边AB上,以OB为半径的⊙O经过点B,与AC相切于点D,连结BD.(1)求证;BD平分∠ABC;(2)若∠ABC=60°,OB=2,计算△ABC的面积.23.111(9)(9)339x x x x⎡⎤---=-⎢⎥⎣⎦24.服装店准备购进甲乙两种服装共100件,费用不得超过7500元.甲种服装每件进价80元,每件售价120元;乙种服装每件进价60元,每件售价90元. (Ⅰ)设购进甲种服装x 件,试填写下表. 表一表二(Ⅱ)给出能够获得最大利润的进货方案,并说明理由. 25.已知AB 是O 的直径,点C ,D 是O 上的点,50A ∠=,70B ∠=,连接DO ,CO ,DC .(Ⅰ)如图①,求OCD ∠的大小;(Ⅱ)如图②,分别过点C ,D 作OC ,OD 的垂线,相交于点P ,连接OP ,交CD 于点M .已知O的半径为2,求OM 及OP 的长.【参考答案】*** 一、选择题二、填空题 13.6512. 14.k≥115.135x =16.(2,3) 17.13. 18.3 三、解答题19.(1)是,不是;(2)见解析;(3)x 1=274, x 2=94【解析】 【分析】(1)分别解方程x 2-4x+3=0与x 2-2x-3=0,求出它们的根,根据“立根方程”的定义,判断它们是不是立根方程.(2)由点(m ,n )在反比例函数y=3x的图象上,得到mn=3,解方程mx 2+4x+n=0求得x 1与x 2的值,判断是不是立根方程.(3)由方程ax 2+bx+c=0是立根方程,得到x 1=3x 2,由纵坐标相同的两点P (3,2)、Q (6,2)都在抛物线y=ax 2+bx+c 上,根据抛物线的对称轴得到x 1+x 2=9,从而求出方程的两个根. 【详解】解:(1)解方程x 2-4x+3=0,得:x 1=3,x 2=1, ∵x 1=3x 2,∴方程x 2-4x+3=0是立根方程; 解方程x 2-2x-3=0,得:x 1=3,x 2=-1, ∵x 1=-3x 2,∴方程x 2-2x-3=0不是立根方程. 故答案为:是,不是.(2)∵点(m,n )在反比例函数3y x=上,所以3mn =用求根公式解方程得:x ==x 1=﹣3m ,x 2=﹣1m, ∴x 1=3x 2,当点(m ,n )在反比例函数y =3x上时,一元二次方程mx 2+4x+n =0是立根方程; (3)∵方程ax 2+bx+c =0是立根方程,∴设x 1=3x 2, ∵P (3,2),Q (6,2)在抛物线y =ax 2+bx+c 上,∴抛物线的对称轴123622x x x ++==, ∴x 1+x 2=9,∴3x 2+x 2=9,∴x 2=94,∴x 1=3x 2=274.所以方程ax 2+bx+c =0的两个根为:x 1=274, x 2=94【点睛】本题考查了根与系数的关系,根的判别式,反比例函数图形上点的坐标特征,二次函数图形上点的坐标特征,正确的理解“立根方程”的定义是解题的关键.20或2【解析】【分析】分两种情形:①如图1中,当点D在线段AB上,DC=AD,且△BCD∽△BAC时,设CD=x,BD=y.②如图2中,当点D在AB的延长线上时,AC=AD=4,△DCB∽DAC.设CD=x,BD=y,分别构建方程组求解.【详解】①如图1中,当点D在线段AB上,DC=AD,且△BCD∽△BAC时,设CD=x,BD=y,则有:BC CD BD AB AC BC==,∴224y xx y==+,解得:x y∴CD.②如图2中,当点D在AB的延长线上时,AC=AD=4,△DCB∽DAC.设CD=x,BD=y,则:CD BC DB DA AC DC==,∴244x yx ==,解得x=2,y=1,∴CD=2,综上所述,满足条件的CD的值为3或2.【点睛】本题考查了相似三角形的性质,根据相似三角形的性质得到方程组是解题的关键,学会用分类讨论的思想思考问题.21.﹣xx y+;4﹣.【解析】 【分析】此题考查分式化简求值,解题关键在于将x ,y 的值代入化简后的式子求值. 【详解】原式=2x y x y -+×2(2)()()x y x y x y +-+﹣2=﹣x x y +;当x =2,y =﹣1时,4﹣.【点睛】本题考查分式先化简再求值,解题关键在于分母有理化时要仔细.22.(1)详见解析;(2 【解析】 【分析】(1)连接OD ,由AC 与圆相切,得到∠ODA 为直角,再由∠C 为直角,利用同位角相等两直线平行,得到OD 与BC 平行,由两直线平行内错角相等,及等边对等角,等量代换即可得证;(2)由∠ABC 的度数,求出∠A 的度数,根据OD 的长,利用锐角三角函数定义求出OA 的长,由OA+OB 求出AB 的长,再利用锐角三角函数定义求出BC 与AC 的长,即可确定出三角形ABC 面积. 【详解】解:(1)如图,连结OD ,∵∠BCA =90°,点O 在△ABC 的斜边AB 上,以OB 为半径的⊙O 经过点B ,与AC 相切于点D ,∴∠ODA =∠C =90°,OB =OD , ∴BC ∥OD ,∠OBD =∠ODB , ∴∠CBD =∠ODB , ∴∠OBD =∠CBD , ∴BD 平分∠ABC ;(2)∵∠ABC =60°,OB =2,且∠ODA =∠C =90°. ∴∠A =90°﹣60°=30°,OD =OB =2. ∴OA =2sin30︒=4, ∴AB =2+4=6,∴BC =6sin30°=3,AC =6cos30°=,∴S △ABC =132⨯⨯ .【点睛】此题考查了切线的性质,含30度直角三角形的性质,圆周角定理,熟练掌握切线的性质是解本题的关键. 23.x=0 【解析】 【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答. 【详解】111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦193(3)93x x x x --+=- 9299x x x --=-60x =0x =【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘.24.(Ⅰ)80x ,4800,600060x -,400,40x ,300030x -;(Ⅱ)购进甲种服装75件,乙种服装25件时,可获得最大利润,理由见解析 【解析】 【分析】(1)甲服装的件数乘以进货价即为购进甲种服装所用费用,乙的进货价乘以(100-甲的件数)即为购进乙种服装所用费用;利润=(售价-进货价)×件数;(2)设购进甲种服装x 件,根据费用不得超过7500元,求出x 的范围,然后求出利润关于x 的函数关系式,再由函数的性质求出最值即可. 【详解】 (Ⅰ)表一表二(Ⅱ)设购进甲种服装件,由题意可知:8060(100)7500x x +-≤解得:75x ≤.购进甲种服装x 件,总利润为w 元,075x ≤≤,4030(100)103000w x x x =+-=+,∵100>,w 随x 的增大而增大, ∴当75x =时,w 有最大值,则购进甲种服装75件,乙种服装25件时,可获得最大利润. 【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.25.(Ⅰ)60OCD ∠=︒;(Ⅱ)=OM OP =. 【解析】 【分析】(Ⅰ)先根据等腰三角形的性质和三角形的内角和定理得出AOD ∠和BOC ∠的度数,从而求出DOC 60∠=︒,然后证出COD 是等边三角形,即可得出OCD ∠的大小.(Ⅱ)先根据切线长定理得出OP CD ⊥,等腰三角形的性质得出COP 30∠=︒,再利用解直角三角形分别求出OM 和OP 即可. 【详解】解:(Ⅰ)∵OA OD =, ∴ODA A 50∠∠==︒,∴AOD 180A ODA 180505080∠∠∠=︒--=︒-︒-︒=︒. ∵OB OC =,∴OCB B 70∠∠==︒.∴BOC 180B OCB 180707040∠∠∠=︒--=︒-︒-︒=︒. ∵AB 是O 的直径,∴DOC 180AOD BOC 180804060∠∠∠=︒--=︒-︒-︒=︒. ∵OC OD =,∴COD 是等边三角形. ∴OCD 60∠=︒;(Ⅱ)∵分别过点C,D 作OC,OD 的垂线,相交于点P , ∴PC,PD 是O 的切线,∴PC PD,DPO CPO ∠∠==.∴OP CD ⊥.在Rt OCM 中,OMsin OCD OC∠=,∴OM OCsin OCD 2sin602∠==︒==∵OC OD,OP CD =⊥,∴11COP COD 603022∠∠==⨯︒=︒ 在Rt OCP 中,OCcos COP OP∠=.∴OC 2OP cos COP cos30∠====︒. 【点睛】本题主要考查了等腰三角形的性质、解直角三角形、切线的判定以及切线长定理等知识,熟练掌握相关的定理定义是解题的关键.。
中考数学复习专题第四讲情景应用问题【要点梳理】情境应用问题是以现实生活为背景,取材新颖,立意巧妙,重在考查阅读理解能力和数学建模能力,让学生在阅读理解的基础上,将实际问题转化为数学问题.其主要类型有代数型(包括方程型、不等式型、函数型、统计型)和几何型两大类.解决代数型应用问题:关键是审题,弄清关键词句的含义;重点是分析,找出问题中的数量关系,并将其转化为数学式子,进行整理、运算、解答.解决几何型应用问题:一般是先将实际问题转化为几何问题,再运用相关的几何知识进行解答,要注重数形结合,充分利用“图形”的直观性和“数”的细微性.【学法指导】(1)方程(组)、不等式、函数型情境应用题:解决这类问题的关键是针对背景材料,设定合适的未知数,找出相等关系,建立方程(组)、不等式、函数型模型来解决;(2)统计概率型应用题:解决这类问题:①要能从多个方面去收集数据信息,特别注意统计图表之间的相互补充和利用;②通过对数据的整理,能从统计学角度出发去描述、分析,并作出合理的推断和预测;(3)几何型情境应用题:解决这类问题的关键是在理解题意的基础上,对问题进行恰当地抽象与概括,建立恰当的几何模型,从而确定某种几何关系,利用相关几何知识来解决.几何求值问题,当未知量不能直接求出时,一般需设出未知数,继而建立方程(组),用解方程(组)的方法去求结果,这是解题中常见的具有导向作用的一种思想.【考点解析】方程型情境应用题(2017湖北宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×=36(亿元);(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据题意,得:,解得:,∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,由题意,得:20(1﹣y)2=5,解得:y1=0.5,y2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.不等式型情境应用题(2017山东聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,根据题意列出方程组,求出方程组的解得到x与y的值,即可得到结果;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m ﹣90)台,根据“两种电脑的总费用不超过预算438万元”列出不等式,求出不等式的解集.【解答】解:(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,依题意得:,解得,经检验,方程组的解符合题意.答:该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m ﹣90)台,依题意得:0.19m+0.3×(m﹣90)≤438,解得m≤1860.所以m﹣90=×1860﹣90=282(台).答:能购进的学生用电脑1860台,则能购进的教师用笔记本电脑为282台.统计与概率型情境应用题(2017山东临沂)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表百分比节目人数(名)最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=50,a=20,b=30;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.【分析】(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;(2)根据a的值,补全条形统计图即可;(3)由中国诗词大会的百分比乘以1000即可得到结果.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.【点评】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.几何型情境应用题(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.【点评】此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道基础题目.【真题训练】训练一:(2017重庆B)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.训练二:(2017甘肃天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?训练三:(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)训练四:(2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF= CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.训练五:(2017湖北随州)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.参考答案:训练一:(2017重庆B)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.训练二:(2017甘肃天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y 万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.训练三:(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【考点】X6:列表法与树状图法;V5:用样本估计总体;VC:条形统计图.【专题】11 :计算题.【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×18=90,15+27+18+36估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率=26=1 3.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\训练四:(2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF= CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).训练五:(2017湖北随州)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.【考点】SO:相似形综合题.【分析】(1)证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,则CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,则可根据“AAS”判断△CDM≌△FEM,所以DM=EM;证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到==1,所以DM=EM;(2)由△CDM≌△FEM得到CM=FM,设AD=a,CM=b,则FM=b,EF=AB=a,再证明四边形ABCD为正方形得到AC=a,接着证明△ANF为等腰直角三角形得到NF=a+b,则NE=NF+EF=2a+b,然后计算的值;(4)由于==+=k,则=,然后表示出==•+1,再把=代入计算即可.【解答】解:(1)如图1,证法一:∵四边形ABCD为菱形,∴AB=CD,AB∥CD,∵四边形ABEF为平行四边形,∴AB=EF,AB∥EF,∴CD=EF,CD∥EF,∴∠CDM=∠FEM,在△CDM和△FEM中,∴△CDM≌△FEM,∴DM=EM,即点M是DE的中点;证法二:∵四边形ABCD为菱形,∴DH=BH,∵四边形ABEF为平行四边形,∴AF∥BE,∵HM∥BE,∴==1,∴DM=EM,即点M是DE的中点;(2)∵△CDM≌△FEM,∴CM=FM,设AD=a,CM=b,∵∠ABE=135°,∴∠BAF=45°,∵四边形ABCD为菱形,∴∠NAF=45°,∴四边形ABCD为正方形,∴AC=AD=a,∵AB∥EF,∴∠AFN=∠BAF=45°,∴△ANF为等腰直角三角形,∴NF=AF=(a+b+b)=a+b,∴NE=NF+EF=a+b+a=2a+b,∴===;(4)∵==+=k,∴=k﹣,∴=,∴==•+1=•+1=.。
专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯ B .8710m -⨯C .80.710m -⨯D .9710m -⨯【答案】D【分析】由题意易得nm 0.000000007m 7=,然后根据科学记数法可直接进行求解. 【详解】解:由题意得:nm 0.000000007m 7=, ∴7nm 用科学记数法表示为9710m -⨯;故选D .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =-C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化市·中考真题)定义12a b a b ⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可.【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+故选:B . 【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时 B .1.6小时C .1.8小时D .2小时【答案】C【分析】设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【详解】解:设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:()1803803x xxx-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤- B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】解:方程433x kx x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+≤,∴12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0, 经检验,m=0是原方程的解,并且满足m 2-2m≥0,当m 2-2m <0时,m -3=-6,解得m=-3,不满足m 2-2m <0,舍去.故输入的m 为0.故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3 B .4C .5D .6【答案】B【分析】将2x =代入原方程,即可求出k 值. 【详解】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.20.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 21.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5 B .5- C .2-D .2【答案】B【分析】利用分式值为零的条件可得50x +=,且20x -≠,再解即可. 【详解】解:由题意得:50x +=,且20x -≠,解得:5x =-,故选:B .【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.22.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 23.(2020·河北中考真题)若ab ,则下列分式化简正确的是( )A .22a ab b+=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【详解】∵a≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( )A .1x x+B .1x x -C .1x x-D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【详解】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B【分析】将所给分式的分母配方化简,再利用分式加减法化简,据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111xx x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②.故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯ B .9710m -⨯C .80.710m -⨯D .10710m -⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】7nm 用科学记数法表示为9710m -⨯.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =,把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 28.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【详解】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为xb小时, 则上、下山的平均速度22xabxxa b ab=++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)【答案】C【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(2019·广东中考真题)定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25【答案】B【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-,则25m =-,经检验,25m =-是方程的解,故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 二、填空题32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可.【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键. 38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【详解】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x -(x -2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【详解】解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+()()yx y x y x y y +=⋅+-1x y=-,故答案为:1x y -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).【答案】()12121n n n ++-+【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+,故答案为:21(1)21n n n a n ++-=+ 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 【答案】1m n -+,13【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=()2m n m n m m ⎡⎤++÷-⎢⎥⎢⎥⎣⎦=()2m n m m m n ⎡⎤+⨯-⎢⎥+⎢⎥⎣⎦=1m n -+,∵m+n=-3,代入,原式=13. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.【答案】66111.2x x+= 【分析】设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可. 【详解】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x +=,故答案为66111.2x x+=, 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数. 【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可.【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式=== 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值.【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5, ∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解。
2019年中考数学精品专题复习第一章 数与式第一讲 实数及有关概念★★★核心知识回顾★★★知识点一、实数的分类 1.按实数的定义分类:⎧⎧⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎨⎪⎪⎨⎪⎪⎪⎩⎭⎪⎪⎪⎩⎪⎩整数有限小数或无限循环小数有理数实数:无限不循环小数 2.按实数的正负分类:⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正实数正无理数实数零负有理数负实数知识点二、实数的基本概念和性质1.数轴:规定了 、 、 的直线叫做数轴,实数和数轴上的点是一一对应的。
2.相反数:(1)只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ; (2)a+b=0⇔a 、b 互为 ;(3)在数轴上,表示相反数的两个点位于原点两侧,且到原点的距离 。
3.倒数:(1)乘积为 的两个数互为倒数,用数学语言表述为:1ab =,则a ,b 互为 ; (2)1和 的倒数还是它本身, 没有倒数。
4.绝对值:(1)一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值。
(2)(0)||0(0)(0)a a a a >⎧⎪==⎨⎪<⎩(3)因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 和 。
知识点三、平方根、算术平方根、立方根 1.平方根: (1)一般地,如果一个数的 等于a ,那么这个数就叫做a 的平方根或二次方根,记作 ; (2)正数的平方根有两个,它们互为 ,0的平方根为 , 没有平方根。
2.算术平方根:(1)一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,记作 ;(2)正数的算术平方根为 ,0的算术平方根为 。
3.立方根: (1)一般地,如果一个数的立方等于a ,那么这个数就叫做a 的立方根或三次方根,记作 ; (2)正数的立方根为 , 0的立方根为 ,负数立方根为 ;每个实数有且只有一个立方根。
知识点四、科学记数法科学记数法:把一个较大或较小的数写成写成10na ⨯的形式(其中a 大于或等于1且小于10,n 是正整数),使用的是科学记数法。
专题2.1 方程一、单选题1.【北京市2018年中考数学试卷】方程组的解为A. B. C. D.【答案】D【解析】分析:根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.详解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.点睛:考查方程组的解的概念,能同时满足方程组中每个方程的未知数的值,叫做方程组的解.2.【山东省东营市2018年中考数学试题】小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19 B. 18 C. 16 D. 15【答案】B点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.【湖南省湘西州2018年中考数学试卷】若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A. 1 B.﹣3 C. 3 D. 4【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.4.【云南省昆明市2018年中考数学试题】关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m 的取值范围是()A. m<3 B. m>3 C.m≤3 D.m≥3【答案】A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m 的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选:A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.【广西钦州市2018年中考数学试卷】某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. 80(1+x)2=100 B. 100(1﹣x)2=80 C. 80(1+2x)=100 D. 80(1+x2)=100【答案】A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.6.【四川省眉山市2018年中考数学试题】我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A. 8% B. 9% C. 10% D. 11%【答案】C点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.【湖南省怀化市2018年中考数学试题】一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km 7.所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.= B.= C.= D.=【答案】C点睛:此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.8.【云南省昆明市2018年中考数学试题】甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.9.【黑龙江省哈尔滨市2018年中考数学试题】方程的解为()A. x=﹣1 B. x=0 C. x= D. x=1【答案】D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10.【山东省淄博市2018年中考数学试题】“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【答案】C点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选:A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.【湖南省张家界市2018年初中毕业学业考试数学试题】若关于的分式方程的解为,则的值为( )A. B. C. D.【答案】C点睛:此题主要考查了分式方程的解,正确解方程是解题关键.13.【台湾省2018年中考数学试卷】若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A. 24 B. 0 C.﹣4 D.﹣8【答案】A【解析】分析:利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.详解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.点睛:本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.14.【新疆自治区2018年中考数学试题】某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A. B. C. D.【答案】B点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.15.【湖南省常德市2018年中考数学试卷】阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A. B. C. D.方程组的解为【答案】C【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得.【详解】A、D==2×(-2)-3×1=﹣7,故A选项正确,不符合题意;B、D x==﹣2﹣1×12=﹣14,故B选项正确,不符合题意;C、D y==2×12﹣1×3=21,故C选项不正确,符合题意;D、方程组的解:x==2,y==﹣3,故D选项正确,不符合题意,故选C.【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.16.【广西壮族自治区桂林市2018年中考数学试题】若,则x,y的值为()A. B. C. D.【答案】D点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17.【浙江省台州市2018年中考数学试题】甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5 B. 4 C. 3 D. 2【答案】B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.18.【河北省2018年中考数学试卷】有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A. B.C. D.【答案】A【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.19.【湖南省邵阳市2018年中考数学试卷】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人【答案】A【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20【湖北省恩施州2018年中考数学试题】.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元【答案】C【解析】分析:设两件衣服的进价分别为x、y元,根据利润=销售收入-进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240-两件衣服的进价后即可找出结论.详解:设两件衣服的进价分别为x、y元,根据题意得:120-x=20%x,y-120=20%y,解得:x=100,y=150,∴120+120-100-150=-10(元).故选:C.点睛:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题22.【上海市2018年中考数学试卷】方程组的解是_____.【答案】,【解析】【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【详解】,②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为,.【点睛】本题考查了解二元二次方程组,根据方程组的结构特点灵活选取合适的方法求解是关键.这里体现的消元与转化的数学思想.23.【湖南省长沙市2018年中考数学试题】已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】2点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.24.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【详解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1,故答案为:1.【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.25.【山东省聊城市2018年中考数学试题】已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是_____.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.26.【湖南省邵阳市2018年中考数学试卷】已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是_____.【答案】0【解析】【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为:0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax2+bx+c=0(a≠0)的两根之和等于﹣、两根之积等于是解题的关键.27.【山东省烟台市2018年中考数学试卷】已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是_____.【答案】3<m≤5.点睛:本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.28.【江苏省淮安市2018年中考数学试题】若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=_____.【答案】4【解析】分析:把x与y的值代入方程计算即可求出a的值.详解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.点睛:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.29.【湖北省襄阳市2018年中考数学试卷】我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是_____元.【答案】53【解析】【分析】设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解方程组即可得出结论.【详解】设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:,故答案为:53.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是解题的关键.30.【四川省内江市2018年中考数学试题】已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b (x+1)+1=0的两根之和为__________.【答案】1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.31.【四川省内江市2018年中考数学试题】关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.【答案】k≥﹣4【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+4x-k=0有实数根,∴△=42-4×1×(-k)=16+4k≥0,解得:k≥-4.故答案为:k≥-4.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.32.【四川省内江市2018年中考数学试卷】已知关于的方程的两根为,,则方程的两根之和为___________.【答案】1【解析】分析:设t=x+1,则方程a(x+1)2+b(x+1)+1=0化为at2+at+1=0,利用方程的解是x1=1,x2=2得到t1=1,t2=2,然后分别计算对应的x的值可确定方程a(x+1)2+b(x+1)+1=0的解.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.33.【四川省内江市2018年中考数学试】关于的一元二次方程有实数根,则的取值范围是__________.【答案】k≥﹣4.点睛:此题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.34.【山东省威海市2018年中考数学试题】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__.【答案】44﹣16.【解析】分析:图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得:,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6+6)2=44﹣16,故答案为:44﹣16.点睛:本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.35.【山东省威海市2018年中考数学试题】关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.【答案】m=4.点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.36.【湖南省张家界市2018年初中毕业学业考试数学试题】关于x的一元二次方程有两个相等的实数根,则______.【答案】【解析】分析:根据题意可得△=0,进而可得k2-4=0,再解即可.详解:由题意得:△=k2-4=0,解得:k=±2,故答案为:±2.点睛:此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.37.【新疆自治区2018年中考数学试题】某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是_____元.【答案】4详解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.38.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.39.【山东省聊城市2018年中考数学试卷】已知关于的方程有两个相等的实根,则的值是__________.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.三、解答题40.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.41.【北京市2018年中考数学试卷】关于的一元二次方程.(1)当时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的,的值,并求此时方程的根.【答案】(1)原方程有两个不相等的实数根.(2),,.【解析】分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(1)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.42.【湖北省随州市2018年中考数学试卷】己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若=﹣1,求k的值.【答案】(1)k>﹣;(2)k=3.【解析】【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合=﹣1找出关于k的分式方程.43.【湖北省孝感市2018年中考数学试题】已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.44.【山东省东营市2018年中考数学试题】关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【答案】(1)sinA=;(2)△ABC的周长为或16.【解析】分析:(1)利用判别式的意义得到△=25sin2A-16=0,解得sinA=;(2)利用判别式的意义得到100-4(k2-4k+29)≥0,则-(k-2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.详解:(1)根据题意得△=25sin2A-16=0,∴sin2A=,∴sinA=±,∵∠A为锐角,∴sinA=;分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5,∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=2.∴△ABC的周长为10+2;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴AD=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为10+2或16.点睛:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.45.【湖北省黄石市2018年中考数学试卷】已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.【答案】(1)m<1;(2)0.(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.点睛:本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的关系的内容和根的判别式的内容是解此题的关键.46.【江苏省盐城市2018年中考数学试题】一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价。
中考数学复习专题训练精选试题及答案目录实数专题训练 (2)实数专题训练答案 (4)代数式、整式及因式分解专题训练 (5)代数式、整式及因式分解专题训练答案 (6)分式和二次根式专题训练 (7)分式和二次根式专题训练答案 (8)一次方程及方程组专题训练 (9)一次方程及方程组专题训练答案 (11)一元二次方程及分式方程专题训练 (11)一元二次方程及分式方程专题训练答案 (13)一元一次不等式及不等式组专题训练 (13)一元一次不等式及不等式组专题训练答案 (15)一次函数及反比例函数专题训练 (15)一次函数及反比例函数专题训练答案 (17)二次函数及其应用专题训练 (18)二次函数及其应用专题训练答案 (20)立体图形的认识及角、相交线与平行线专题训练 (20)立体图形的认识及角、相交线与平行线专题训练答案 (22)三角形专题训练 (23)三角形专题训练答案 (25)多边形及四边形专题训练 (25)多边形及四边形专题训练答案 (27)圆及尺规作图专题训练 (28)圆及尺规作图专题训练答案 (30)轴对称专题训练 (30)轴对称专题训练答案 (32)平移与旋转专题训练 (33)平移与旋转专题训练答案 (35)相似图形专题训练 (35)相似图形专题训练答案 (37)图形与坐标专题训练 (38)图形与坐标专题训练答案 (40)图形与证明专题训练 (40)图形与证明专题训练答案 (42)概率专题训练 (42)概率专题训练答案 (44)统计专题训练 (45)统计专题训练答案 (47)实数专题训练一、填空题:(每题 3 分,共 36 分)1、-2 的倒数是____。
2、4 的平方根是____.3、-27 的立方根是____。
4、-2 的绝对值是____。
5、2004年我国外汇储备3275。
34亿美元,用科学记数法表示为____亿美元。
6、比较大小:-____-。
7、近似数0。
020精确到____位,它有____个有效数字.8、若 n 为自然数,那么(-1)2n+(-1)2n+1=____.9、若实数 a、b 满足|a-2|+( b+)2=0,则 ab=____.10、在数轴上表示 a 的点到原点的距离为 3,则 a-3=____。
专题复习(四) 多结论判断题类型1 代数多结论判断题解这类多结论判断题,主要有两种方法:一是直接由条件到结论的判断,二是用排除法解答(有些此类题根本就不能正面解答),在用排除法时,经常用到:特殊图形排除法、反例排除法、概念辨析排除法、特值排除法和验证排除法等.解答选择题时,恰当的选用排除法能达到事半功倍的效果.已知函数y =的图象如图所示,点P 是y 轴负半轴上一动点,过点P 作y 轴的垂线交图象于A ,B 两点,连接OA ,OB.下列结论:①若点M 1(x 1,y 1),M 2(x 2,y 2)在图象上,且x 1<x 2<0,则y 1<y 2; ②当点P 坐标为(0,-3)时,△AOB 是等腰三角形; ③无论点P 在什么位置,始终有S △AOB =7.5,AP =4BP ;④当点P 移动到使∠AOB=90°时,点A 的坐标为(26,-6). 其中正确的结论个数为(C )A .1B .2C .3D .4解析:①由图象可知,当x 1<x 2<0时,函数y 随x 的增大而减小,∴y 1>y 2,故①错误. ②∵P(0,-3),∴B(-1,-3),A(4,-3). ∴AB=5,OA =32+42=5.∴AB=AO. ∴△AOB 是等腰三角形.故②正确. ③设P(0,m),则B(3m ,m),A(-12m ,m),∴BP=-3m ,AP =-12m.∴AP=4BP.∴S AOB =S △OPB +S △OPA =32+122=7.5,故③正确.④设P(0,m),则B(3m ,m),A(-12m ,m).∴BP =-3m ,AP =-12m,OP =-m.∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°. ∴∠BOP=∠OAP.∴△OPB∽△APO. ∴OP AP =PB OP,即OP 2=PB·PA. ∴m 2=-3m ·(-12m ).∴m 4=36.∵m<0,∴m=- 6.∴A(26,-6).故④正确. ∴②③④正确.1.(2018·滨州)如图,若二次函数y =ax 2+bx +c(a≠0)图象的对称轴为直线x =1,与y 轴交于点C ,与x 轴交于点A ,点B(-1,0),则①二次函数的最大值为a +b +c ; ②a-b +c <0;③b 2-4ac <0;④当y >0时,-1<x <3,其中正确的个数是(B )A .1B .2C .3D .4提示:①④正确.2.(2018·恩施)抛物线y =ax 2+bx +c 的对称轴为直线x =-1,部分图象如图所示,下列判断中:①abc>0;②b 2-4ac >0; ③9a-3b +c =0;④若点(-0.5,y 1),(-2,y 2)均在抛物线上,则y 1>y 2; ⑤5a-2b +c <0. 其中正确的个数有(B )A .2B .3C .4D .5 提示:②③⑤正确.3.(2018·赤峰)已知抛物线y =a(x -1)2-3(a≠0),如图所示,下列命题:①a>0;②对称轴为直线x =1;③抛物线经过(2,y 1),(4,y 2)两点,则y 1>y 2; ④顶点坐标是(1,-3). 其中正确的概率是(C )A .14B .12C .34D .1提示:命题①②④是真命题.4.(2018·安顺)如图,已知直线y =k 1x +b 与x 轴,y 轴相交于P ,Q 两点,与y =k 2x 的图象相交于A(-2,m),B(1,n)两点,连接OA ,OB ,给出下列结论:①k 1k 2<0;②m+12n =0;③S △AOP =S △BOQ ;④不等式k 1x +b >k 2x 的解集是x <-2或0<x <1.其中正确的结论的序号是②③④.5.(2018·新疆建设兵团)如图,已知抛物线y 1=-x 2+4x 和直线y 2=2x ,我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M =y 1=y 2.①当x >2时,M =y 1;②当x <2时,M 随x 的增大而增大; ③使得M 大于4的x 的值不存在; ④若M =2,则x =1.上述结论正确的是①②③(填写所有结论的序号).提示:④若M =2,则x =1或2+ 2.6.(2018·咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分; ②乙走完全程用了32分钟; ③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米. 其中正确的结论有(A )A .1个B .2个C .3个D .4个提示:①正确;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有360米.类型2 几何多结论判断题几何类多结论判断题考查的知识点较多,主要以圆和四边形为核心,解决问题的主要手段是三角形的全等和相似.此类题目看似需要判断的项较多,但它们之间有思维递进的关系,所以在解决问题时要抓住多个选项之间的内在联系.(2016·咸宁)如图,边长为4的正方形ABCD 内接于⊙O,点E 是AB ︵上的一动点(不与A ,B 重合),点F 是BC ︵上的一点,连接OE ,OF ,分别与AB ,BC 交于点G ,H ,且∠EOF=90°,有下列结论:①AE ︵=BF ︵;②△OGH 是等腰直角三角形;③四边形OGBH 的面积随着点E 位置的变化而变化; ④△GBH 周长的最小值为4+ 2.其中正确的是①②.(把你认为正确结论的序号都填上)解析:①连接OA ,OB ,根据正方形的性质,知∠AOB=90°=∠EOF. ∴∠AOB-∠BOE=∠EOF-∠BOE,即∠AOE=∠BOF.根据同圆中相等的圆心角所对的弧相等,可得AE ︵=BF ︵.故①正确; ②连接OC ,则OB =OC. ∵四边形ABCD 为正方形, ∴AB=BC.∴AB ︵=BC ︵.由(1)知AE ︵=BF ︵, ∴AB ︵-AE ︵=BC ︵-BF ︵,即BE ︵=CF ︵.∴∠BOG=∠COH. 在△OGB 和△OHC 中,∴△OGB≌△OHC(ASA ). ∴OG=OH.又∵∠GOH=90°,∴△OGH 是等腰直角三角形.故②正确; ③由②知△OGB≌△OHC, ∴S △OGB =S △OHC .∴不管点E 的位置如何变化,四边形OGBH 的面积都等于S △OCB .故③错误;④过点O 分别向AB ,BC 作垂线段,垂足分别为I ,J.∵△OGH 是等腰直角三角形, ∴GH=2OG =2OH. 由②知△OGB≌△OHC, ∴GB=HC.∴△GBH 的周长为GB +BH +GH =HC +BH +GH =BC +GH =4+2OG.∴△GBH 的周长当OG 垂直于AB 时取得最小值,即4+2OG =4+2 2. 故④错误.故正确的是①②.1.(2018·德州)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG=120°,绕点O 旋转∠FOG,分别交线段AB ,BC 于D ,E 两点,连接DE ,给出下列四个结论:①OD=OE ; ②S △ODE =S △BDE ;③四边形OD BE 的面积始终等于433;④△BDE 周长的最小值为6. 上述结论中正确的个数是(C )A .1B .2C .3D .4 提示:①③④正确.2.(2018·曲靖)如图,在正方形ABCD 中,连接AC ,以点A 为圆心,适当长为半径画弧,交AB ,AC 于点M ,N ,分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠BAC 内部交于点H ,作射线AH 交BC 于点E ;分别以点A ,E 为圆心,大于12AE 的长为半径画弧,两弧交于P ,Q 两点,作直线PQ ,分别交CD ,AC ,AB 于点F ,G ,L ,交CB 的延长线于点K ,连接GE.下列结论:①∠LKB=22.5°; ②GE∥AB;③tan ∠CGF=KBLB ;④S △CGE ∶S △CAB =1∶4. 其中正确的是(A )A .①②③B .②③④C .①③④D .①②④3.(2018·黑龙江龙东)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,AE 平分∠BAD,分别交BC ,BD 于点E ,P ,连接OE ,∠ADC=60°,AB =12BC =1,则下列结论:①∠CAD=30°; ②BD=7;③S 平行四边形ABCD =AB·AC; ④OE=14AD ;⑤S △APO =312. 其中正确的个数是(D )A .2B .3C .4D .54.(2018·孝感)如图,△ABC 是等边三角形,△ABD 是等腰直角三角形,∠BAD=90°,AE⊥BD 于点E ,连接CD 分别交AE ,AB 于点F ,G ,过点A 作AH⊥CD 交BD 于点H.则下列结论:①∠ADC=15°; ②AF=AG ; ③AH=DF ;④△AFG∽△CBG;⑤AF=(3-1)EF.其中正确结论的个数为(B )A .5B .4C .3D .2提示:①③④⑤正确.5.(2018·咸宁)如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM′的对称点C ,画直线BC 交OM′于点D ,连接AC ,AD.有下列结论:①AD=CD ;②∠ACD 的大小随α的变化而变化; ③当α=30°时,四边形OADC 为菱形;④△ACD 的面积的最大值为3a 2.其中正确的是①③④.(把你认为正确的结论的序号都填上)6.(2018·广州)如图,CE 是平行四边形ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E ,连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形; ②∠ACD=∠BAE; ③AF∶BE=2∶3; ④S AFOE ∶S △COD =2∶3.其中正确的结论有①②④.(填写所有正确结论的序号)提示:③AF∶BE=1∶3.7.(2018·随州)如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出以下判断:①AC 垂直平分BD ;②四边形ABCD 的面积S =AC·BD;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④当A ,B ,C ,D 四点在同一个圆上时,该圆的半径为256;⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF⊥CD 时,点F 到直线AB 的距离为678125.其中正确的是①③④.(写出所有正确判断的序号)。