专题复习(三)-多结论判断题
- 格式:doc
- 大小:128.00 KB
- 文档页数:11
第3关 多结论的几何及二次函数问题为背景的选择填空题【考查知识点】以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力;以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。
【解题思路】1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法,为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本图形。
大量积累基本图形,并在此基础上“截长补短”,“能割善补”,是学习几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以算做一个基本图形.2. 以二次函数为背景的选择填空题中,根据图象的位置确定a 、b 、c 的符号,a >0开口向上,a <0开口向下.抛物线的对称轴为x=2ba-,由图像确定对称轴的位置,由a 的符号确定出b 的符号.由x=0时,y=c ,知c 的符号取决于图像与y 轴的交点纵坐标,与y 轴交点在y 轴的正半轴时,c >0,与y 轴交点在y 轴的负半轴时,c <0.确定了a 、b 、c 的符号,易确定abc 的符号;根据对称轴确定a 与b 的关系;根据图象还可以确定△的符号,及a+b+c 和a -b+c 的符号。
【典型例题】【例1】(2019·新疆中考真题)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABMFDM SS=;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④【名师点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质【例2】(2019·湖北中考真题)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断: ①0ab >且0c <; ②420a b c -+>; ③8>0+a c ; ④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,则12125x x x x ++⋅=-.其中正确的个数有( )A .5个B .4个C .3个D .2个【名师点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab>0),对称轴在y 轴左侧;当a 与b 异号时(即ab<0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac>0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac<0时,抛物线与x 轴没有交点.【例3】(2019·辽宁中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF;③BCCG =﹣1;④HOM HOGS S =2)A.①②③B.①②④C.①③④D.②③④【名师点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.【例4】(2018·广西中考真题)如图,抛物线y=14(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4【名师点睛】本题考查了二次函数与圆的综合题,涉及到抛物线的对称轴、圆的面积、平行四边形的判定、待定系数法、两直线垂直、切线的判定等,综合性较强,有一定的难度,运用数形结合的思想灵活应用相关知识是解题的关键.【方法归纳】1.多结论的几何选择填空题考查的知识点较多,如相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、四边形的知识、圆的知识、等腰三角形的判定与性质以及特殊角三角函数等知识.这类题目的综合性很强,难度较大,解题的关键是注意数形结合思想的应用.2. 多结论的二次函数选择题主要考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.数形结合思想贯穿这类题目的始终,解题时应时时注意.【针对练习】1.(2018·四川中考真题)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形; ②∠PBA=∠APQ ; ③△FPC 为等腰三角形; ④△APB ≌△EPC ;其中正确结论的个数为( )A .1B .2C .3D .42.(2018·辽宁中考真题)已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论: ①abc >0;②该抛物线的对称轴在x=﹣1的右侧; ③关于x 的方程ax 2+bx+c+1=0无实数根; ④a b cb++≥2. 其中,正确结论的个数为( ) A .1个B .2个C .3个D .4个3.(2019·四川中考真题)如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.(2019·广西中考真题)如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为1S ,2S ,则下列结论错误的是( )A .212S S CP +=B .2AF FD =C .4CD PD = D .3cos 5HCD ∠=5.(2019·山东中考真题)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .46.(2019·黑龙江中考真题)如图,在正方形ABCD 中,E F 、是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且42AB EF =,=,设AE x =.当PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( )①当0x =(即E A 、两点重合)时,P 点有6个②当02x <<时,P 点最多有9个③当P 点有8个时,x =﹣2④当PEF 是等边三角形时,P 点有4个 A .①③B .①④C .②④D .②③7.(2019·广东中考真题)如图,正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①ANH GNF ∆≅∆;②AFN HFG ∠=∠;③2FN NK =;④:1:4AFN ADM S S ∆∆=.其中正确的结论有( )A .1个B .2个C .3个D .4个8.(2019·湖北中考真题)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有( )A .1个B .2个C .3个D .4个9.(2018·黑龙江中考真题)抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++. 其中正确的有( )A .5个B .4个C .3个D .2个10.(2018·黑龙江中考真题)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②③S 平行四边形ABCD =AB•AC ④OE=14AD ⑤S △APO =12,正确的个数是( )A .2B .3C .4D .511.(2018·山东中考真题)如图,在矩形ABCD 中,∠ADC 的平分线与AB 交于E ,点F 在DE 的延长线上,∠BFE=90°,连接AF 、CF ,CF 与AB 交于G ,有以下结论: ①AE=BC ②AF=CF ③BF 2=FG•FC ④EG•AE=BG•AB其中正确的个数是( )A .1B .2C .3D .412.(2019·四川中考真题)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个13.(2019·山东中考真题)如图,正方形ABCD ,点F 在边AB 上,且:1:2AF FB =,CE DF ⊥,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使12BG BC =,连接CM .有如下结论:①DE AF =;②4AN AB =;③ADF GMF ∠=∠;④:1:8ANF CNFB S S ∆=四边形.上述结论中,所有正确结论的序号是( )A .①②B .①③C .①②③D .②③④14.(2018·湖北中考真题)如图,在四边形ABCD 中,AB=AD=5,BC=CD 且BC >AB ,BD=8.给出以下判断:①AC 垂直平分BD ;②四边形ABCD 的面积S=AC•BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形; ④当A ,B ,C ,D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125. 其中正确的是_____.(写出所有正确判断的序号)15.(2019·广西中考真题)我们定义一种新函数:形如2y ax bx c =++(0a ≠,且240b a ->)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x 2-2x -3|223y x x =--的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为()1,0-,()3,0和()0,3;②图象具有对称性,对称轴是直线1x =;③当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大;④当1x =-或3x =时,函数的最小值是0;⑤当1x =时,函数的最大值是4.其中正确结论的个数是______.16.(2018·新疆中考真题)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).17.(2018·黑龙江中考真题)如图,抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,下列结论中: ①abc <0;②9a ﹣3b+c <0;③b 2﹣4ac >0;④a >b , 正确的结论是_____(只填序号)18.(2019·湖南中考真题)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则2k =④若25MF MB =,则MD =2MA .其中正确的结论的序号是_______.19.(2019·辽宁中考真题)如图,点P 是正方形ABCD 的对角线BD 延长线上的一点,连接PA ,过点P 作PE ⊥PA 交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F ,则下列结论中:①PA =PE ;②CE PD ;③BF ﹣PD =12BD ;④S △PEF =S △ADP ,正确的是___(填写所有正确结论的序号)20.(2019·内蒙古中考真题)如图,在Rt ABC ∆中,90,3,ABC BC D ︒∠==为斜边AC 的中点,连接BD ,点F 是BC 边上的动点(不与点B C 、重合),过点B 作BE BD ⊥交DF 延长线交于点E ,连接CE ,下列结论:①若BF CF =,则222CE AD DE +=;②若,4BDE BAC AB ∠=∠=,则158CE =; ③ABD ∆和CBE ∆一定相似;④若30,90A BCE ︒︒∠=∠=,则DE =其中正确的是_____.(填写所有正确结论的序号)21.(2018·湖北中考真题)如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA=OB=a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM′的对称点C ,画直线BC 交OM′于点D ,连接AC ,AD ,有下列结论:①AD=CD ;②∠ACD 的大小随着α的变化而变化;③当α=30°时,四边形OADC 为菱形;④△ACD a 2;其中正确的是_____.(把你认为正确结论的序号都填上).。
专题1.3 根的判别式【十大题型】【苏科版】【题型1 判断不含字母的一元二次方程的根的情况】 (1)【题型2 判断含字母的一元二次方程的根的情况】 (2)【题型3 由方程根的情况确定字母的值或取值范围】 (2)【题型4 应用根的判别式证明方程根的情况】 (3)【题型5 应用根的判别式求代数式的取值范围】 (3)【题型6 根的判别式与不等式、分式、函数等知识的综合】 (3)【题型7 根的判别式与三角形的综合】 (4)【题型8 根的判别式与四边形的综合】 (5)【题型9 关于根的判别式的多结论问题】 (5)【题型10 关于根的判别式的新定义问题】 (6)【知识点一元二次方程根的判别式】一元二次方程根的判别式:∆=b2−4ac.①当∆=b2−4ac>0时,原方程有两个不等的实数根;②当∆=b2−4ac=0时,原方程有两个相等的实数根;③当∆=b2−4ac<0时,原方程没有实数根.【题型1判断不含字母的一元二次方程的根的情况】【例1】(2023春·山东青岛·九年级统考期末)下列方程中,有两个相等实数根的是()A.x2−2x+1=0B.x2+1=0C.x2−2x−3=0D.x2−2x=0【变式1-1】(2023春·九年级课时练习)一元二次方程x2+2=0的实数根的个数是()A.0 B.1 C.2 D.无法判断1【变式1-2】(2023春·江西·九年级统考阶段练习)下列一元二次方程没有实数根的是()A.x2+1=0B.x2+2x+1=0C.x2=4D.x2+x−2=0【变式1-3】(2023春·上海长宁·九年级上海市延安初级中学校考期中)在下列方程中,有实数根的是()A.x2+2x+3=0B=0C.xx−1=1x−1D.x3+8=0【题型2判断含字母的一元二次方程的根的情况】【例2】(2023春·安徽合肥·九年级统考期中)已知关于x的方程ax2−(1−a)x−1=0,下列说法正确的是( )A.当a=0时,方程无实数解B.当a≠0时,方程有两个相等的实数解C.当a=−1时,方程有两个不相等的实数解D.当a=−1时,方程有两个相等的实数解【变式2-1】(2023·河北邯郸·统考一模)已知a、c互为相反数,则关于x的方程ax2+5x+c=0(a≠0)根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.有一根为5【变式2-2】(2023·全国·九年级专题练习)已知关于x的方程x2-2x-m=0没有实数根,试判断关于x的方程x2+2mx+m(m+1)=0的根的情况.【变式2-3】(2023春·福建厦门·九年级厦门市松柏中学校考期末)关于x的一元二次方程x2−5x+c=0,当c=t0时,方程有两个相等的实数根:若将c的值在t0的基础上增大,则此时方程根的情况是( )A.没有实数根B.两个相等的实数根C.两个不相等的实数根D.一个实数根【题型3由方程根的情况确定字母的值或取值范围】【例3】(2023春·浙江舟山·九年级校联考期中)在实数范围内,存在2个不同的x的值,使代数式x2−3x+c 与代数式x+2值相等,则c的取值范围是.【变式3-1】(2023春·北京西城·九年级北京市第三十五中学校考期中)已知关于x的方程mx2−3x+1=0无实数解,则m取到的最小正整数值是.【变式3-2】(2023春·广西梧州·九年级校考期中)关于x的方程x2+2(m−2)x+m2−3m+3=0.(1)有两个不相等的实数根,求m的取值范围;(2)若方程有实数根,而且m为非负整数,求方程的根.【变式3-3】(2023春·北京平谷·九年级统考期末)关于x的一元二次方程ax2−2ax+b+1=0(ab≠0)有两个相等的实数根k,则下列选项成立的是()A.若﹣1<a<0,则ka >kbB.若ka>kb,则0<a<1C.若0<a<1,则ka <kbD.若ka<kb,则-1<a<0【题型4应用根的判别式证明方程根的情况】【例4】(2023春·广东珠海·九年级统考期末)已知关于x的一元二次方程x2−2mx+m2−1=0.(1)求证:方程总有两个实数根;(2)若方程的一根大于2,一根小于1,求m的取值范围.【变式4-1】(2023春·九年级课时练习)已知关于x的一元二次方程2x2+2mx+m−1=0,求证:不论m 为什么实数,这个方程总有两个不相等实数根.【变式4-2】(2023春·九年级课时练习)已知关于x的一元二次方程x2−3x+2=m(x−1).(1)求证:方程总有两个实数根;(2)若方程两个根的差是2,求实数m的值.【变式4-3】(2023春·九年级课时练习)已知关于x的一元二次方程x2﹣(m﹣2)x+2m﹣8=0.(1)求证:方程总有两个实数根.(2)若方程有一个根是负整数,求正整数m的值.【题型5应用根的判别式求代数式的取值范围】【例5】(2023春·浙江温州·九年级校考期中)已知关于x的一元二次方程x2−2x+3m=0有实数根,设此方程的一个实数根为t,令y=t2−2t+4m+1,则y的取值范围为.【变式5-1】(2023春·安徽合肥·九年级统考期中)关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根x0,则下列关于2ax0+b的值判断正确的是( )A.2ax0+b>0B.2ax0+b=0C.2ax0+b<0D.2ax0+b≤0【变式5-2】(2023春·浙江宁波·九年级统考期末)已知实数m,n满足m2−mn+n2=3,设P=m2+mn−n2,则P的最大值为()A.3B.4C.5D.6【变式5-3】(2023春·浙江杭州·九年级校考期中)已知关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,设此方程的一个实数根为b,令y=4b2−8b+3m+2,则()A.y>1B.y≥1C.y≤1D.y<1【题型6根的判别式与不等式、分式、函数等知识的综合】【例6】(2023春·重庆北碚·九年级西南大学附中校考期中)若关于x的一元一次不等式组3x82≤x+6 3x+a>4x−5的解集为x≤4,关于x的一元二次方程(a−1)x2+3x+1=0有实数根,则所有满足条件的整数a的值之和是.【变式6-1】(2023春·安徽安庆·九年级安庆市第四中学校考期末)若关于x的一元二次方程x2+2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是( )A .B .C .D .【变式6-2】(2023春·九年级课时练习)要使关于x 的一元二次方程ax 2+2x−1=0有两个实数根,且使关于x 的分式方程x x−4+a 24−x =2的解为非负数的所有整数a 的个数为( )A .5个B .6个C .7个D .8个【变式6-3】(2023·湖北武汉·校联考模拟预测)已知a ,b 2ab b =449,则a +b 的值为( )A .4B .10C .12D .16【题型7 根的判别式与三角形的综合】【例7】(2023春·广东惠州·九年级校考期中)已知关于x 的一元二次方程(a +c )x 2−2bx +(a−c )=0,其中分别a 、b 、c 是△ABC 的边长.(1)若方程有两个相等的实数根,试判断△ABC 的形状;(2)若△ABC 是等边三角形,试求该一元二次方程的根.【变式7-1】(2023春·浙江杭州·九年级校考期中)已知关于x 的一元二次方程x 2−(2k +1)x +k 2+k =0.(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB,AC 的长是这个方程的两个实数根,第三边BC 的长为5,①若k =3时,请判断△ABC 的形状并说明理由;②若△ABC 是等腰三角形,求k 的值.【变式7-2】(2023春·浙江金华·九年级校考期中)已知关于x 的方程x 2−(m +1)x +2(m−1)=0.(1)当方程一个根为x =3时,求m 的值.(2)求证:无论m取何值,这个方程总有实数根.(3)若等腰△ABC的一腰长a=6,另两边b、c恰好是这个方程的两个根.则△ABC的面积为______.【变式7-3】(2023春·福建厦门·九年级厦门市松柏中学校考期末)已知关于x的一元二次方程x2−(m+5) x+5m=0.(1)求证:此一元二次方程一定有两个实数根;(2)设该一元二次方程的两根为a,b,且6,a,b分别是一个直角三角形的三边长,求m的值.【题型8根的判别式与四边形的综合】【例8】(2023春·四川成都·九年级校考阶段练习)已知:矩形ABCD的两边AB,BC的长是关于方程x2−mx+m2−1=0的两个实数根.4(1)当m为何值时,矩形ABCD是正方形?求出这时正方形的边长;(2)若AB的长为2,那么矩形ABCD的周长是多少?【变式8-1】(2023春·湖南益阳·九年级统考期末)已知▱ABCD两邻边是关于x的方程x2-mx+m-1=0的两个实数根.(1)当m为何值时,四边形ABCD为菱形?求出这时菱形的边长.(2)若AB的长为2,那么▱ABCD的周长是多少?【变式8-2】(2023春·浙江杭州·九年级杭州市采荷中学校考期中)已知关于x的一元二次方程x2+(m−5) x−5m=0.(1)判别方程根的情况,并说明理由.(2)设该一元二次方程的两根为a,b,且a,b是矩形两条对角线的长,求矩形对角线的长.x2−mx+2m−1=0的两个根是【变式8-3】(2023春·广东佛山·九年级校考期中)关于x的一元二次方程14平行四边形ABCD的两邻边长.(1)当m=2,且四边形ABCD为矩形时,求矩形的对角线长度.(2)若四边形ABCD为菱形,求菱形的周长.【题型9关于根的判别式的多结论问题】【例9】(2023春·河北保定·九年级保定市第十七中学校考期末)已知关于x的方程kx2−(2k−3)x+k−2=0,则①无论k取何值,方程一定无实数根;②k=0时,方程只有一个实数根;③k≤9且k≠04时,方程有两个实数根;④无论k取何值,方程一定有两个实数根.上述说法正确的个数是()A.1个B.2个C.3个D.4个【变式9-1】(2023春·浙江绍兴·九年级统考期末)已知a(a>1)是关于x的方程x2−bx+b−a=0的实数根.下列说法:①此方程有两个不相等的实数根;②当a=t+1时,一定有b=t−1;③b是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有()A.①②B.②③C.①③D.③④【变式9-2】(2023春·浙江杭州·九年级校考期中)对于代数式ax2+bx+c(a≠0,a,b,c为常数)①若b2−4ac=0,则ax2+bx+c=0有两个相等的实数根;②存在三个实数m≠n≠s,使得am2+bm+c=an2 +bn+c=as2+bs+c;③若ax2+bx+c+2=0与方程(x+2)(x−3)=0的解相同,则4a−2b+c=−2,以上说法正确的是.【变式9-3】(2023春·浙江·九年级期末)已知方程甲:ax2+2bx+a=0,方程乙:bx2+2ax+b=0都是一元二次方程,①若x=1是方程甲的解,则x=1也是方程乙的解;②若方程甲有两个相等的实数解,则方程乙也有两个相等的实数解;③若方程甲有两个不相等的实数解,则方程乙也有两个不相等的实数解;④若x=n既是方程甲的解,又是方程乙的解,那么n可以取1或−1.以上说法中正确的序号是()A.①②B.③④C.①②③④D.①②④【题型10关于根的判别式的新定义问题】【例10】(2023春·江苏宿迁·九年级统考阶段练习)对于实数a、b,定义运算“*”;a∗b=a2−ab(a≤b)b2−ab(a>b),关于x的方程(2x)∗(x−1)=t+3恰好有三个不相等的实数根,则t的取值范围是.【变式10-1】(2023春·四川雅安·九年级统考期末)对于实数a,b定义运算“☆”如下:a☆b=ab2−ab,例的根的情况为()如3☆2=3×22−3×2=6,则方程2☆x=−12A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【变式10-2】(2023春·安徽马鞍山·九年级校考阶段练习)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=b−c B.a=b C.b=c D.a=c【变式10-3】(2023春·河北沧州·九年级统考期中)定义新运算“※”:对于实数m,n,p,q,有m,p※q,n=mn+pq,其中等式右边是通常的加法和乘法运算,例如:2,3※4,5=2×5+3×4=22.若关于x的方程x2+1,x※5−2k,k=0:有两个实数根,则k的取值范围是.。
二次函数多结论压轴小题精选30道1.(2024春•岳麓区校级期末)已知抛物线y=ax2+bx+c的图象如图所示,则下列结论中,正确的有( )①abc>0;②b2>4ac;③a﹣b+c<0;④2a﹣b>0;⑤a+c<1.A.1个B.2个C.3个D.4个【分析】根据图上给的信息,结合二次函数的性质去判断对错即可.【解答】解:①如图所示,图象开口向上,∴a>0,∵图象与y轴的交点在x轴下方∴c<0,∵图象的对称轴在y轴的左边,且a>0,∴b>0,∴abc<0,故①错误;②根据图象可知,抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故②正确;③由图可得,当x=﹣1时,y<0,∴a﹣b+c<0,故③正确;④由图可得,―b2a>―1,∵a>0,∴2a>b,∴2a﹣b>0,故④正确;⑤当x=1时,a+b+c=2,∴a+c=2﹣b,∵a﹣b+c<0,∴2﹣b﹣b<0,解得:b>1,∴2﹣b<1,∴a+c<1,故⑤正确;综上所述,共有4个是正确的;故选:D.2.(2024•宝安区校级模拟)已知抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①abc<0,②a+b+c=2,③a>12④0<b<1中正确的有( )A.①②B.①②③C.①②④D.①②③④【分析】根据抛物线开口方向,对称轴的位置,与y轴的交点的位置,可以得出a、b、c的符号,进而确定abc的符号,对①做出判断;把(1,2)代入可对②做出判断;而无法判断③④一定正确,综合得出答案.【解答】解:因为抛物线开口向上,可知a>0,对称轴在y轴的左侧,a、b同号.故b>0,抛物线与y轴的交点在负半轴,因此c<0,∴abc<0,故①正确;把(1,2)代入得a+b+c=2,故②正确;当x=﹣1时,y=a﹣b+c<0,又∵a+b+c=2,∴2b>2,即:b>1,因此④不正确,因为对称轴x=―b2a介在﹣1与0之间,因此―b2a>―1,得2a>b,而b>1,∴a>12,因此③正确.故选:B.3.(2024•凤凰县模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数).其中正确结论个数有( )A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,∴abc<0,所以①正确,符合题意;当x=﹣1时图象在x轴下方,则y=a﹣b+c<0,即a+c<b,所以②不正确,不符合题意;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确,符合题意;x=―b2a=1,则a=―12b,而a﹣b+c<0,则―12b―b+c<0,2c<3b,所以④正确,符合题意;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤错误,不符合题意.故①③④正确,故选:B.4.(2024•汝阳县一模)图形结合法既可以由数解决形的问题,也可以由形解决数的问题.如图所示,已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①ab>0;②4a﹣2b+c<0;③2a﹣b<0;④|a+c|<|b|.其中正确的个数有( )A.1B.2C.3D.4【分析】根据所给函数图象,可得出a,b,c的正负,再根据抛物线的对称性和增减性对四个结论依次进行判断即可.【解答】解:由所给函数图象可知,a<0,b<0,所以ab>0.故①正确.抛物线上横坐标为﹣2的点在x轴下方,所以4a﹣2b+c<0.故②正确.因为抛物线的对称轴在直线x=﹣1和y轴之间,所以―b2a>―1,则2a﹣b<0.故③正确.当x=1时,函数值小于零,则a+b+c<0;当x=﹣1时,函数值大于零,则a﹣b+c>0;所以(a+b+c)(a﹣b+c)<0,即(a+c)2﹣b2<0,所以(a+c)2<b2,所以|a+c|<|b|.故④正确.故选:D.5.(2024•斗门区校级模拟)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的为( )A.①④B.②③④C.①②④D.①②③④【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置判断①,由a与b的关系及x=﹣1时y<0可判断②,利用(a+c)2﹣b2=(a+b+c)(a﹣b+c),根据x=﹣1时y>0,x=1时y<0可判断③,由x=1时y取最小值可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=―b2a=1>0∴b=﹣2a<0,∵抛物线与y轴交点在x轴下方,∴c<0∴abc>0,故①正确.∵x=﹣1时,y=a﹣b+c=3a+c=0,故②不正确.∵(a+c)2﹣b2=(a+b+c)(a﹣b+c),且a+b+c<0,a﹣b+c=0,∴(a+c)2﹣b2=0,故③不正确.∵x=1时,y=a+b+c为最小值,∴a+b≤m(am+b),故④正确.故选:A.6.(2024•岚山区二模)已知二次函数y=ax2+bx+c(a≠0)与x轴的一个交点为(4,0),其对称轴为直线x=1,其部分图象如图所示,有下列5个结论:①abc<0;②b2﹣4ac<0;③8a+c=0;④若关于x 的方程ax2+bx+c=﹣1有两个实数根x1x2,且满足x1<x2,则x1<﹣2,x2>4;⑤直线y=kx﹣4k(k≠0)经过点(0,c),则关于x的不等式ax2+(b﹣k)x+c+4k>0的解集是0<x<4.其中正确结论的个数为( )A.5B.4C.3D.2【分析】根据抛物线与方程、不等式的关系及二次函数的性质求解.【解答】解:由图象得:a<0,c>0,b=﹣2a>0,∴abc<0,故①是正确的;∵抛物线与x轴有两个交点,∴0=ax2+bx+c有两个不相等的实数根,∴b2﹣4ac>0,故②是错误的;根据抛物线的对称性,抛物线与x轴的交点的横坐标分别为:﹣2,4,∴当x=﹣2时,4a﹣2b+c=8a+c=0,故③是正确的;由图象得:抛物线与y=﹣1的交点的横坐标分别位于﹣2的左边,4的右边,∴x1<﹣2,x2>4;故④是正确的;∵直线y=kx﹣4k(k≠0)经过点(0,c)和(4,0),∴于x的不等式ax2+(b﹣k)x+c+4k>0即:ax2+bx+c>kx﹣4k的解集是0<x<4,故⑤是正确的;故选:B.7.(2024•旺苍县三模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2<4ac;③2c<3b;④a+b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.其中正确的结论有( )A.2个B.3个C.4个D.5个【分析】①由二次函数图象性质知,开口向下,则a<0.再结合对称轴―b2a>0,得b>0.据二次函数图象与y轴正半轴相交得c>0;②由于二次函数图象与x轴交于不同两点,则b2﹣4ac>0,即b2>4ac;③由―b2a=1,得b=﹣2a,当x=﹣1时,y<0,即a﹣b+c<0,所以2a﹣2b+2c<0,把b替换成a计算;④x=1时函数有最大值,所以当x=1时的y值大于当x=m(m≠1)时的y值,即a+b+c>m(am+b)+c,所以a+b>m(am+b)(m≠1)成立;⑤将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可,由二次函数图象的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4.【解答】解:∵图象开口向下,∴a<0,∵对称轴在y轴的右侧,a与b异号,∴b>0,∵与y轴交于正半轴,∴c>0,∴abc<0,故①错误;∵二次函数图象与x轴交于不同两点,则Δ=b2﹣4ac>0.∴b2>4ac.故②错误;∵―b2a=1,∴b=﹣2a.又∵当x=﹣1时,y<0.即a﹣b+c<0.∴2a﹣2b+2c<0.∴﹣3b+2c<0.∴2c<3b.故③正确;∵x=1时函数有最大值,∴当x=1时的y值大于当x=m(m≠1)时的y值,即a+b+c>m(am+b)+c∴a+b>m(am+b)(m≠1)成立,故④正确.将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可,由二次函数图象的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4,故⑤错误.综上:③④正确,8.(2023秋•龙港区期中)函数y =ax 2+bx +c 与y =kx 的图象如图所示,下列结论:①b 2﹣4ac >0;②a +b +c =0;③x =﹣2时,函数y =﹣ax 2+(k ﹣b )x ﹣c 有最大值;④关于x 的方程ax 2+(b ﹣k )x +c =0的根是x 1=﹣1,x 2=﹣3,其中正确的个数是( )A .1B .2C .3D .4【分析】根据抛物线与x 轴交点个数与Δ=b 2﹣4ac 的关系即可判断①;由x =1时,二次函数的函数值即可判断②;由抛物线与直线的两个交点的横坐标为﹣3,﹣1得到9a ―3b +c =―3k①a ―b +c =―k②,解得k ﹣b =﹣4a ,代入y =﹣ax 2+(k ﹣b )x ﹣c 得到y =﹣ax 2+(k ﹣b )x ﹣c =﹣ax 2﹣4ax ﹣c =﹣a (x +2)2+4a ﹣c ,根据二次函数的性质即可判断③;抛物线与直线的交点的坐标与函数解析式的关系即可判断④.【解答】解:∵抛物线与x ∴Δ=b 2﹣4ac <0,故选项①错误;由图象可知,当x =1时,y =a +b +c >0,故选项②错误;∵抛物线与直线的两个交点的横坐标为﹣3,﹣1,∴9a ―3b +c =―3k①a ―b +c =―k②,②﹣①得﹣8a +2b =2k ,即k ﹣b =﹣4a ,∴y =﹣ax 2+(k ﹣b )x ﹣c =﹣ax 2﹣4ax ﹣c =﹣a (x +2)2+4a ﹣c ,∵﹣a <0.∴x =﹣2时,函数y =﹣ax 2+(k ﹣b )x ﹣c 有最大值,故选项③正确;∵抛物线与直线的两个交点的横坐标为﹣3,﹣1,∴方程ax 2+bx +c 与y =kx 的解为x 1=﹣1,x 2=﹣3,∴关于x 的方程ax 2+(b ﹣k )x +c =0的根是x 1=﹣1,x 2=﹣3,故选项④正确.9.(2023•石城县模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax21+bx1=ax22+bx2且x1≠x2,则x1+x2=2.其中正确的有( )A.①④B.③④C.②⑤D.②③⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线开口方向向下,则a<0.抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.所以abc<0.故①错误.②∵抛物线对称轴为直线x=b2a=1,∴b=﹣2a,即2a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最大值为:y=a+b+c;∴a+b+c≥am2+bm+c,即a+b≥am2+bm,故③错误;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,故④错误;⑤∵ax21+bx1=ax22+bx2,∴ax21+bx1―ax22―bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=―b a ,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的有②⑤.故选:C.10.(2024•苍溪县模拟)如图,已知二次函数y=ax2+bx+c(a,b,c是常数)的图象关于直线x=﹣1对称,则下列五个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c<0;④a(m2﹣1)+b(m+1)≤0(m为任意实数);⑤3a+c<0.其中结论正确的个数为( )A.2个B.3个C.4个D.5个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性及增减性,利用数形结合的思想对所给结论依次进行判断即可.【解答】解:由函数图象可知,a<0,b<0,c>0,所以abc>0.故①正确.因为抛物线的对称轴为直线x=﹣1,所以―b2a=―1,即2a﹣b=0.因为抛物线的对称轴为直线x =﹣1,且x =1时,函数值小于零,所以x =﹣3时,函数值小于零,则9a ﹣3b +c <0.故③正确.因为抛物线的对称轴为直线x =﹣1,且开口向下,所以当x =m 时,am 2+bm +c ≤a ﹣b +c ,即am 2﹣a +bm +b ≤0,所以a (m 2﹣1)+b (m +1)≤0.故④正确.由函数图象可知,当x =1时,函数值小于零,则a +b +c <0,又因为b =2a ,所以3a +c <0.故⑤正确.故选:D .11.(2024•y =ax 2+bx +c 的图象中,观察得出了下面五条信息:①c <0;②abc >0;③a ﹣b +c >0;④2a ﹣3b =0;⑤c ﹣4b >0,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个【分析】观察图象易得a >0,―b 2a =13>0,所以b <0,2a ﹣3b >0,因此abc >0,由此可以判定①②是正确的,而④是错误的;当x =﹣1,y =a ﹣b +c ,由点(﹣1,a ﹣b +c )在第二象限可以判定a ﹣b +c >0③是正确的;当x =2时,y =4a +2b +c =2×(﹣3b )+2b +c =c ﹣4b ,由点(2,c ﹣4b )在第一象限可以判定c ﹣4b >0⑤【解答】解:∵抛物线开口方向向上,∴a>0,∵与y轴交点在x轴的下方,∴c<0,∵―b2a=13>0,∵a>0,∴b<0,2a﹣3b>0,∴abc>0,∴①②是正确的,④对称轴x=―b2a=13,∴3b=﹣2a,∴2a+3b=0,∴④是错误的;当x=﹣1,y=a﹣b+c,而点(﹣1,a﹣b+c)在第二象限,∴a﹣b+c>0是正确的;当x=2时,y=4a+2b+c=2×(﹣3b)+2b+c=c﹣4b,而点(2,c﹣4b)在第一象限,∴c﹣4b>0.故选:C.12.(2024•沂源县一模)已知二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,其中对称轴为:x =1,下列结论:①abc>0;②a+c>0;③2a+3b>0;④a+b>am2+bm(m≠1);上述结论中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向可判定a的符号;结合抛物线的对称轴b的符号可判断①;通过x=﹣1和x=3的对称性判断②;将不等式的两边加上c,进而判断出③;将b=﹣2a,a﹣b+c=0可推出④.【解答】解:∵抛物线的开口向下,∴a<0,∵对称轴为:x=―b2a=1,∴b=﹣2a>0,∵抛物线与y轴交于y轴的正半轴,∴c>0,∴abc<0,故①不正确;∵2×1﹣3=﹣1,当x=3时,y>0,∴当x=﹣1时,a﹣b+c>0,∴a+c>b,∵b=﹣2a>0,∴a+c>0,故②正确;∵b=﹣2a,∴2a+3b=2a﹣6a=﹣4a>0,故③正确,∵当x=1时,y=a+b+c,a<0,∴函数的最大值为:a+b+c,∴a+b+c>am2+bm+c(m≠0),∴a+b>am2+bm,∴②③④正确,故选:C.13.(2024•桃江县一模)抛物线y=ax2+bx+c的顶点坐标为(2,﹣a)(如图所示),则下列说法:①abc <0;②(a+b)2≥c;③关于x的方程ax2+bx=0有两个不相等的实数根;④﹣1≤a≤0.则正确的结论有( )A.1个B.2个C.3个D.4个【分析】由二次函数图象的性质及二次函数图象与系数的关系逐一判定即可.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的顶点坐标为(2,﹣a),∴―b2a=2,∴b=﹣4a>0,∵抛物线交y轴的负半轴,∴c<0,∴abc>0,故①错误;∵抛物线的顶点坐标为(2,﹣a),∴4a+2b+c=﹣a,∵b=﹣4a,∴4a﹣8a+c=﹣a,即c=3a,∴(a+b)2﹣c=9a2﹣3a=3a(3a﹣1),∴3a (3a ﹣1)>0,∴(a +b )2﹣c >0,∴(a +b )2>c ,故②错误;由图可知抛物线与直线y =c 有两个交点,∴关于x 的方程ax 2+bx +c =c ,即ax 2+bx =0有两个不相等的实数根,故③正确;∵a 为抛物线二次项系数,∴a ≠0,故④错误.故选:A .14.(2023秋•中山市校级期末)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示.下列结论:①2a +b =0;②3a +c >0;③m 为任意实数,则a +b >am 2+bm ;④若A (x 1,0),B (x 2,0),则x 1+x 2=2,其中正确的有( )A .①②B .①③C .①④D .②④【分析】根据对称轴为直线x =x =1时取得最大值,即可判断①③,根据x =3时,y <0,即可判断②,根据对称性即可判断④.【解答】解:∵抛物线对称轴为直线x =―b 2a=1,∴b =﹣2a ,即2a +b =0,所以①正确;∵x =3时,y =9a +3b +c <0,即9a +3×(﹣2a )+c <0,∴3a +c <0,故②不正确;抛物线对称轴为直线x =1,开口向下,∴函数的最大值为a +b +c ,∴a +b +c ≥am 2+bm +c (m 为任意实数),即a +b ≥am 2+bm ,故③不正确;∵A (x 1,0),B (x 2,0),对称轴为直线x =1,则x 1+x 2=2,故④正确,15.(2023秋•西城区校级月考)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①a<0;②9a+3b+c>0;③c>0;④﹣3<―b2a<0其中正确的有( )A.4个B.3个C.2个D.1个【分析】根据开口方向判断a的符号,当x=3时,判断9a+3b+c>0;根据抛物线与y轴的交点位置判断c的符号;根据抛物线对称轴的位置判断④.【解答】解:∵抛物线开口向下,∴a<0,故①正确;由图可以看出,对称轴﹣3<x=―b2a<0,故④正确;设抛物线与x1,由题意得,对称轴x=x1―32<0,解得x1<3,∴当x=3时,y=9a+3b+c<0,故②错误;∵抛物线与y轴交于正半轴,∴c>0,故③正确.综上所述,①③④正确.故选:B.16.(2023•东港区校级三模)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c=0;③2b+c+3=0;④当1<x<3时,x2+(b﹣1)x+c<0其中正确的有( )个.A.4B.3C.2D.1【分析】①根据开口方向判定a的符号,根据对称轴判断b的符号,根据抛物线与y轴的交点判断c的符号,根据抛物线与x轴的交点情况判断b2﹣4ac的符号;②当x=1时,y=1,判断b+c+1的符号,由b+c+1=1,可得b+c=0;③根据对称轴求b的值,由b+c=0,代入可作判定;④由抛物线和直线所处的位置判断x2+bx+c<x,得出x2+(b﹣1)x+c<0.【解答】解:①∵函数y=x2+bx+c与x轴没交点,∴Δ=b2﹣4ac<0,∵a=1,∴Δ=b2﹣4c<0,故①错误;②∵函数y=x2+bx+c与y=x的交点的横坐标为1,∴交点为:(1,1),(3,3),∴b+c+1=1,∴b+c=0;故②正确;③由图象得:抛物线的对称轴是:x=32,且a=1,∴―b2=32,∴b=﹣3,∴2b+c+3=b+0+3=0,故③正确;④由图象可知:当1<x<3时,抛物线在直线的下方,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0,故选:B.17.(2023•双台子区校级一模)二次函数y=ax2+bx+c的图象如图所示,给出四个结论:①abc>0;②4a﹣2b+c>0;③对于任意实数m,有am2+bm+c<a﹣b+c;④ca>―3,其中正确的有( )A.①②B.①④C.②③D.③④【分析】二次函数y=ax2+bx+c的系数确定了抛物线开口方向、对称轴、与y轴的交点等.对于①,先根据二次函数图象的性质判断a,b,c的正负,进而得出答案;对于②,令x=﹣2求出y值,判断即可;对于③,先求出当x=﹣1时,求初最大值,再比较即可;对于④,根据对称轴求出a,b的关系,再将x=1,y=0代入关系式,即可判断.【解答】解:①∵对称轴位于x轴的左侧,∴―b2a<0,∴即ab>0.∵与y轴交于正半轴,∴c>0,∴abc>0.故①正确;②∵x=﹣2时,y>0,∴4a﹣2b+c>0,故②正确;③当x=﹣1时,y最大=a﹣b+c,当x=m时,y=am2+bm+c,∴有am2+bm+c≤a﹣b+c,故③错误;④∵抛物线的对称轴为直线x=―b2a=―1,∵x=1时,y=0,∴a+b+c=0,∴c=﹣3a,∴ca=―3aa=―3,故④错误;正确的结论有:①②,故选:A.18.(2023•遂溪县模拟)如图是二次函数y=ax2+bx+c的图象,对称轴是直线l,则以下说法:①a﹣b+c=0;②4a+b=0;③abc>0;④16a+5b+2c>0,其中正确的个数是( )A.1B.2C.3D.4【分析】先由抛物线与x5,0),对称轴为x=2,可以得到抛物线与x轴的另一交点为(﹣1,0)可以判断①;利用抛物线的对称轴为x=2,判断出结论②;先由抛物线的开口方向判断出a>0,进而判断出b<0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论③;先求出b=﹣4a,c=﹣5a,然后代入16a+5b+2c即可判断.【解答】解:有图象知,抛物线过点(5,0),对称轴为直线x=2,∴抛物线过点(﹣1,0),∴a﹣b+c=0,故①正确;∵抛物线的对称轴为直线x=2,∴―b2a=2,∴4a+b=0,故②正确;由图象知,抛物线开口向上,∴a>0,∵4a+b=0,∴b<0,而抛物线与y轴的交点在y轴的负半轴上,∴c<0,∴abc>0,故③正确;∵4a+b=0,∴b=﹣4a,∵a﹣b+c=0,∴c=﹣5a,∴16a+5b+2c=16a﹣20a﹣10a=﹣14a<0,故④错误.故选:C.19.(2023秋•义乌市期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc >0;②b2>4ac;③a(m2﹣1)+b(m﹣1)<0(m≠1);④关于x的方程|ax2+bx+c|=1有四个根,且这四个根的和为4A.①②③B.②③④C.①④D.②③【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断①,由抛物线与x轴有两个交点可判断②,由当x=1时函数取最大值可判断③,由函数最大值大于1且抛物线开口向下可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴―b2a=1,∴b=﹣2a>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc<0,①错误;∵抛物线与x轴有2个交点,∴b2﹣4ac>0,∴b2>4ac,②正确;∵x=1时函数取最大值,∴am2+bm+c<a+b+c(m≠1),∴am2﹣a+bm﹣b<0,即a(m2﹣1)+b(m﹣1)<0(m≠1),③正确.∴由图象可得函数最大值大于2,∴ax2+bx+c=1有两个不相等的实数根x1,x2,ax2+bx+c=﹣1有两个不相等的实数根x3,x4,∵图象对称轴为直线x=1,∴x1+x2=2,x3+x4=2.∴x1+x2+x3+x4=4,∴④正确.故选:B.20.(2023秋•铜梁区校级期中)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①abc>0;②2a+b<0;③若﹣1<m<n<1,则m+n<―b a ;④3|a|+|c|<2|b|.其中正确的结论有( )A.1个B.2个C.3个D.4个【分析】分别根据二次函数开口方向以及对称轴位置和图象与y轴交点得出a,b,c的符号,再利用特殊值法分析得出各选项.【解答】解:∵抛物线开口向下,∴a<0,∴2a<0,∵对称轴x=―b2a>1,b>0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,故选项①正确;对称轴x=―b2a>1,又a<0,则﹣b<2a,则2a+b>0,故②错误;∵﹣1<m<n<1,则﹣2<m+n<2,∴抛物线对称轴为:x=―b2a>1,―ba>2,m+n<―ba,故选项③正确;当x=1时,a+b+c>0,2a+b>0,则3a+2b+c>0,∴3a+c>﹣2b,∴﹣3a﹣c<2b,∵a<0,b>0,c<0(图象与y轴交于负半轴),∴3|a|+|c|=﹣3a﹣c<2b=2|b|④选项正确.故选:C.21.(2023•仁怀市模拟)如图,根据二次函数y=ax2+bx+c的图象得到如下结论:①abc>0 ②2a﹣b=0 ③a+b+c=0 ④3a+c<0 ⑤当x>﹣2时,y随x的增大而增大⑥一定存在实数x0,使得ax20+bx0>a﹣b 成立.上述结论,正确的是( )A.①②⑤B.②③④C.②③⑥D.③④⑤【分析】由开口方向、对称轴及抛物线与y轴的交点位置可判断结论①;由对称轴为直线x=﹣1即可得到,2a﹣b=0,即可判断②;由抛物线的对称性即可判断③④;由抛物线的增减性可判断结论⑤;函数的最值即可判断结论⑥.【解答】解:∵抛物线开口向上、顶点在y轴左侧、抛物线与y轴交于负半轴,∴a>0,b>0,c<0,∴abc<0,故①错误;∵―b2a=―1,∴b=2a,∴2a﹣b=0,故②正确;∵抛物线过点(﹣3,0),对称轴为直线x=﹣1,∴抛物线过点(1,0),∴a+b+c=0,故③正确;∴b=2a,a+b+c=0,∴3a+c=0,故④错误;∵抛物线开口向上,对称轴是直线x=﹣1,∴当x>﹣1时,y随x的增大而增大;故⑤错误;∵函数最小值为a﹣b+c,∴当x0≠﹣1时,则ax20+bx0c a﹣b+c,即ax20+bx0>a﹣b,∴一定存在实数x0,使得ax20+bx0>a﹣b成立,故⑥正确;故选:C.22.(2023•广东模拟)二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc<0;②2a﹣b+c≤0;③3b﹣2c<0;④对任意实数m,都有2am2+2bm﹣b≥0.其中正确的有( )A.①②B.②③C.②④D.③④【分析】由抛物线开口方向,对称轴位置,抛物线与y轴的交点位置可判断①;由x=﹣1时y>0及a>0,可判断②;由x=﹣1时y>0及a与b的数量关系可判断③,由x=1时函数取最小值可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=1,∴―b2a=1,∴b=﹣2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,故①错误;∵x=﹣1时,y>0,∴a﹣b+c>0,∵a>0,∴2a﹣b+c>0,故②错误;∵b=﹣2a,∴a=―b 2,由图象可得x=﹣1时,y=a﹣b+c=―32b+c>0,∴3b﹣2c<0,故③正确;由x=1时函数取最小值可得am2+bm+c≥a+b+c,∴am2+bm≥a+b,∵a=―b 2,∴am2+bm≥b 2,∴2am2+2bm﹣b≥0,故④正确.故选:D.23.(2023•凤凰县模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①abc<0;②3a+b>―13c;③2c<3b;④(k+1)(ak+a+b)≤a+b,其中正确的是( )A.①③④B.①②④C.①④D.②③④【分析】根据二次函数图象与性质,先判断a<0,b=﹣2a,即b>0,c>0,即可判断①正确;根据图象得出x=3时y<0,即可得出9a+3b+c<0,通过变形可判断②错误;根据9a+3b+c<0结合b=﹣2a 可以判断③正确;根据x=1时,y=a+b+c是函数的最大值,可以判断④正确.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴是直线x=1,∴―b2a=1,即b=﹣2a,∴b>0,∵抛物线与y轴交点在正半轴,∴c>0,∴abc<0,故①正确;由图象可知,抛物线与x轴左侧的交点在(﹣1,0)的右侧,∵抛物线的对称轴为x=1,∴抛物线与x轴右侧的交点在(3,0)的左侧,∴当x=3时,y<0,∴9a+3b+c<0,∴3a+b<―13 c,故②错误;∵9a+3b+c<0,b=﹣2a,∴―92b+3b+c<0,∴2c<3b,故③正确;当x=1时,y=a+b+c是函数的最大值,∴a(k+1)2+b(k+1)+c≤a+b+c,∴a(k+1)2+b(k+1)≤a+b,∴(k+1)(ak+a+b)≤a+b,故④正确;∴正确的有①③④,故选:A.24.(2024•黄石模拟)已知抛物线y=ax2+bx+c(a<0)与x轴交于点(x1,0),(2,0),其中﹣1<x1<0.下列四个结论:①abc<0;②a﹣b+c>0;③2b﹣c<0;④不等式ax2+bx+c>―c2x+c的解集为0<x<2.其中正确结论的序号为( )A.①②B.①③C.②③D.①④【分析】根据题意画出函数图象,得到a、b异号,c>0,可判断①结论;根据当x=﹣1时,y<0,可判断②结论;根据抛物线y=ax2+bx+c(a<0)过点(2,0),得到a=―12b―14c,可判断③结论;令y1=―c2x+c,画出一次函数图象,利用图象可判断④结论.【解答】解:根据题意画出函数图象如下:∵抛物线y=ax2+bx+c(a<0x轴交于点(x1,0),(2,0),其中﹣1<x1<0,∴抛物线开口向下,对称轴在12~1之间,与y轴交点在正半轴,∴a、b异号,c>0,∴abc<0,①结论正确;由图象可知,当x=﹣1时,y<0,∴a﹣b+c<0,②结论错误;∵抛物线y=ax2+bx+c(a<0)过点(2,0),∴4a+2b+c=0,∴a=―2b+c4=―12b―14c,∴a―b+c=―12b―14c―b+c=―32b+34c=―34(2b―c)<0,∴2b﹣c>0,③结论错误;令y1=―c2x+c,当x=0时,y=c;当y=0,x=2,函数图象如下:由图象可知,当0<x<2时,抛物线y=ax2+bx+c图象在一次函数y1=―c2x+c的上方,∴不等式ax2+bx+c>―c2x+c的解集为0<x<2,④结论正确,故选:D.25.(2024•殷都区模拟)如图,在平面直角坐标系中,直线y1=mx+n与抛物线y2=ax2+bx―3相交于点A,B.结合图象,判断下列结论:①当﹣3<x<2时,y1>y2;②x=﹣3是方程ax2+bx﹣3=0的一个解;③若(﹣4,t1),(1,t2t1>t2;④对于抛物线y2=ax2+bx―3,当﹣3<x<2时,y2的取值范围是0<y2<5.其中正确结论的个数是( )A.4个B.3个C.2个D.1个【分析】根据函数图象即可判断①②④;求出对称轴,再由开口向上得到离对称轴越远函数值越大,即可判断③.【解答】解:由函数图象可知,当一次函数图象在二次函数图象上方时,自变量的取值范围为﹣3<x<2,∴当﹣3<x<2时,y1>y2,故①正确;∵二次函数与x轴的一个交点坐标为当(﹣3,0),∴x=﹣3是方程ax2+bx﹣3=0的一个解,故②正确;∵抛物线经过(2,5),(﹣3,0)∴4a+2b﹣3=5,9a﹣3b﹣3=0,∴a=1,b=2,∴抛物线对称轴为直线x=b―2a=―1,∵函数开口向上,∴离对称轴越远,函数值越大,∵﹣1﹣(﹣4)=3>1﹣(﹣1)=2,∴t1>t2,故③正确;由函数图象可知,当﹣3<x<2时,y2的取值范围是不是0<y2<5,故④错误,故选:B.26.(2024•东港区校级一模)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)和(0,3)两点之间(包含端点).下列结论中正确的是( )①不等式ax2+c<﹣bx的解集为x<﹣1或x>3;②9a2﹣b2<0;③一元二次方程cx2+bx+a=0的两个根分别为x1=13,x2=﹣1;④6≤3n﹣2≤10.A.①②③B.①②④C.②③④D.①③④【分析】由已知求出b=﹣2a,c=﹣3a,由抛物线的对称性可求抛物线与x轴的另一个的交点为(3,0),则不等式ax2+c<﹣bx的解集为x<﹣1或x>3;再将b=﹣2a,c=﹣3a,代入9a2﹣b2,即可判断②;将一元二次方程cx2+bx+a=0化为﹣3ax2﹣ax+a=0,即可求方程的根;由已知可得2≤c≤3,再由抛物线的顶点坐标可求n=﹣4a,从而进一步可求n的范围为83≤n≤4,即可求出6≤3n﹣2≤10.【解答】解:∵顶点坐标为(1,n),∴b=﹣2a,∵与x轴交于点A(﹣1,0),∴a﹣b+c=0,∴c=﹣3a,∵对称轴为直线x=1,经过点(﹣1,0),∴抛物线与x轴的另一个的交点为(3,0),∵抛物线开口向下,∴不等式ax2++bx+c<0的解集为x<﹣1或x>3,即不等式ax2+c<﹣bx的解集为x<﹣1或x>3,故①正确;∵9a2﹣b2=9a2﹣(﹣2a)2=5a2>0,故②不正确;∵一元二次方程cx2+bx+a=0可化为﹣3ax2﹣2ax+a=0,即3x2+2x﹣1=0,∴方程的根为x1=13,x2=﹣1,故③正确;∵抛物线与y轴的交点在(0,2)和(0,3)两点之间,∴2≤c≤3,∵顶点坐标为(1,n),∴n=﹣4a,∵c=﹣3a,∴n=43 c,∴83≤n≤4,∴6≤3n﹣2≤10;故④正确;故选:D.27.(2024•射洪市一模)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示(1<x =h <2,0<x A <1).下列结论:①abc <0;②2a +b >0;③若OC =2OA ,则2b ﹣ac =4;④3a ﹣c <0.其中正确的有 ②③④ .(只填写序号)【分析】①根据抛物线的开口向下即可得出a <0,再根据抛物线的对称轴在x =1和x =2之间即可得出b >﹣2a ,②正确;②由b >﹣2a 可得出b >0,再根据抛物线与y 轴交于y 轴负半轴可得出c <0,由此即可得出abc >0,①错误;③将A(―c 2,0)代入抛物线解析式中,整理后可得出2b ﹣ac =4,③正确;④根据抛物线的对称轴1<―b 2a<2可得出﹣2a <b <﹣4a ,再由当x =1时y >0即可得出a +b +c >0,进而即可得出3a ﹣c <0,④正确.综上即可得出结论.【解答】解:∵抛物线的开口向下,∴a <0.∵抛物线的对称轴―b 2a>1,∴b >﹣2a ,即2a +b >0,②成立;∵b >﹣2a ,a <0,∴b >0,∵抛物线与y 轴的交点在y 轴的负半轴,∴c <0,∴abc >0,①错误;∵OC =2OA ,∴A(―c 2,0),∴14ac 2―14bc +c =0,整理得:2b ﹣ac =4,③成立;∵抛物线的对称轴1<―b 2a<2,∴﹣2a <b <﹣4a ,∵当x =1时,y =a +b +c >0,∴a ﹣4a +c >0,即3a ﹣c <0,④正确.综上可知正确的结论为②③④.故答案为:②③④.28.(2023秋•太康县期末)已知二次函数y =ax 2+bx +c (a ≠0,a 、b 、c 为常数)的图象如图所示.下列4个结论:①b >0;②b <a +c ;③c <4b ;④a +b <k 2a +kb (k 为常数,且k ≠1).其中正确的结论序号是 ①③ .【分析】由抛物线的开口方向判断a 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由图象可知,a <0,―b 2a=1,∴b =﹣2a ,∴b >0,故①正确;由图象可知,当x =﹣1时,y <0,即a ﹣b +c <0,∴b >a +c ,故②错误;∵二次函数y =ax 2+bx +c 图象的对称轴为直线x =1,∴当x =3时,函数值小于0,y =9a +3b +c <0,且b =﹣2a ,即a =―b 2,代入得9(―b 2)+3b +c <0,得c <32b ,∵b >0,∴c <4b ,故③正确;当x=1时,y的值最大.此时,y=a+b+c,而当x=k时,y=ak2+bk+c,∵k为常数,且k≠1,所以a+b+c>ak2+bk+c,故a+b>ak2+bk,故④错误.故①③正确.故答案为:①③.29.(2023秋•青山区期末)已知抛物线y=ax2+bx+c经过点(2,c),且满足a﹣b+c=0.下列四个结论:①抛物线的对称轴是直线x=1;②b与c同号;③若a+2b+4c>0,则不等式ax2+bx+c<﹣2ax﹣a﹣b的解集﹣2<x<2;④抛物线上的两个点M(m﹣1,y1),N(m+2,y2),当c<0,且y1>y2时,m<1 2.其中一定正确的是 .(填写序号)【分析】根据二次函数的性质及抛物线与不等式的关系求解.【解答】解:由题意得:4a+2b+c=c,∴b=﹣2a∴―b2a=1,故①是正确的;又∵a﹣b+c=0,∴c=﹣3a,∴a、c异号,a、b异号,∴b、c同号,故②是正确的;∵a+2b+4c>0,∴a﹣4a﹣12a=﹣15a>0,∴a<0,∴不等式化为:x2﹣4>0,解得:﹣2<x <2,故③是正确的;∵c <0,∴a >0,抛物线开口向上,∵m ﹣1<m +2,y 1>y 2,∴m +2≤1,或1﹣(m ﹣1)>m +2﹣1解得:m ≤﹣1或m <12,故④是错误的;故答案为:①②③.30.(2023秋•城厢区校级月考)如图,是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标为A (1,3),与x 轴的一个交点为B (4,0),点A 和点B 均在直线y 2=mx +n (m ≠0)上.①2a +b =0;②abc >0;③抛物线与x 轴的另一个交点是(﹣4,0);④方程ax 2+bx +c =﹣3有两个不相等的实数根;⑤a ﹣b +c <4m +n ;⑥不等式mx +n >ax 2+bx +c 的解集为1<x <4.其中正确的是 .【分析】利用抛物线的对称轴方程得到―b 2a=1,则可对①进行判断;由抛物线开口向下得到a <0,则b >0,由抛物线与y 轴的交点在x 轴上方得到c >0,则可对②进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点为(﹣2,0),则可对③进行判断;利用抛物线与直线y =﹣3只有一个交点可对④进行判断;利用x =﹣1时,y 1>0,即a ﹣b +c >0,x =4时,y 2=0,即4m +n =0,则可对⑤进行判断;结合函数图象可对⑥进行判断.【解答】解:∵抛物线的对称轴为直线x =―b 2a=1,∴b=﹣2a,即2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴下方,∴c>0,∴abc<0,所以②错误;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点为B(4,0),∴抛物线与x轴的一个交点为(﹣2,0),所以③错误;∵抛物线的顶点坐标为(1,3),∴抛物线与直线y=﹣3有两个交点,∴方程ax2+bx+c=﹣3有两个不相等的实数根,所以④正确;∵x=﹣1时,y1>0,即a﹣b+c>0,而x=4时,y2=0,即4m+n=0,∴a﹣b+c>4m+n;所以⑤错误;∵当1<x<4时,y2<y1,∴不等式mx+n>ax2+bx+c的解集为x<1或x>4.所以⑥错误.故答案为:①④.。
判断题。
对的在()里画“√”,错的画“×”。
1.线段是直的,可以量出长度。
()2.3×6=18读作:3乘6等于18。
()3.时针走一大格是1时,分针走一大格是1分。
()4.一个角有一个顶角和两条边。
()5.所有的直角都一样大。
()6.加数相同的加法可以用乘法表示。
()7.钟面上显示3时30分,时针和分针组成直角。
()8.计算20+(15-9)时,应先算括号里面的减法。
()9.28+65=□3,□里填8。
()10.一块正方形纸板,剪去一个角后,一定还剩下3个角。
()11.一个角两条边张开的口子越大,角就越大。
()12.2个4相乘,列式是:2×4。
()13.3×3表示3个3相加,3+3也表示3个3相加。
()14.5相续相加8次,和是13。
()15.分针走一大格的时间是5分,时针走一大格的时间是5时。
()16.从3、4、8这三个数中,任意选取其中2个求和,得数有3种可能。
()17.钝角比直角大,锐角比直角小。
()18.某班男同学有22人,比女同学少8人,女同学有30人。
()19.4×7+7可以直接写成乘法算式7×5。
()20.看一辆大卡车,从前面看到的样子和后面看到的样子是不一样的。
()21.在下图中,B是线段。
()22.4个3相加。
算式:4+3。
()23.有三个同学,每两人握一次手,一共要握3次手。
()24.黑板上的直角比数学课本封面上的直角大。
( )25.最小的两位数和最大的两位数相差90。
( )26.“”这是一条线段。
()27.小丽的肩宽大约30米。
( )28.两个数的积,一定大于两个数的和。
( )29.左图中有2个锐角。
( )30.计算6×4和4×6时,用的是同一句乘法口诀。
()31.钟面上的时间是7时55分,也可以说是8时差5分。
()32.观察同一个物体,从不同的角度或方向看到的形状可能不一样。
( )33.求几个相同加数的和是多少,用乘法计算比较简便。
语文名师面对面七下专题复习三答案1、下列中括号内字注音无误的一项是()[单选题] *A.杏[仁](rén)火[炽](chì)[暂]时(zàn)(正确答案)B.机[杼](zhù)一[钹](bá)[犬]牙(quǎn)C.[叛]乱(pàn)褴[褛](lǚ)坚[劲](jìn)D.[溶]解(róng) [燕]山(yàn)惆[怅](chàng)2、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、慰藉(jiè)硕士(shuò)B、攀援(ài)痴情(zhī)(正确答案)C、脑髓(suǐ)城隅(yú)D、跬步(kuǐ)告诫(jiè)3、下列各句中加点词的解释,有误的一项是()[单选题] *A.明(视力)足以察秋毫之末如其礼乐,以俟(等待)君子B.始速(招致)祸焉沛公则置(放弃,丢下)车骑C.籍(登记)吏民,封府库朝济(成功)而夕设版焉(正确答案)D.素善(与……友善、交好)留侯张良又欲肆(延伸、扩张)其西封4、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、精湛(zhàn)竣工(jùn)眷属(juàn)B、书籍(jí)违背(wéi)拜谒(yè)C、喘息(quǎn)祭祀(sì)糟粕(pà)(正确答案)D、抵御(yù)阴霾(mái)束缚(fù)5、1《诗经》分为风、雅、颂三类,普遍运用赋、比、兴的手法,语言以四言为主,其中不少篇章采用重章叠句的艺术形式。
[判断题] *对(正确答案)错6、下列词语中,加着重号字的注音正确的一项是()[单选题] *A、细腻(nì)硝烟(xiāo)凫水(niǎo)B、撅着嘴(juē)打点(dian)脱缰(jiāng)(正确答案)C、菱角(líng)虾篓(lǒu)苇眉(wéi)D、吮指头(sǔn)嘱咐(zhǔ)白洋淀(diàn)7、1韩愈,是唐代古文运动的倡导者,被后人尊为唐宋八大家之首,与柳宗元并称韩柳,有文章巨匠和百代文宗之名。
2017届中考复习多结论几何综合题专题试卷一、单选题1、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是()A、1个B、2个C、3个D、4个2、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②=;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE;其中正确的是( )A、①②④B、③④⑤C、①③④D、①③⑤3、如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD ,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE;其中正确的个数是().A、1B、2C、3D、44、如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A、①②B、②③C、①④D、③④5、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S四边形BEOF中,正确的有()A、1个B、2个C、3个D、4个6、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A、1B、2C、3D、47、如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A、1个B、2个C、3个D、4个8、如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A、②③B、②④C、①③④D、②③④9、如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A、1个B、2个C、3个D、4个10、如图,PA=PB,OE⊥PA,OF⊥PB,则以下结论:①OP是∠APB的平分线;②PE=PF③CA=BD;④CD∥AB;其中正确的有()个.A、4B、3C、2D、111、如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A、1个B、2个C、3个D、4个12、如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A、0B、1C、2D、313、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是( )A 、1B 、2C 、3D 、414、如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A 、4个B 、3个C 、2个D 、1个15、(2016•攀枝花)如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②tan ∠AED=2;③S △AGD =S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG ;⑥若S △OGF =1,则正方形ABCD 的面积是6+4 ,其中正确的结论个数为( )A 、2B 、3C 、4D 、516、如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP= ;④S四边形ECFG=2S △BGE .A 、4B 、3C 、2D 、117、如图所示,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD=MC ,连接AC 、BC 、AD 、BD ,某同学根据图象写出下列结论: ①a ﹣b=0;②当﹣2<x <1时,y >0; ③四边形ACBD 是菱形; ④9a ﹣3b+c >你认为其中正确的是()A、②③④B、①②④C、①③④D、①②③18、如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是()A、2B、3C、4D、519、如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足= ,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE= ;④S△DEF=4 ,其中正确的是()A、①②③B、②③④C、①②④D、①③④20、如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A、①③⑤B、②④⑤C、①②⑤D、①③④答案解析部分一、单选题1、【答案】D【考点】等腰三角形的性质,梯形中位线定理,锐角三角函数的定义【解析】【分析】①根据等腰直角三角形的性质及△ABC∽△CDE的对应边成比例知,;然后由直角三角形中的正切函数,得tan∠AEC=,再由等量代换求得tan∠AEC=;②由三角形的面积公式、梯形的面积公式及不等式的基本性质a2+b2≥2ab(a=b时取等号)解答;③、④通过作辅助线MN,构建直角梯形的中位线,根据梯形的中位线定理及等腰直角三角形的判定定理解答.【解答】解:∵△ABC和△CDE均为等腰直角三角形,∴AB=BC,CD=DE,∴∠BAC=∠BCA=∠DCE=∠DEC=45°,∴∠ACE=90°;∵△ABC∽△CDE∴①∴tan∠AEC=,∴tan∠AEC=;故本选项正确;②∵S△ABC=a2,S△CDE=b2,S梯形ABDE=(a+b)2,∴S△ACE=S梯形ABDE-S△ABC-S△CDE=ab,S△ABC+S△CDE=(a2+b2)≥ab(a=b时取等号),∴S△ABC+S△CDE≥S△ACE;故本选项正确;④过点M作MN垂直于BD,垂足为N.∵点M是AE的中点,则MN为梯形中位线,∴N为中点,∴△BMD为等腰三角形,∴BM=DM;故本选项正确;③又MN=(AB+ED)=(BC+CD),∴∠BMD=90°,即BM⊥DM;故本选项正确.故选D.【点评】本题综合考查了等腰直角三角形的判定与性质、梯形的中位线定理、锐角三角函数的定义等知识点.在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、【答案】C【考点】全等三角形的判定,勾股定理,相似三角形的判定,旋转的性质【解析】【分析】①根据旋转的性质知∠CAD=∠BAF,AD=AF,因为∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°=∠DAE,由此即可证明△AEF≌△AED;②当△ABE∽△ACD时,该比例式成立;③根据旋转的性质,△ADC≌△ABF,进而得出△ABC的面积等于四边形AFBD 的面积;④据①知BF=CD,EF=DE,∠FBE=90°,根据勾股定理判断.⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF;由此即可确定该说法是否正确;【解答】①根据旋转的性质知∠CAD=∠BAF,AD=AF,∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.∴∠EAF=45°,∴△AED≌△AEF;故本选项正确;②∵AB=AC,∴∠ABE=∠ACD;∴当∠BAE=∠CAD时,△ABE∽△ACD,∴=;当∠BAE≠∠CAD时,△ABE与△ACD不相似,即≠;∴此比例式不一定成立;故本选项错误;③根据旋转的性质知△ADC≌△AFB,∴S△ABC=S△ABD+S△ABF=S四边形AFBD,即三角形ABC的面积等于四边形AFBD的面积;故本选项正确;④∵∠FBE=45°+45°=90°,∴BE2+BF2=EF2,∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD,又∵EF=DE,∴BE2+DC2=DE2,故本选项正确;⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF,∴BE+DC=BE+BF>DE=EF,即BE+DC>DE,故本选项错误;综上所述,正确的说法是①③④;故选C.【点评】此题主要考查了图形的旋转变换以及全等三角形的判定等知识,解题时注意旋转前后对应的相等关系.3、【答案】D【考点】等边三角形的性质,菱形的判定与性质,平移的性质【解析】【解答】∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC =CD ,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC ,故①正确;由①可得AD=BC ,∵AB=CD ,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE ,故四边形ACED是菱形,即③正确;∵四边形ACED是菱形,∴AC⊥BD ,∵AC∥DE ,∴∠BDE=∠COD=90°,∴BD⊥DE ,故④正确;综上可得①②③④正确,共4个,故选D.【分析】先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD ,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.4、【答案】B【考点】勾股定理,翻折变换(折叠问题),相似三角形的判定与性质,特殊角的三角函数值【解析】【解答】①∵△ABD为直角三角形,∴BD2=AD2+AB2,不是BD=AD2+AB2,故说法错误;②根据折叠可知:DE=CD=AB,∠A=∠E,∠AFB=∠EFD,∴△ABF≌△EDF,故说法正确;③根据②可以得到△ABF∽△EDF,∴=,故说法正确;④在Rt△ABD中,∠ADB≠45°,∴AD≠BD•cos45°,故说法错误.所以正确的是②③.故选B.【分析】①直接根据勾股定理即可判定是否正确;②利用折叠可以得到全等条件证明△ABF≌△EDF;③利用全等三角形的性质即可解决问题;④在Rt△ABD中利用三角函数的定义即可判定是否正确.此题主要考查了折叠问题,也考查了勾股定理、相似三角形的性质、全等三角形的性质及三角函数的定义,它们的综合性比较强,对于学生的综合能力要求比较高,平时加强训练.5、【答案】C【考点】全等三角形的判定与性质,勾股定理,正方形的性质,锐角三角函数的定义【解析】【解答】解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°,∵AE=BF=1,∴BE=CF=4﹣1=3,在△EBC和△FCD中,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;若OC=OE,∵DF⊥EC,∴CD=DE,∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC= = ,故③正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故④正确.故选C.【分析】由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得③正确;由①易证得④正确.6、【答案】C【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.7、【答案】C【考点】等边三角形的判定与性质,含30度角的直角三角形,平行四边形的性质【解析】【解答】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选:C.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.8、【答案】D【考点】全等三角形的判定与性质,角平分线的性质,正方形的判定【解析】【解答】如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,∴①不正确;∵AD是△ABC的角平分线,∴∠EAD∠FAD,在△AED和△AFD 中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,∴④正确;在△AEO和△AFO中,,∴△AE0≌△AF0(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,∴②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,∴③正确.综上,可得正确的是:②③④.故选:D.【分析】①如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,所以①不正确.②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.③首先判断出当∠A=90°时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE成立,据此解答即可.9、【答案】B【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE ,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.10、【答案】A【考点】全等三角形的判定与性质,圆心角、弧、弦的关系,相似三角形的判定与性质【解析】【解答】连接OP、OC、OA、OD、OB、CD、AB.∵PC•PA=PD•PB(相交弦定理),PA=PB(已知),∴PC=PD,∴AC=BD;在△AOC和△BOD中,∵∠AOC=∠BOD(等弦对等角),OA=OB(半径),OD=OC(半径),∴△AOC≌△BOD,∴③CA=BD;OE=OF;又∵OE⊥PA,OF⊥PB,∴①OP是∠APB的平分线;∴②PE=PF;在△PCD和△PAB中,PC:PA=PD:PB,∠DPC=∠BPA,∴△PCD∽△PAB,∴∠PDC=PBA,∴④CD∥AB;综上所述,①②③④均正确,故答案选A.【分析】①通过证明△AOC≌△BOD,再根据全等三角形的对应高相等求得OE=OF;再根据角平分线的性质证明OP是∠APB的平分线;②由角平分线的性质证明PE=PF;③通过证明△AOC≌△BOD,再根据全等三角形的对应边相等求得CA=BD;④通过证明△PCD∽△PAB,再根据相似三角形的性质对应角相等证得∠PDC=PBA;然后由平行线的判定得出结论CD∥AB.11、【答案】C【考点】全等三角形的判定与性质,翻折变换(折叠问题),锐角三角函数的定义【解析】【解答】①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知) ∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,AB="CB" ,BO=BO ,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°-45°-67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;故正确的有3个.故选C.12、【答案】D【考点】等边三角形的性质,菱形的判定,旋转的性质【解析】【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.【分析】根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.本题考查了旋转的性质,菱形的性质和判定,等边三角形的性质和判定的应用,能灵活运用知识点进行推理是解此题的关键.13、【答案】D【考点】全等三角形的判定与性质,矩形的判定与性质,正方形的性质,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.14、【答案】B【考点】全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的性质,矩形的性质【解析】【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.15、【答案】B【考点】菱形的判定与性质,翻折变换(折叠问题),等腰直角三角形【解析】【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG= ∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF= OG,∴BE= EF= ×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG= ,∴BE=2OG=2 ,GF= ==2,∴AE=GF=2,∴AB=BE+AE=2 +2,∴S正方形ABCD=AB2=(2 +2)2=12+8 ,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.16、【答案】B【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x= ,∴sin=∠BQP= = ,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE= BC,BF= BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选:B.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.17、【答案】D【考点】二次函数的图象,二次函数的性质,菱形的判定【解析】【解答】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b,a﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(﹣2,0)、B(1,0),∴当﹣2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=﹣3时,y<0,即y=9a﹣3b+c<0,④错误.综上可知:正确的结论为①②③.故选D.【分析】①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=﹣=﹣0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当﹣2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=﹣3时,y<0,即可得出9a﹣3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.18、【答案】D【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题)【解析】【解答】解:∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG= ∠BAD=45°,所以①正确;设BG=x,则GF=x,C=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵CG2+CE2=GE2,∴(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3,CG=6﹣3=3∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:= ,∴S△FGC=S△GCE﹣S△FEC= ×3×4﹣×4×(×3)= =3.6,所以⑤正确.故正确的有①②③④⑤,故选:D.【分析】先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF,∠BAG=∠FAG,所以∠GAE= ∠BAD=45°;GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,则BG=CG=3,则点G为BC的中点;同时得到GF=GC,根据等腰三角形的性质得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根据三角形外角性质得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根据平行线的判定方法得到CF∥AG;过F作FH⊥DC,则△EFH∽△EGC,△EFH∽△EGC,由相似比为,可计算S△FGC.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.19、【答案】C【考点】垂径定理,圆周角定理,相似三角形的判定与性质,解直角三角形【解析】【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵= ,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG= = ,∴在Rt△AGD中,tan∠ADG= = ,∴tan∠E= ;故③错误;④∵DF=DG+FG=6,AD= = ,∴S△ADF= DF•AG= ×6×=3 ,∵△ADF∽△AED,∴=()2,∴= ,∴S△AED=7 ,∴S△DEF=S△AED﹣S△ADF=4 ;故④正确.故选C.【分析】①正确.由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:,DG=CG,继而证得△ADF∽△AED;②正确.由= ,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③错误.由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=.④首先求得△ADF的面积,由相似三角形面积的比等于相似比的平方,即可求得△ADE的面积,继而求得S△DEF=4 .20、【答案】D【考点】垂径定理,圆周角定理,相似三角形的判定与性质【解析】【解答】解:∵在⊙O中,点C是的中点,∴= ,∴∠CAD=∠ABC,故①正确;∵≠ ,∴≠ ,∴AD≠BC,故②错误;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°,∴∠ACE=∠ABC,又∵C为的中点,∴= ,∴∠CAP=∠ABC,∴∠ACE=∠CAP,∴AP=CP,∵∠ACQ=90°,∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC2=AE•AB,故④正确;如图,连接BD,则∠ADG=∠ABD,∵≠ ,∴≠ ,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC,又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC,∴CB与GD不平行,故⑤错误.故答案为:D.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,据此推理可得①正确,②错误;通过推理可得∠ACE=∠CAP,得出AP=CP,再根据∠PCQ=∠PQC,可得出PC=PQ,进而得到AP=PQ,即P为Rt△ACQ斜边AQ的中点,故P为Rt△ACQ 的外心,即可得出③正确;连接BD,则∠ADG=∠ABD,根据∠ADG≠∠BAC,∠BAC=∠BCE=∠PQC,可得出∠ADG≠∠PQC,进而得到CB与GD不平行,可得⑤错误.。
专题二几何图形的多结论问题【专题解读】几何类多结论判断题考查的知识点较多,主要以圆和四边形为核心开放研究型问题,所谓“开放”简单来说就是答案不唯一的,解题的方向不确定,条件或者结论不止一种情况的试题,解答此类试题时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法,根据开放性的试题的特点,主要有如下几种类型:条件开放性、结论开放性、选择开放型、综合开放型,属于中考必考题型.(2020•广东二模)如图,已知▱ABCD的对角线AC、BD交于点O,DE平分∠ADC 交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;②S平行四边形ABCD=BD•CD;③AO=2BO;④S△DOF=2S△EOF.其中成立的个数有(C)A.1个B.2个C.3个D.4个【思路点拨】①证明BE=CE,OA=OC,根据三角形中位线定理可得结论正确;②证明BD⊥CD,可得结论正确;③设AB=x,分别表示OA和OB的长,可以作判断;④先根据平行线分线段成比例定理可得:DF=2EF,由同高三角形面积的比等于对应底边的比可作判断.【自主解答】①∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠ADC+∠BCD=180°,∵∠BCD=60°,∴∠ADC=120°,∵DE平分∠ADC,∴∠CDE=60°=∠BCD,∴△CDE是等边三角形,∴CE=CD,∵BC=2CD,∴BE=CE,∵OA=OC,∴OE∥AB;故①正确;②∵△DEC是等边三角形,∴∠DEC=60°=∠DBC+∠BDE,∵BE=EC=DE,∴∠DBC=∠BDE=30°,∴∠BDC=30°+60°=90°,∴BD⊥CD,∴S平行四边形ABCD=BD•CD;故②正确;③设AB=x,则AD=2x,则BD=√3x,∴OB=√32x,由勾股定理得:AO=(√3x2)=√72x,故③不正确;④∵AD ∥EC ,∴AD EC =DF EF =21,∴DF =2EF ,∴S △DOF =2S △EOF . 故④正确;故选:C .1.(2020•深圳模拟)在边长为2的正方形ABC D 中,P 为AB 上的一动点,E 为A D 中点,PE 交CD 延长线于Q ,过E 作EF ⊥PQ 交BC 的延长线于F ,则下列结论:①△APE ≌△DQE ;②PQ =EF ;③当P 为A B 中点时,CF =√2;④若H 为QC 的中点,当P 从A 移动到B 时,线段EH 扫过的面积为1,其中正确的有( )A .1个B .2个C .3个D .4个【答案】B【接卸】①∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠A =∠B =∠ADC =90°,∴∠A =∠EDQ =90°,∵E 为A D 中点,∴AE =ED ,在△APE 和△DQE 中,{∠A =∠EDQAE =ED ∠AEP =∠DEQ,∴△APE ≌△DQE (ASA ),故①正确;②作PG ⊥CD 于G ,EM ⊥BC 于M ,如图1所示:∴∠PGQ =∠EMF =90°,∵EF ⊥PQ ,∴∠PEF =90°,∴∠PEM +∠MEF =90°,∵∠GPE +∠MEP =90°,∴∠GPE =∠MEF ,在△EFM 和△PQG 中,{∠EMF =∠PGQEM =PG ∠MEF =∠GPQ,∴△EFM ≌△PQG (ASA ),∴EF =PQ ,故②正确;③连接QF ,如图2所示:则QF =PF ,PB 2+BF 2=QC 2+CF 2,设CF =x ,则(2+x )2+12=32+x 2,∴x =1,故③错误;④如图3所示:当P 在A 点时,Q 与D 重合,QC 的中点H 在DC 的中点S 处, 当P 运动到B 时,QC 的中点H 与D 重合,故EH 扫过的面积为△ESD 的面积为12,故④错误;故选:B .2.(2020•灌南县一模)如图,正方形ABC D 中,E 、F 分别为BC 、CD 的中点,AF 与DE 交于点G .则下列结论中:①AF ⊥DE ;②AD =BG ;③GE +GF =√2GC ;④S △AGB =2S 四边形ECFG .其中正确的是( )A .1个B .2个C .3个D .4个【答案】D【解析】∵正方形ABCD ,E ,F 均为中点,∴AD =BC =DC ,EC =DF =12BC,∵在△ADF 和△DCE 中,{AD =DC∠ADF =∠DCE DF =CE,∴△ADF ≌△DCE (SAS ),∴∠AFD =∠DEC ,∵∠DEC +∠CDE =90°,∴∠AFD +∠CDE =90°=∠DGF ,∴AF ⊥DE ,故①正确;如图1,过点B 作BH ∥DE 交AD 于H ,交AF 于K ,∵AF ⊥DE ,BH ∥DE ,E 是BC 的中点,∴BH ⊥AG ,H 为AD 的中点,∴BH 是AG 的垂直平分线,∴BG =AB =AD ,故②正确,如图2,延长DE 至M ,使得EM =GF ,连接CM ,∵∠AFD =∠DEC ,∴∠CEM =∠CFG ,又∵E ,F 分别为BC ,DC 的中点,∴CF =CE ,∵在△CEM 和△CFG 中,{CE =CF∠CEM =∠CFG EM =FG,∴△CEM ≌△CFG (SAS ),∴CM =CG ,∠ECM =∠GCF ,∵∠GCF +∠BCG =90°,∴∠ECM +∠BCG =∠MCG =90°,∴△MCG 为等腰直角三角形,∴GM =GE +EM =GE +GF =√2GC ,故③正确;如图3,过G 点作TL ∥AD ,交AB 于T ,交DC 于L ,则GL ⊥AB ,GL ⊥DC ,设EC =x ,则DC =2x ,DF =x ,由勾股定理得DE =√5x ,由DE ⊥GF ,易证得△DGF ∽△DCE , ∴DE DF =GF EC =√5x x ,∴S △DEC S △DGF =(√51)2=51, ∴S △DGF =15S △DEC ,∴S 四边形ECFG =S △DEC ﹣S △DGF =45S △DEC ,∵S △DEC =12⋅2x ⋅x =x 2,∴S 四边形ECFG =45x 2,S △DGF =15x 2∵DF =x , ∴GL =15x 212x =25x ,∴TG =2x −25x =85x ,∴S △AGB =12•AB •TG =12•2x •85x =85x 2,∴S △AGB =2S 四边形ECFG 故④正确,故选:D .3.(2020•东莞市一模)如图,在菱形ABC D 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连接BE 分别交AC 、AD 于点F 、G ,连接OG ,则下列结论中一定成立的是 ①④ .(把所有正确结论的序号都填在横线上)①OG =12AB ;②与△EGD 全等的三角形共有5个;③S 四边形ODGF >S △ABF ; ④由点A 、B 、D 、E 构成的四边形是菱形.【答案】①④【解析】∵四边形ABCD 是菱形,∴AB =BC =CD =DA ,AB ∥CD ,OA =OC ,OB =OD ,AC ⊥BD ,∴∠BAG =∠EDG ,△ABO ≌△BCO ≌△CDO ≌△AOD ,∵CD =DE ,∴AB =DE ,在△ABG 和△DEG 中,{∠BAG =∠EDG ∠AGB =∠DGE AB =DE,∴△ABG ≌△DEG (AAS ),∴AG =DG ,∴OG 是△ACD 的中位线,∴OG =12CD =12AB ,①正确;∵AB ∥CE ,AB =DE ,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,{OD=AG∠ODC=∠BAG=60°AB=DC,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=12AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=14△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;不正确;正确的是①④.故答案为:①④.4.(2020•天河区一模)如图,在正方形ABC D中,对角线AC,BD交于点O,点E,F分别在AB,BD上,且△ADE≌△FDE,DE交AC于点G,连接GF.得到下列四个结论:①∠ADG=22.5°;②S△AGD=S△OGD;③BE=2OG;④四边形AEFG是菱形,其中正确的结论是①③④.(填写所有正确结论的序号)【答案】①③④.【解析】∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,∴由△ADE≌△FDE,可得:∠ADG=12∠ADO=22.5°,故①正确;∵△ADE≌△FDE,∴AD=FD,∠ADG=∠FDG,又∵GD=GD,∴△ADG≌△FDG(SAS),∴S△AGD>S△OGD,故②错误;∵△ADE≌△FDE,∴EA=EF,∵△ADG≌△FDG,∴GA=GF,∠AGD=∠FGD,∴∠AGE=∠FGE.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∴∠FGE=∠FEG,∴EF=GF,∴EF=GF=EA=GA,∴四边形AEFG是菱形,故④正确;∵四边形AEFG是菱形,∴AE∥FG,∴∠OGF=∠OAB=45°,∴△OGF为等腰直角三角形,∴FG=√2OG,∴EF=√2OG,∵△BFE为等腰直角三角形,∴BE=√2EF=√2×√2OG=2OG,∴③正确.综上,正确的有①③④.故答案为:①③④.5.(2020•福田区一模)如图,正方形ABC D中,E是BC延长线上一点,在AB上取一点F,使点B关于直线EF的对称点G落在AD上,连接EG交CD于点H,连接BH交EF于点M,连接CM.则下列结论,①∠1=∠2;②∠3=∠4;③GD=√2CM;④若AG=1,GD =2,则BM=√5,其中正确的是..【答案】①②③④【解析】如图1中,过点B作BK⊥GH于K.∵B,G关于EF对称,∴EB=EG,∴∠EBG=∠EGB,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=∠BCD=90°,AD∥BC,∴∠AGB=∠EBG,∴∠AGB=∠BGK,∵∠A=∠BKG=90°,BG=BG,∴△BAG≌△BKG(AAS),∴BK=BA=BC,∠ABG=∠KBG,∵∠BKH=∠BCH=90°,BH=BH,∴Rt△BHK≌Rt△BHC(HL),∴∠1=∠2,∠HBK=∠HBC,故①正确,∴∠GBH=∠GBK+∠HBK=1∠ABC=45°,2过点M作MQ⊥GH于Q,MP⊥CD于P,MR⊥BC于R.∵∠1=∠2,∴MQ=MP,∵∠MEQ=∠MER,∠BCD=45°,∴MQ=MR,∴MP=MR,∴∠4=∠MCP=12∴∠GBH=∠4,故②正确,如图2中,过点M作MW⊥AD于W,交BC于T.∵B,G关于EF对称,∴BM=MG,∵CB=CD,∠4=∠MCD,CM=CM,∴△MCB≌△MCD(SAS),∴BM=DM,∴MG=MD,∵MW⊥DG,∴WG=WD,∵∠BTM=∠MWG=∠BMG=90°,∴∠BMT+∠GMW=90°,∵∠GMW+∠MGW=90°,∴∠BMT=∠MGW,∵MB=MG,∴△BTM≌△MWG(AAS),∴MT=WG,∵MC=√2TM,DG=2WG,∴DG=√2CM,故③正确,∵AG=1,DG=2,∴AD=AB=TM=3,EM=WD=TM=1,BT=AW=2,∴BM=√BT2+MT2=√22+12=√5,故④正确,故答案为:①②③④.。
专题15 选择压轴题多结论问题专题复习(解析版)第一部分教学案1.(2022秋•西山区期中)下列说法正确的有( )个.①如果地面向上15米记作+15米,那么地面向下6米记作﹣6米;②一个有理数不是正数就是负数;③任何一个有理数的绝对值都不可能小于零;④﹣a一定在原点左边;⑤在数轴上,一个数对应的点离原点越远,这个数越小.A.1B.2C.3D.4思路引领:根据正数和负数的定义,有理数的分类,绝对值的性质,有理数的大小比较和数轴的性质对各选项分析判断利用排除法求解.解:①如果地面向上15米记作15米,那么地面向下6米记作﹣6米,故本选项正确;②一个有理数不是正数就是零和负数,故本选项错误;③任何一个有理数的绝对值都是非负数,故本选项正确;④﹣a可以表示任意数,不一定在原点左边,故本选项错误;⑤在数轴上,原点右边的一个数对应的点离原点越远,这个数越大,故本选项错误;故选:B.总结提升:本题考查有理数,正数和负数,绝对值和数轴,解题的关键是掌握有理数的分类标准和数轴的性质.2.(2021秋•沿河县期末)现有以下四个结论:①绝对值等于其本身的有理数只有零;②相反数等于其本身的有理数只有零;③倒数等于其本身的有理数只有1;④平方等于其本身的有理数只有1.其中正确的有( )A.3个B.2个C.1个D.0个思路引领:根据绝对值的性质,相反数的定义,倒数的定义,有理数乘方的定义对各小题分析判断即可得解.解:①绝对值等于其本身的有理数是零和正数,故本小题错误;②相反数等于其本身的有理数只有零,正确;③倒数等于其本身的有理数是1和﹣1,故本小题错误;④平方等于其本身的有理数是0和1,故本小题错误;综上所述,正确的说法有②共1个.故选:C.总结提升:本题考查了有理数的乘方,相反数的定义,绝对值的性质,倒数的定义,是基础概念题,熟记概念是解题的关键.3.(2021秋•抚州)如图,数轴上点A,B,C对应的有理数分别为a,b,c,则下列结论中:①a+b+c>0;②a•b•c>0;③a+b﹣c>0;④0<ba<1;⑤|a|>|b|>|c|,正确的有( )A.4个B.3个C.2个D.1个思路引领:先由数轴得出a<﹣2<b<﹣1<0<c<1,再根据有理数的加法法则、有理数的乘除法法则等分别分析,可得答案.解:由数轴可得:a<﹣2<b<﹣1<0<c<1,∴a+b+c<0,故①错误;∵a,b,c中两负一正,∴a•b•c>0,故②正确;∵a<0,b<0,c>0,∴a+b﹣c<0,故③错误;∵a<﹣2<b<﹣1,∴0<ba<1,故④正确;a|>|b|>|c|,故⑤正确;综上可知,正确的有3个.故选:B.总结提升:本题考查了数轴在有理数加减乘除法运算中的应用,数形结合,是解题的关键.4.(2022秋•惠济区期中)有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是( )①b<0<a;②|b|<|a|;③b﹣a>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④思路引领:由数轴直观得出b<0<a,且|b|>|a|,然后关键有理数的有关知识解答.解:①由数轴直观得出b<0<a,故①正确;②由数轴直观得出|b|>|a|,故②错;③b﹣a=b+(﹣a)<0;故③错;④a﹣b=a+(﹣b)>0,a+b<0,故④正确.故答案为:B.总结提升:本题考查的是有理数的有关运算,解题的关键是关键数轴判断正负和绝对值的大小.5.(2022秋•金水区校级期中)已知数a,b,c在数轴上的位置如图,下列说法:①b+c>0;②a+b−c>0;③a|a|+b|b|+c|c|=1;④|a−b|−2|c+b|+|a−c|=−3b+c.其中正确结论的个数是( )个.A.1B.2C.3D.4思路引领:根据数轴上的位置关系.判断出a,b,c的大小关系以及各自绝对值得大小关系,在进行判断即可.解:∵|c|>|b|,b<0<c,∴b+c>0,正确,故①正确;∵b<0<a,|b|>|a|,c>0,∴a+b−c<0,故②错误;a|a|+b|b|+c|c|=aa+bb+cc=1﹣1+1=1,正确,故③正确;∵a﹣b>0,c+b>0,a﹣c<0∴|a−b|−2|c+b|+|a−c|,=a﹣b﹣2(b+c)+c﹣a,=a﹣b﹣2b﹣2c+c﹣a,=﹣3b﹣c,故④错误,∴正确的有两个.故选:B.总结提升:本题主要考查数轴与绝对值的综合运用,解题的关键在于掌握绝对值化简的技巧.6.(2022秋•海城市校级期中)已知a、b、c在数轴上的位置如图,下列说法:①abc<0;②c+a>0;③c﹣b<0;④cb>0.正确的有( )A.1个B.2个C.3个D.4个思路引领:根据数轴上点的位置,利用有理数的加减乘除法则判断即可.解:根据数轴上点的位置得:c<b<0<a,且|b|<|a|<|c|,∴abc>0,c+a<0,c﹣b<0,cb>0,则正确的有2个.故选:B.总结提升:此题考查了有理数的除法,数轴,有理数的加减法,以及有理数的乘法,熟练掌握运算法则是解本题的关键.7.(2022秋•行唐县校级期中)一个两位数,它的十位数字为a,个位数字为b,若把它的十位数字和个位数字对调,得到一个新的两位数,则下列判断正确的是( )甲同学:新的两位数可表示为b+a;乙同学:新的两位数与原两位数的和是11的倍数;丙同学:若b﹣a能被2整除,则新的两位数与原两位数的差能被18整除A.只有乙同学的正确B.只有乙、丙同学的正确C.只有甲、丙同学的正确D.三名同学的都不正确思路引领:根据题意表示出原数与新数即可;求出两数的差,化简后判断即可.解:由题意得:这个两位数是10a+b,新的两位数是:10b+a,故甲判断错误;新的两位数与原两位数的和是:10b+a+10a+b=11a+11b=11(a+b),则其和是11的倍数,故乙判断正确;新的两位数与原两位数的差是:10b+a﹣(10a+b)=9b﹣9a=9(b﹣a),∵b﹣a能被2整除,∴新的两位数与原两位数的差能被18整除,故丙判断正确;故判断正确的有乙、丙.故选:B.总结提升:本题主要考查整式的加减,列代数式,解答的关键是对整式的加减运算的法则的掌握.8.(2022秋•金水区校级期中)下列说法正确的有( )个.①单项式x的系数和次数都是0;②3x4﹣5x2y2﹣6y3+2的次数是11;③多项式1﹣2x+12x2是由1,﹣2x,12x2三项组成;④在13a2,x yπ,5y4x,0中整式有2个.A.1B.2C.3D.4思路引领:根据多项式、单项式、整式的相关概念解答即可.解:①单项式x的系数和次数都是1,原说法错误;②3x4﹣5x2y2﹣6y3+2的次数是4,原说法错误;③多项式1﹣2x+12x2是由1,﹣2x,12x2三项组成,原说法正确;④在13a2,x yπ,5y4x,0中整式有3个,原说法错误.说法正确的有1个.故选:A.总结提升:本题主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.9.(2022秋•九龙坡区校级期中)对于4个整式:A:a2,B:a+2,C:b2,D:2a,有以下几个结论:①对于a、b取任意数,都有B•D﹣2A﹣4B=﹣8;②若b为正数,则B•C+D+A的值一定是正数;③若多项式M=A﹣D+m•B•D(m为常数)不含a2,则m的值为―12,上述结论中,正确的有( )A.①B.①②C.②③D.①③思路引领:根据整式混合运算的顺序与运算法则分别计算即可求解.解:①:B•D﹣2A﹣4B=(a+2)•2a﹣2a2﹣4(a+2)=2a2+4a﹣2a2﹣4a﹣8=﹣8,故结论①正确;②:若b为正数,则B•C+D+A=(a+2)•b2+2a+a2=ab2+2b2+2a+a2,∵a可取任意数,∴ab2+2a可以是负数,∴ab2+2b2+2a+a2不一定是正数,故结论②错误;③:M=A﹣D+m•B•D=a2﹣2a+m(a+2)•2a=a2﹣2a+2ma2+4ma=(1+2m)a2+(4m﹣2)a,∵多项式M=A﹣D+m•B•D(m为常数)不含a2,∴1+2m=0,∴m=―1 2,∴M=9x2﹣3≥﹣3,故结论③正确.故选:D.总结提升:本题考查整式的混合运算,掌握运算法则是解题的关键.10.(2022秋•涟源市期中)规定:f(x)=|x﹣2|,g(y)=|y+3|.例如f(﹣4)=|﹣4﹣2|,g(﹣4)=|﹣4+3|.下列结论中:①若f(x)+g(y)=0,则2x﹣3y=13;②若x<﹣3,则f(x)+g(x)=﹣1﹣2x:③若x>﹣3,则f(x)+g(x)=2x+1;④式子f(x﹣1)+g(x+1)的最小值是7.其中正确的所有结论是( )A.①②B.①②④C.①③④D.①②③④思路引领:①根据新定义运算和非负数的性质求得x、y,再代值计算便可判断①的正误;②根据新定义运算和绝对值的性质进行计算便可;③根据新定义运算和绝对值的性质,分两种情况:﹣3<x<2;x≥2;分别计算便可;④根据新定义运算和绝对值的性质,进行解答便可.解:①∵f(x)+g(y)=0,∴|x﹣2|+|y+3|=0,∴x﹣2=0,y+3=0,∴x=2,y=﹣3,∴2x﹣3y=13=4+9=13,故①正确;②∵x<﹣3,∴f(x)+g(x)=|x﹣2|+|x+3|=﹣x+2﹣x﹣3=﹣2x﹣1,故②正确:③∵x>﹣3,f(x)+g(x)=|x﹣2|+|x+3|∴当﹣3<x<2时,f(x)+g(x)=﹣x+2+x+3=5,当x≥2时,f(x)+g(x)=x﹣2+x+3=2x+1,故③错误;④f(x﹣1)+g(x+1)=|x﹣1﹣2|+|x+1+3|=|x﹣3|+|x+4|,当﹣4≤x≤3时,④式子f(x﹣1)+g(x+1)有最小值为:3﹣x+x+4=7,故④正确;故选:B .总结提升:本题考查了求代数式的值,非负数的性质,绝对值的定义,关键是应用新定义和绝对值的性质解题.11.(2022秋•庐阳区校级期中)下列各变形中:①由x =y ,得到x a =y a ;②由x +2=y +2,可得到x =y ;③由x a =y a 可得到x =y ;④由x 0.3―2x 10.7=7,可得到10x 3―20x 107=70.其中一定正确的有( )A .1个B .2个C .3个D .4个思路引领:根据等式的性质对各小题进行逐一分析即可.解:①当a =0时,x a 与y a 无意义,故不符合题意;②由x +2=y +2,可得到x =y ,符合等式的性质1,故符合题意;③由x a =y a 可得到x =y ,符合等式的性质2,故符合题意;④由x 0.3―2x 10.7=7,可得到10x 3―20x 107=7,故不符合题意.故选:B .总结提升:本题考查的是等式的性质,熟知等式的两个基本性质是解题的关键.12.(2022秋•丹江口市期中)已知m =n ,则下列变形中正确的个数为( )①m +2=n +2;②am =an ;③m n =1;④m a 21=n a 21A .1个B .2个C .3个D .4个思路引领:根据等式的性质对各小题进行解答即可.解:①∵m =n ,∴m +2=n +2,故本小题符合题意;②∵m =n ,∴am =an ,故本小题符合题意;③当n =0时,m m 无意义,故本小题不符合题意;④∵m =n ,a 2+1>0,∴m a 21=n a 21,故本小题符合题意.故选:C .总结提升:本题考查的是等式的性质,熟知等式的性质是解题的关键.13.(2022秋•怀柔区校级月考)有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m +10=43m﹣1;②n1040=n143;③n1040=n143;④40m+10=43m+1.其中正确的是( )A.①②B.②④C.①③D.③④思路引领:由乘车的人数不变,可得出关于m的一元一次方程;由客车辆数不变,可得出关于n的一元一次方程,再对照给定的4个等式即可得出结论.解:由人数不变,可列出方程:40m+10=43m+1,∴等式④正确;由客车的辆数不变,可列出方程:n1040=n143,∴等式③正确.∴正确的结论是③④.故选:D.总结提升:本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.14.(2021秋•高新区校级期末)鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”图是嘉淇解题过程,需要补足横线上符号所代表的内容,则下列判断不正确的是( )解:设鸡有x只,那么兔子有□只.因为☆+兔的足数=94,所以列方程为〇x+△(35﹣x)=94,解这个方程,得x=23,从而35﹣23=12.答:鸡有23只,兔子有12只.A.□代表(35﹣x)B.☆代表鸡的足数C.〇代表2D.△代表2思路引领:设鸡有x只,则兔子有(35−x)只,根据鸡的脚的数量+兔子的脚的数量=94可列方程,解方程即可.解:设鸡有x只,则兔子有(35−x)只,∵鸡的足数+兔的足数=94,∴列方程为2x+4(35−x)=94,解这个方程,得:x=23,从而35−23=12,∴鸡有23只,兔子有12只,∴□代表(35−x),☆代表鸡的足数,〇代表2,△代表4,故选:D.总结提升:本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系.15.(2021秋•阳东区期末)将方程3x+6=2x﹣8移项后,四位同学的结果分别是(1)3x+2x =6﹣8;(2)3x﹣2x=﹣8+6;(3)3x﹣2x=8﹣6;(4)3x﹣2x=﹣6﹣8,其中正确的有( )A.0个B.1个C.2个D.3个思路引领:移项时注意改变该项的符号,据此判断即可.解:将方程3x+6=2x﹣8移项后,可得到3x﹣2x=﹣8﹣6,∴只有(4)是正确的,故选:B.总结提升:本题主要考查一元一次方程的知识,熟练掌握移项时改变该项的符号是解题的关键.16.(2021秋•普陀区期末)下列说法正确的是( )①若x=1是关于x的方程a+bx+c=0的一个解,则a+b+c=0;②在等式3x=3a﹣b两边都除以3,可得x=a﹣b;③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=―1 2;④在等式a=b两边都除以x2+1,可得ax21=bx21.A.①③B.②④C.①④D.②③思路引领:把x=1代入方程a+bx+c=0,即可判断①;根据等式的性质即可判断②④,把b=2a代入方程ax+b=0得出ax+2a=0,求出x,即可判断③.解:把x=1代入方程a+bx+c=0得:a+b+c=0,故①正确;等式3x=3a﹣b两边都除以3得:x=a―13b,故②错误;把b=2a代入方程ax+b=0得:ax+2a=0,解得:x=﹣2,故③错误;等式a=b两边都除以x2+1得:ax21=bx21,故④正确;即正确的为①④,故选:C.总结提升:本题考查了一元一次方程的解,等式的性质和解一元一次方程,能熟记一元一次方程的解的定义和等式的性质是解此题的关键.17.(2021秋•南谯区期末)有下列说法:①若∠A+∠B+∠C=180°,则∠A,∠B,∠C互补;②若∠1是∠2的余角,则∠2是∠1的余角;③一个锐角的补角一定比它的余角大90°;④互补的两个角中,一定是一个钝角与一个锐角.其中正确的有( )A.1个B.2个C.3个D.4个思路引领:余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°.解:①补角一定指的是两个角之间的关系,错误.②若∠1是∠2的补角,则∠2是∠1的补角,正确.③同一个锐角的补角一定比它的余角大90°,正确,180﹣α﹣(90﹣α)=90.④互补的两个角中,一定是一个钝角与一个锐角,错误,90°+90°=180°.故选:B.总结提升:本题主要考查了余角和补角的知识,掌握余角的和等于90°,互补的两角之和为180°是关键.18.(2021秋•浦北县期末)已知∠1与∠2互为余角,∠1与∠3互为补角,下列结论:①∠3<∠1+∠2;②∠3﹣∠2=90°;③∠3+∠2=270°﹣2∠1;④∠3﹣∠1=2∠2.其中正确的有( )A.1个B.2个C.3个D.4个思路引领:根据互余的两角之和为90°,互补的两角之和为180°,即可求出有关的结论.解:由:∠1+∠2=90°(1),∠1+∠3=180°(2),得,∠3=180°﹣∠1=2∠1+2∠2﹣∠1=∠1+2∠2,∴∠3>∠1+∠2,∴①错误.∵∠1+∠2=90°(1),∠1+∠3=180°(2),∴(2)﹣(1)得,∠3﹣∠2=90°,∴②正确.(1)+(2)得,∠3+∠2=270°﹣2∠1,∴③正确.(2)﹣(1)×2得,∠3﹣∠1=2∠2,∴④正确.故选:C.总结提升:本题主要考查了余角和补角的知识,掌握余角的和等于90°,互补的两角之和为180°是关键.19.(2022秋•大东区期中)下列说法正确的有( )①n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);②圆锥的侧面展开图是一个圆;③用平面去截一个正方体,截面形状可以是三角形、四边形、五边形、六边形.A.0个B.1个C.2个D.3个思路引领:根据立体图形的特征,截几何体的方法进行判定是几边形.解:①n梭柱有2n个顶点,3n条棱,(n+2)个面(n为不小于3的正整数),故说法错误;②圆锥的侧面展开图是一个扇形,故说法错误;③用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形是正确的.故选:B.总结提升:本题考查了立体图形的性质,几何体的特征,截面图形的边数,解题的关键是熟练掌握几何体的定义.20.(2022秋•灞桥区校级期中)下列说法正确的个数是( )①连接两点之间的线段叫两点间的距离;②线段AB和线段BA表示同一条线段;③木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;④若AB=2CB,则点C是AB的中点.A.1个B.2个C.3个D.4个思路引领:由直线的性质,两点的距离的概念,线段中点的概念即可判断.解:连接两点之间的线段的长叫两点间的距离,故①不符合题意;线段AB和线段BA表示同一条线段,正确,故②符合题意;木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,故③不符合题意;若AB=2CB,点C可能在AB外,则点C不一定是AB的中点,故④不符合题意.故选:A.总结提升:本题考查直线的性质,两点的距离的概念,线段中点的概念,关键是掌握:连接两点间的线段的长度叫两点间的距离;经过两点有且只有一条直线.21.(2022秋•城关区校级期中)下列说法不正确的是( )①长方体一定是柱体;②八棱柱有10个面;③六棱柱有12个顶点;④用一个平面去截几何体,若得到的图形是三角形,则这个几何体一定有一个面的形状是三角形.A.①B.④C.①④D.②③思路引领:根据棱柱的特征以及截一个几何体的方法解答即可.解:①因为长方体是棱柱,所以长方体一定是柱体,原说法正确,不符合题意;②八棱柱的侧面有8个面,有两个底面,共有10个面,原说法正确,不符合题意;③六棱柱上底面有6个顶点,下底面有6个顶点,共有12个顶点,原说法正确,不符合题意;④用一个平面去截几何体,若得到的图形是三角形,则这个几何体不一定有一个面的形状是三角形,如圆锥,原说法不正确,符合题意.说法不正确的是④.故选:B.总结提升:本题考查几何体,掌握常见几何体的概念和性质是解题的关键.22.(2022秋•山亭区校级月考)下列判断正确的有( )(1)正方体是棱柱,长方体不是棱柱;(2)正方体是棱柱,长方体也是棱柱;(3)正方体是柱体,圆柱也是柱体;(4)正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个思路引领:根据棱柱和柱体的概念判断即可.解:(1)正方体是棱柱,长方体不是棱柱,故原题说法错误;(2)正方体是棱柱,长方体也是棱柱,故原题说法正确;(3)正方体是柱体,圆柱也是柱体,故原题说法正确;(4)正方体不是柱体,圆柱是柱体,故原题说法错误.故选:B.总结提升:此题主要考查了认识立体图形,关键是掌握各种立体图形的特点.23.(2022春•新泰市期中)下列语句中:①两点确定一条直线;②圆上任意两点A、B间的部分叫做圆弧;③两点之间直线最短;④三角形、四边形、五边形、六边形等都是多边形.其中正确的个数有( )A.1个B.2个C.3个D.4个思路引领:利用线段的性质、直线的性质、多边形以及圆弧的概念进行判断,即可得出结论.解:①两点确定一条直线,说法正确;②圆上任意两点A、B间的部分叫做圆弧,说法正确;③两点之间,线段最短,故原说法错误;④三角形、四边形、五边形、六边形等都是多边形,说法正确.故选:C.总结提升:本题主要考查了线段的性质、直线的性质、多边形以及圆弧的概念.两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.24.(2022•南昌模拟)如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则下列结论中正确的个数有( )①∠AOE=∠EOC②∠EOC=∠COB③∠AOD=∠AOE④∠DOB=2∠AODA.1个B.2个C.3个D.4个思路引领:根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,求出∠AOE=∠COE=∠BOC,根据∠AOE+∠COE+∠BOC=180°求出∠AOE=∠COE=∠BOC=60°,再根据对顶角相等求出答案即可.解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,∴∠AOE=∠COE,∠COE=∠BOC,∴∠AOE=∠COE=∠BOC,∵∠AOE+∠COE+∠BOC=180°,∴∠AOE=∠COE=∠BOC=60°,∴∠AOD=∠BOC=60°,∴∠BOD=120°,∴①②③④都正确.故选:D.总结提升:本题考查了邻补角、对顶角,角平分线的定义等知识点,注意:①邻补角互补,②从角的顶点出发的一条射线,如果把这个角分成相等的两个角,那么这条射线叫这个角的平分线,③对顶角相等.25.(2022•定远县模拟)下列说法:①把弯曲的河道改直,能够缩短航程,这是因为两点之间,线段最短;②若线段AC=BC,则C是线段AB的中点;③﹣a一定是负数;④非负数的任何次幂都是非负数;⑤一个角的补角大于这个角本身.其中正确的个数为( )A.1B.2C.3D.4思路引领:根据两点之间,线段最短,线段中点的定义,负数,乘方,补角的性质,逐项判断即可求解.解:①把弯曲的河道改直,能够缩短航程,这是因为两点之间,线段最短,故①正确;②当点C在线段AB上时,若线段AC=BC,则C是线段AB的中点,故②错误;③当a>0时,﹣a一定是负数,故③错误;④非负数的任何次幂都是非负数,故④正确;⑤一个锐角的补角大于这个角本身,故⑤错误;∴正确的有①④,共2个.故选:B.总结提升:本题主要考查两点之间,线段最短,线段中点的定义,负数,乘方,补角的性质,熟练掌握相关知识点是解题的关键.26.(2022春•香坊区期末)下列说法:①正数和负数统称为有理数;②若m+n=0,则m、n互为相反数;③如果a>b,则有|a|>|b|;④几个角的和等于180°,我们就说这几个角互补;⑤23x4是7次单项式,其中正确的有( )A.1个B.2个C.3个D.4个思路引领:根据有理数的定义,相反数的定义,补角的定义,单项式的次数,非负数的性质对各项进行分析即可.解:①有理数是整数(正整数、0、负整数)和分数的统称;故①说法错误;②若m+n=0,则m、n互为相反数;故②说法正确;③如果0>a>b,则有|a|<|b|;故③说法错误;④两个角的和等于180°,我们就说这两个角互补;故④说法错误;⑤23x4是4次单项式,故⑤说法错误,正确的有②,共1个.故选:A.总结提升:本题主要考查补角,有理数,非负数性质,单项式,解答的关键是对相应的知识的掌握.27.(2022春•南岗区期末)下列四个说法:①射线AB和射线BA是同一条射线;②若点B 为线段AC的中点,则AB=BC;③锐角和钝角互补;④一个角的补角一定大于这个角.其中正确说法的个数是( )A.0个B.1个C.2个D.3个思路引领:①根据射线的定义判断;②根据线段中点的定义判断;③根据钝角与锐角的定义判断;④根据补角的定义判断.解:①射线AB和射线BA表示的方向不同,不是同一条射线,故原说法错误;②若点B为线段AC的中点,则AB=BC,故原说法正确;③锐角和钝角是相对于直角的大小而言,没有一定的数量关系,不一定构成互补关系,故原说法错误;④一个角的补角不一定大于这个角,如一个角是130°,它的补角是50°,即一个角的补角小于这个角,故原说法错误.故正确的说法有②,共1个.故选:B.总结提升:本题考查了射线的定义,线段中点的定义,钝角与锐角的定义,补角的定义,对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.28.(2022•驿城区校级开学)下列几种说法:①两点之间线段最短;②任何数的平方都是正数;③2(2x+1)是一元一次方程;④34x3是7次单项式;⑤任何有理数的绝对值都是非负数.其中正确的语句有( )个.A.1B.2C.3D.4思路引领:根据两点之间线段最短;任何数的平方都是非负数;一元一次方程的定义;单项式中所有字母的指数的和叫做单项式的次数;绝对值的定义进行分析即可.解:①两点之间线段最短;故符合题意;②任何数的平方都是非负数;故不符合题意;③2(2x+1)不是一元一次方程;故不符合题意;④34x3是3次单项式;故不符合题意;⑤任何有理数的绝对值都是非负数,故符合题意;故选:B.总结提升:此题主要考查了线段的性质、一元一次方程定义、单项式的次数、绝对值的定义,关键是掌握课本基础知识,不能混淆.29.(2018秋•洪山区期末)如图,O为直线AB上一点,∠DOC为直角,OE平分∠BOC,OF平分∠AOD,OG平分∠AOC,下列结论:①∠BOE与∠DOF互为余角;②2∠AOE ﹣∠BOD=90°;③∠EOD与∠COG互为补角;④∠BOE﹣∠DOF=45°;其中正确的是( )A.①②③④B.③④C.②③D.②③④思路引领:根据余角和补角的定义以及角平分线的定义计算出各选项的结果判断即可.解:∵OE平分∠BOC,OG平分∠AOC,∴∠BOE+∠AOG=90°,∵∠AOG≠∠DOF,∴①错误;∵∠DOC=∠GOE=90°,∴∠AOE=135°―12∠AOD,∴2∠AOE=270°﹣∠AOD,∴2∠AOE﹣∠BOD=90°,∴②正确;∵∠DOC=∠GOE=90°,∴∠EOD+∠COG=180°,∴③正确;∵OE平分∠BOC,OF平分∠AOD,∴∠DOF+∠COG=45°,∵OE平分∠BOC,OG平分∠AOC,∴∠BOE+∠COG=90°,∴∠BOE﹣∠DOF=45°;∴④正确.综上所述,正确的有②③④.故选:D.总结提升:本题考查了余角和补角的定义及性质,角平分线定义,角的和差计算,准确识图是解题的关键.30.(2018秋•青山区期末)如图,货轮A在航行过程中,发现灯塔B在它北偏东60°的方向上,货轮C在它南偏东30°方向上.则下列结论:①∠NAB=60°;②∠WAC=120°;③图中∠NAC的补角有两个,分别是∠SAC和∠EAB;④图中有4对互余的角,其中正确的个数有( )A.1个B.2个C.3个D.4个思路引领:根据方向角以及余角与补角的定义解答即可.解:灯塔B在它北偏东60°的方向上,即∠NAB=60°,故①正确;∠SAC=30°,∠WAC=90°+30°=120°,故②正确;∠NAC=150°,∠SAC=∠EAB=30°,故③正确;图中两个60°角两个30°角,一共四对互余的角,故④正确.故正确的有①②③④共4个.故选:D.总结提升:本题考查了余角与补角以及方向角的定义,正确理解方向角的定义,是解答本题的关键.第二部分配套作业1.(2022秋•巴东县期中)下列对“0”的描述:①0℃表示没有温度②0是正数③0比任何负数都大④0是自然数其中,正确的个数有( )A.1B.2C.3D.4思路引领:根据有理数的定义对各小题进行逐一分析即可.解:①0℃表示温度是0摄氏度,故本小题不符合题意;②0既不是正数,也不是负数,故本小题不符合题意;③0比任何负数都大,故本小题符合题意;④0是自然数,故本小题符合题意.故选:B.总结提升:本题考查的是有理数,熟知0既不是正数,也不是负数是解题的关键.2.(2022秋•永安市期中)下列说法正确的是( )①正有理数和负有理数统称为有理数;②一个数的相反数等于它本身,那么这个数为零;③如果一个数的绝对值等于它本身,那么这个数是正数;④﹣3.14既是负数、分数,也是有理数.A.①②③④B.①②③C.①②D.②④思路引领:分别根据有理数的分类,相反数的定义,绝对值的定义逐一判断即可.解:正有理数,0和负有理数统称为有理数,故说法①错误;一个数的相反数等于它本身,那么这个数为零,故说法②正确;如果一个数的绝对值等于它本身,那么这个数是正数或0,故说法③错误;﹣3.14既是负数,分数,也是有理数,故说法④正确.所以正确的有②④.故选:D.总结提升:本题考查了有理数的分类依据、相反数与绝对值的定义,熟记定义是解题的关键.3.(2022秋•芜湖期中)如图,A,B两点在数轴上的位置表示的数分别为a,b.有下列四个结论:①(b﹣1)(a+1)>0;②b1|a3|>0;③(a+b)(a﹣b)>0;④b>﹣a>﹣b>a.其中正确的结论是( )A.①④B.①②C.②③D.②④思路引领:根据数轴判断A和B所表示的数的符号,然后逐一分析即可.解:由图可知,﹣1<a<0,b>1,∴b﹣1>0,a+1>0,∴①正确;∵|a﹣3|>0,b﹣1>0,∴②正确;(a+b)(a﹣b)=a2﹣b2<0,∴③错误;∵0<﹣a<1,﹣b<﹣1,∴b>﹣a>a>﹣b,∴④错误.综上①②正确,故选:B.总结提升:本题考查数轴和绝对值,能够通过数轴判断一个数的符号是解答本题的关键.4.(2022秋•桐乡市期中)数轴上点A,B,C分别表示数﹣1,m,﹣1+m,下列说法正确的是( )A.点C一定在点A的右边B.点C一定在点A的左边C.点C一定在点B的右边D.点C一定在点B的左边思路引领:由于不知道数m的数值,所以不清楚点A与点C,点A与点B的位置关系,再根据点B,C分别表示数m,﹣1+m即可判断.。
专题1.2 等边三角形的判定与性质【十大题型】【北师大版】【题型1 利用等边三角形的性质求值】 (1)【题型2 利用等边三角形的性质证明线段或角度相等】 (2)【题型3 等边三角形的证明】 (4)【题型4 等边三角形在坐标系中的运用】 (5)【题型5 等边三角形中的折叠问题】 (7)【题型6 与等边三角形有关的规律问题】 (9)【题型7 等边三角形中的动态问题】 (10)【题型8 等边三角形中求最值】 (12)【题型9 等边三角形中的多结论问题】 (13)【题型10 确定等边三角形中的线段之间的关系】 (14)【知识点等边三角形】(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°. (3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.【题型1利用等边三角形的性质求值】【例1】(2023春·福建厦门·八年级厦门市湖滨中学校考期末)如图,已知等边三角形ABC中,BD=CE,AD 与BE交于点P,则∠APE=°.【变式1-1】(2023春·四川成都·八年级成都实外校考期末)已知:如图,点E是等边三角形ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,BE平分∠DBC.(1)求证:△DBE≌△CBE;(2)求∠BDE的度数.(3)若∠ABE=45°,试判断BD与AC的位置关系,并说明理由.【变式1-2】(2023春·四川成都·八年级校考期中)如图,△ABC为等边三角形,点D是BC边上异于B,C 的任意一点,DE⊥AB于点E,DF⊥AC于点F.若BC边上的高线AM=2,则DE+DF=.【变式1-3】(2023春·新疆乌鲁木齐·八年级乌鲁木齐市第70中校考期末)如图,已知等边三角形ABC的边长为m,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于M,则EM 的长为.【题型2利用等边三角形的性质证明线段或角度相等】BC,点【例2】(2023春·河南周口·八年级校考期中)如图,△ABC是等边三角形,延长BC到E,使CE=12D是边AC的中点,连接ED并延长交AB于点F.(1)求证:EF⊥AB;(2)连接BD,求证:BD=DE.【变式2-1】(2023春·海南省直辖县级单位·八年级统考期末)如图,△ABC是等边三角形,BD是高线,延长BC到E,使CE=AD.证明:BD=DE.【变式2-2】(2023春·四川巴中·八年级统考期末)已知,将等边△ABC和一块含有30°角的直角三角板DEF (∠F=30°)如图1放置,点B与点E重合,点A恰好落在三角板的斜边DF上.(1)利用图证明:EF=2AC;(2)△ABC在EF所在的直线上向右平移,当AB、AC与三角板斜边的交点为G、H时,如图2.判断线段EB=AH是否成立.如果成立,请证明;如果不成立,请说明理由.【变式2-3】(2023春·广西河池·八年级统考期末)如图,已知△ABC是等边三角形,点D是BC边上一点.(1)以AD为边构造等边△ADE(其中点D、E在直线AC两侧),连接CE,猜想CE与AB的位置关系,并证明你的结论;(2)若过点C作CM∥AB,在CM上取一点F,连接AF、DF,使得∠ADF=60°,试猜想△ADF的形状,直接写出你的结论.【题型3等边三角形的证明】【例3】(2023春·河南周口·八年级校考期末)在△ABC中,AB=BC,∠ABC=60°,BD是AC边上的高,点E为直线BC上点,且CE=AD.(1)如图1,当点E在边BC上时,求证:△CDE为等边三角形;(2)如图2,当点E在BC的延长线上时,求证:△BDE为等腰三角形.【变式3-1】(2023春·贵州铜仁·八年级统考期中)如图,E是CD的中点,EC=EB,∠CDA=120°,DF∥BE,且DF平分∠CDA.求证:△BEC是等边三角形.补全下面的证明过程及理由.证明:∵DF平分∠CDA(已知),∠___________(___________).∴∠FDC=12∵∠CDA=120°(已知),∴∠FDC=__________°.∵DF∥BE(已知),∴∠FDC=∠__________(___________),∴∠BEC=60°.又∵EC=EB(已知),∴△BCE是等边三角形(____________).【变式3-2】(2023春·甘肃天水·八年级校考期末)如图,在△ABC中,∠A=120°,AB=AC,D是BC边的中点,DE⊥AB,DF⊥AC,点E、F为垂足.求证:(1)DE=DF;(2)△DEF是等边三角形.【变式3-3】(2023春·山东菏泽·八年级校联考期末)如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC 边上的中线,且BD=BE,CD的垂直平分线MF交AC于F,交BC于M.(1)求∠ADE的度数.(2)证明:△ADF是等边三角形.【题型4等边三角形在坐标系中的运用】【例4】(2023春·河南驻马店·八年级统考期末)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形CBD,连接DA并延长,交y轴于点E.(1)求证:OC=AD;(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果改变,请说明理由;(3)当点C运动到什么位置时,以A、E、C为顶点的三角形是等腰三角形,请直接写出点C的坐标.【变式4-1】(2023春·辽宁铁岭·八年级校考期末)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形CBD,连接DA并延长,交y轴于点E.(1)求证:OC=AD;(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果改变,请说明理由;(3)当点C运动到什么位置时,以A、E、C为顶点的三角形是等腰三角形?【变式4-2】(2023春·北京·八年级北京市广渠门中学校考期中)如图,在平面直角坐标系中,△AOP为等边三角形,A0 , 2,点B为y轴上一动点,以BP为边作等边△PBC,延长CA交x轴于点E.(1)求证:OB=AC;(2)∠CAP的度数是;(直接写出答案,不需要说明理由.)(3)当B点运动时,猜想AE的长度是否发生变化?如不变,请求出AE的长度;若改变,请说明理由.【变式4-3】(2023春·湖北黄石·八年级校考期末)如图,平面直角坐标系中.A点在y轴上,B(b,0),C(c,0)在x轴上,∠BAC=60°,且b、c满足等式b2+2bc+c2=0.(1)判断△ABC的形状,并说明理由;(2)如图1,F为AB延长线上一点,连FC,若∠GFC+∠ACG=60°.求证:FG平分∠AFC;(3)如图2,△BDE中,DB=DE,∠BDE=120°,M为AE中点,试确定DM与CM的位置关系.【题型5等边三角形中的折叠问题】【例5】(2023春·四川成都·八年级校考期末)如图,已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′,EB′分别交边AC于点F,G.若∠ADF=80°,则∠GEC的度数为度.【变式5-1】(2023春·湖北省直辖县级单位·八年级校考期中)如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为( )cmA.1B.2C.3D.4【变式5-2】(2023春·四川成都·八年级统考期末)如图,将等边三角形ABC纸片折叠,使得点A的对应点D 落在BC边上,其中折痕分别交边AB,AC于点E,F,连接DE,DF.若DF⊥BC,则∠AEF的度数是( )A.15°B.30°C.45°D.60°【变式5-3】(2023春·河北张家口·八年级统考期末)在△ABC中,∠B=60°,D是边AB上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A的对应点为点F.(1)如图1,若点F恰好落在边BC上,判断△BDF的形状,并证明;(2)如图2,若点F落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的度数;(3)若AB=9,当△BDF是直角三角形时,直接写出AD的长.【题型6与等边三角形有关的规律问题】【例6】(2023春·安徽芜湖·八年级芜湖市第二十九中学校考期末)如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3 C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n C n C n+1的周长和为.【变式6-1】(2023春·山东济宁·八年级统考期中)如图,在平面直角坐标系xOy中,已知点A坐标是0,4,以为边在右侧作等边三角形OAA1,过点A1作x轴的垂线,垂足为点O1,以O1A1为边在右侧作等边三角形O1A1A2,再过点A2作x轴的垂线,垂足为点O2,以O2A2为边在右侧作等边三角形O2A2A3,……,按此规律继续作下去,得到等边三角形O2022A2022A2023,则点A2023的纵坐标为()A B C D【变式6-2】(2023·四川·八年级专题练习)如图,在平面直角坐标系中,边长为1的正方形A1B1C1D1(记为第1个正方形)的顶点A1与原点重合,点B1在y轴上,点D1在x轴上,点C1在第一象限内,以C1为顶点作等边△C1A2B2,使得点A2落在x轴上,A2B2⊥x轴,再以A2B2为边向右侧作正方形A2B2C2D2(记为第2个正方形),点D2在x轴上,以C2为顶点作等边△C2A3B3,使得点A3落在x轴上,A3B3⊥x轴,若按照上述的规律继续作正方形,则第2021个正方形的边长为.【变式6-3】(2023春·广西柳州·八年级统考期末)如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A6的横坐标是.【题型7等边三角形中的动态问题】【例7】(2023春·河南濮阳·八年级统考阶段练习)如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P,Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为v P=2cm/s,v Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?【变式7-1】(2023春·甘肃张掖·八年级校考期末)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的运动速度相同.连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交于点M,则△ABQ和△CAP 还全等吗?说明理由;【变式7-2】(2023春·山东威海·八年级统考期末)如图,点P,Q是等边△ABC边AB,BC上的动点,它们分别从点A,B同时出发,以相同的速度向点B,C方向运动(不与点B,C重合).连接AQ,CP,PQ,其中AQ与CP交于点M.针对点P,Q的运动过程,下列结论错误的是()A.BQ=AP B.△ABQ≌△CAPC.△BPQ的形状可能是等边三角形D.∠CMQ的度数随点P,Q的运动而变化【变式7-3】(2023春·吉林松原·八年级校联考期中)如图,在△ABC中,AB=AC,D为直线BC上一动点(不与点B,C重合),在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE.(1)当D在线段BC上时,求证:△BAD≌△CAE;(2)当CE∥AB时.①若D在线段BC上,判断△ABC的形状,并说明理由;②若△ABD中的最小角为20°,直接写出∠ADB的度数.【题型8等边三角形中求最值】【例8】(2023春·广东深圳·八年级校联考开学考试)如图,在△ABC中,∠ACB=90°,AC=BC=8,点D 是BC边的中点,点P是AC边上的一个动点,连接PD,以PD为边在PD的下方做等边三角形PDQ,连接CQ,则CQ的最小值是()A B.1C D.2【变式8-1】(2023春·山东烟台·八年级统考期末)如图,点B为线段AQ上的动点,AQ=8,以AB为边作等边△ABC,以BC为底边作等腰△PCB,则PQ的最小值为( )A.3B.4C.5D.6【变式8-2】(2023春·河南许昌·八年级统考期末)如图,在等腰△ABC中,AB=AC=20,BC=32,△ABD是等边三角形,P是∠BAC平分线上一动点连接PC、PD,则PC+PD的最小值为.【变式8-3】(2023春·湖北鄂州·八年级统考期末)如图,将等边△ABC折叠,使得点B恰好落在边AC上的点D处,折痕为EF,O为折痕EF上一动点,若AD=2,AC=6,△OCD周长的最小值是()A.8B.10C.12D.14【题型9等边三角形中的多结论问题】【例9】(2023春·湖南长沙·八年级长沙市北雅中学校考开学考试)如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形,AE交CD于M,BD交CE于N,交AE于O,则①DB=AE;②∠AMC=∠DNC;③∠AOB=60°;④DN=AM.其中,正确的有.【变式9-1】(2023春·湖北鄂州·八年级统考期末)如图,等边三角形ABD与等边三角形ACE,连接BE、CD,BE的延长线与CD交于点F,连接AF,有以下四个结论:①BE=CD;②FA平分∠EFC;③∠BFD=60°;④FE+FC=FA.其中一定正确的结论有()A.1个B.2 个C.3 个D.4 个【变式9-3】(2023春·全国·八年级期末)如图,等边△ABC中,D、E分别为AC、BC边上的点,AD=CE,连接AE、BD交于点F,∠CBD、∠AEC的平分线交于AC边上的点G,BG与AE交于点H,连接FG.下列说法:①△ABD≅△CAE;②∠BGE=30°;③∠ABG=∠BGF﹔④AB=AH+FG﹔⑤S△AGE︰S△BGC=DG∶GC,其中正确的说法有.【题型10确定等边三角形中的线段之间的关系】【例10】(2023春·河南郑州·八年级校考期中)已知线段AB⊥l于点B,点D在直线l上,分别以AB、AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,直接写出DF,CE,CF之间的关系 .(2)当点F在线段BD的延长线上时,如图②,当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,在图②、图③中选一个进行证明.(3)在(1)、(2)的条件下,若BD=2BF,EF=6,请直接写出CF的值.【变式10-1】(2023春·山东青岛·八年级校考期中)已知:如图,等边△ABC中,D,E分别在BC,AC边上运动,且始终保持BD=CE,点D、E始终不与等边△ABC的顶点重合,连接AD、BE,AD,BE交于点F.(1)试说明△BEC≌△ADB;(2)直接写出运动过程中,AE、AB、BD三条线段长度之间的等量关系;(3)运动过程中,∠BFD的度数是否会改变?如果改变,请说明理由;如果不变,求出∠BFD的度数,再说明理由.【变式10-2】(2023春·河南平顶山·八年级统考期中)如图,过等边△ABC的顶点A作直线l∥BC,点D在直线l上,(不与点A重合),作射线BD,把射线BD绕着点B顺时针旋转60°后交直线AC于点E.(1)如图1,点D在点A的左侧,点E在AC上,请写出线段AB、AD、AE之间的数量关系,并说明理由.(2)(2)如图2,点D在点A的右侧,点E在AC的延长线上,那么(1)中的结论还成立吗?若成立,证明你的结论,若不成立,写出你认为正确的结论,并证明.。
押中考数学第9-10题(多结论问题)专题诠释:一直以来,函数都是中考数学的重点考察题型。
在选择题中,主要考察函数的性质、函数的图像和函数的应用,难度的跨度较大,从基础到压轴都有可能出现,满分难度较大。
多做、多想、多总结,掌握做题规律,力争不丢分!目录知识点一:函数的性质及探究1模块一〖真题回顾〗 1模块二〖押题冲关〗 5模块三〖考前预测〗 9知识点一:函数的性质及探究模块一〖真题回顾〗1.(2022·辽宁丹东·统考中考真题)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=66.其中正确的有()A.1个B.2个C.3个D.4个2.(2022·贵州黔西·统考中考真题)如图,在平面直角坐标系中,矩形ABCD的顶点A在第一象限,B,D分别在y轴上,AB交x轴于点E,AF⊥x轴,垂足为F.若OE=3,EF=1.以下结论正确的个数是()①OA=3AF;②AE平分∠OAF;③点C的坐标为(-4,-2);④BD=63;⑤矩形ABCD的面积为242.A.2个B.3个C.4个D.5个3.(2022·四川宜宾·统考中考真题)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD =CE ;②∠DAC =∠CED ;③若BD =2CD ,则CF AF=45;④在△ABC 内存在唯一一点P ,使得PA +PB +PC 的值最小,若点D 在AP 的延长线上,且AP 的长为2,则CE =2+3.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④4.(2022·四川眉山·中考真题)如图,四边形ABCD 为正方形,将△EDC 绕点C 逆时针旋转90°至△HBC ,点D ,B ,H 在同一直线上,HE 与AB 交于点G ,延长HE 与CD 的延长线交于点F ,HB =2,HG =3.以下结论:①∠EDC =135°;②EC 2=CD ⋅CF ;③HG =EF ;④sin ∠CED =23.其中正确结论的个数为()A.1个B.2个C.3个D.4个5.(2022·山东东营·统考中考真题)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是()①△AMN是等边三角形;②MN的最小值是3;③当MN最小时S△CMN=18S菱形ABCD;④当OM⊥BC时,OA2=DN⋅AB.A.①②③B.①②④C.①③④D.①②③④6.(2022·黑龙江·统考中考真题)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②∠OPA=45°;③AP-BP=2OP;④若BE:CE=2:3,则tan∠CAE=47;⑤四边形OECF的面积是正方形ABCD面积的14.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤7.(2022·湖南益阳·统考中考真题)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有()A.①②③B.①②④C.①③④D.②③④8.(2022·黑龙江牡丹江·统考中考真题)下列图形是黄金矩形的折叠过程:第一步,如图(1),在一张矩形纸片一端折出一个正方形,然后把纸片展平;第二步,如图(2),把正方形折成两个相等的矩形再把纸片展平;第三步,折出内侧矩形的对角线AB ,并把AB 折到图(3)中所示的AD 处;第四步,如图(4),展平纸片,折出矩形BCDE 就是黄金矩形.则下列线段的比中:①CD DE ,②DE AD ,③DE ND ,④AC AD,比值为5-12的是()A.①②B.①③C.②④D.②③9.(2022·黑龙江绥化·统考中考真题)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得∠ABE =∠CBP ,如果AB =2,BC =5,AP =x ,PM =y ,其中2<x ≤5.则下列结论中,正确的个数为()(1)y 与x 的关系式为y =x -4x ;(2)当AP =4时,△ABP ∽△DPC ;(3)当AP =4时,tan ∠EBP =35.A.0个B.1个C.2个D.3个10.(2022·江苏连云港·统考中考真题)如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB =435AD ;③GE =6DF ;④OC =22OF ;⑤△COF ∽△CEG .其中正确的是()A.①②③B.①③④C.①④⑤D.②③④模块二〖押题冲关〗1.(2023·江苏连云港·统考一模)如图,在边长为4的正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°;②AP=FP;③AE=102AO;④四边形OPEQ的面积为43;⑤BF=43.其中正确的结论有()A.2个B.3个C.4个D.5个2.(2023·广东深圳·深圳市南山外国语学校校联考二模)如图,在正方形ABCD中,AD=4,E为CD中点,F为BC上的一点,且∠EAF=45°,∠ABG=∠DAE,连接EF,延长BG交AE于点M,交AD于点N,则以下结论;①DE+BF=EF②BN⊥AE③BF=83④S△BGF=1615中正确的是()A.1个B.2个C.3个D.4个3.(2023·辽宁铁岭·校联考一模)如图,正方形ABCD的对角线AC,BD相交于点O,点E是AB上一点,OF⊥OE交AD于点F,连接CF,DE交于点P,连接OP.则下列结论:①∠OPC=45°;②DE⊥CF;③CP -DP =2OP ;④若AF :FD =3:2,则tan ∠ACF =47;⑤四边形OEAF 的面积是正方形ABCD 面积的14.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤4.(2023·江苏无锡·校考二模)如图,在正方形ABCD 中,F 是BC 边上一点,连接AF ,以AF 为斜边作等腰直角△AEF .有下列四个结论:①∠CAF =∠DAE ;②点E 在线段BD 上;③当∠AEC =135°时,CE 平分∠ACD ;④若点F 在BC 上以一定的速度由B 向C 运动,则点F 的运动速度是点E 运动速度的2倍.其中正确的结论的个数为()A.1B.2C.3D.45.(2023·黑龙江绥化·统考一模)如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF于点M ,N .下列结论:①AF ⊥BG ;②BN =23NF ;③BM MG=38;④S 四边形CGNF :S 四边形ANGD =18:31.其中结论正确的个数有()A.1个B.2个C.3个D.4个6.(2023·安徽滁州·校考模拟预测)如图,在边长为1的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE =FD ,连接BE 、CF 、BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是()①AG ⊥BE ;②HD 平分∠EHG ;③△ABG ∽△FDG ;④S △HDG:S △HBG =tan ∠DAG ;⑤线段DH 的最小值是5-12;⑥当E 、F 重合时,延长AG 交CD 于M ,则tan ∠EBM =34.A.5个B.4个C.3个D.2个7.(2023·黑龙江绥化·校联考一模)如图,在正方形ABCD 中,E 是线段CD 上一动点,连接AE 交BD 于点F ,过点F 作FG ⊥AE 交BC 于点G ,连接AG ,EG ,现有以下结论:①△AFG 是等腰直角三角形;②DE+BG =EG ;③点A 到EG 的距离等于正方形的边长;④当点E 运动到CD 的三等分点时,BG BC =12或BG BC=13.以上结论正确的个数有()A.1个B.2个C.3个D.4个8.(2023·山东泰安·宁阳二中校考一模)如图,在矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 于点M ,交CD 于点F ,过点D 作DE ∥BF 交AC 于点N .交AB 于点E ,连接FN ,EM .有下列结论:①图中共有三个平行四边形;②当BD =2BC 时,四边形DEBF 是菱形;③BD ⊥ME ;④AD 2=BD ⋅CM .其中,正确结论的序号是()A.①②③B.①②④C.①③④D.②③④9.(2023·广东深圳·模拟预测)如图,正方形ABCD 中,E 、F 分别为边AD 、DC 上的点,且AE =FC ,过F 作FH ⊥BE ,交AB 于G ,过H 作HM ⊥AB 于M ,若AB =9,AE =3,则下列结论中:①△ABE ≅△CBF ;②BE =FG ;③2DH =EH +FH ;④HM AE=35,其中结论正确有()A.1个B.2个C.3个D.4个10.(2023·浙江杭州·校联考一模)如图,在△ABC中,∠BAC=90°,AB=AC=12,点P在边AB上,D,E分别为BC,PC的中点,连接DE.过点E作BC的垂线,与BC,AC分别交于F,G两点.连接DG,交PC于点H.有以下判断:①∠EDC=45°;②DG⊥PE,且DG=PE;③当AP=6时,△APG的面积为9;④CHCE的最大值为2+12.其中正确的是()A.①③B.①③④C.①②④D.①②③④模块三〖考前预测〗11.(2023·山东东营·东营市东营区实验中学校考一模)如图,PA、PB是⊙O的切线,切点分别为A、B,BC是⊙O的直径,PO交⊙O于E点,连接AB交PO于F,连接CE交AB于D点.下列结论:①PA= PB;②OP⊥AB;③CE平分∠ACB;④OF=12AC;⑤E是△PAB的内心;⑥△CDA≌△EDF.其中一定成立的有( )个.A.5B.4C.3D.212.(2023·山东枣庄·校考模拟预测)如图,△ABC内接于⊙O,∠A所对弧的度数为120°.∠ABC、∠ACB的角平分线分别交于AC、AB于点D、E,CE、BD相交于点F.以下四个结论:①cos∠BFE=12;②BC=BD;③EF=FD;④BF=2DF.其中结论一定正确的序号数是()A.①和②B.①和③C.②和③D.③和④13.(2023·天津·模拟预测)如图,△ABC 中,AC =BC ,点M ,N 分别在AC ,AB 上,将△AMN 沿直线MN 翻折,点A 的对应点D 恰好落在BC 边上(不含端点B ,C ),下列结论:①直线MN 垂直平分AD ;②∠CDM =∠BND ;③AD =CD ;④若M 是AC 中点,则AD ⊥BC .其中一定正确的是()A.①②B.②③C.①②④D.①③④14.(2023·安徽芜湖·统考一模)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,D 为线段BC 上一点,以AD 为一边构造Rt △ADE ,∠DAE =90°,AD =AE ,下列说法正确的是()①∠BAD =∠EDC ;②△ADO ∼△ACD ;③BD OE =AD AO ;④2AD 2=BD 2+CD 2.A.仅有①② B.仅有①②③ C.仅有②③④ D.①②③④15.(2023·广东惠州·模拟预测)如图,已知正方形ABCD 的边长为a ,E 为CD 边上一点(不与端点重合),将ΔADE 沿AE 翻折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF .则下列给出的判断:①∠EAG =45°;②若DE =13a ,则tan ∠GFC =2;③若E 为CD 的中点,则△GFC 的面积为110a 2;④若CF =FG ,则DE =(2-1)a ,其中正确的是()A.①②③B.①②④C.②③④D.①②③④16.(2023·广东深圳·一模)如图,将正方形ABCD 翻折,使点C 、D 分别与点C '、D '重合,折痕为MN ,C 'D '交AD 于点E ,CC 交MN 于点F ,连接CE 、C 'M .给出以下结论:①MN 垂直平分CC ;②DN +BC =CM ;③∠C CE =45°;④△AC 'E 的周长等于AB 的2倍.其中正确的个数有()A.1个B.2个C.3个D.4个17.(2023·山东青岛·模拟预测)如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上一点,且CD =DE ,连结BE ,分别交AC ,AD 于点F ,G ,连结OG ,①OG =12AB ②S 四边形ODGF =S △ABF ③由点A 、B 、D 、E 构成的四边形是菱形;④S △ACD =2S △ABG 中正确的结论是()A.①③B.②④C.①②③D.①②③④18.(2023·江苏无锡·模拟预测)如图,在平面直角坐标系中,点O 为坐标原点,矩形OABC 按如图所示摆放在第一象限,点B 的坐标为3m ,m ,将矩形OABC 绕着点O 逆时针旋转α(0<α<90°),得到矩形OA BC .直线OA 、B C 与直线BC 相交,交点分别为点D 、E ,有下列说法:①当m =1,α=30°时,矩形OA B C 与矩形OABC 重叠部分的面积为32;②当m =1,且B 落到y 轴的正半轴上时,DE 的长为103;③当点D 为线段BE 的中点时,点D 的横坐标为43m ;④当点D 是线段BE 的三等分点时,sin α的值为25或45.其中,说法正确的是()A.①②B.③④C.①②③D.①②④19.(2023·山东德州·统考一模)如图,在矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC于点M,交CD于点F,过点D作DE∥BF交AC于点N.交AB于点E,连接FN,EM.有下列结论:①四边形NEMF为平行四边形;②DN2=MC•NC;③△DNF为等边三角形;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的序号是()A.①②④B.①②③C.①③D.②③④20.(2023·天津·一模)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE,EF.下列结论:①AB=2BD;②图中有DFOE= 4对全等三角形;③BD=BF;④若将△DEF沿EF折叠,则点D不一定落在AC上;⑤S四边形S△AOF,上述结论中正确的个数是()A.1B.2C.3D.4。
2022年中考数学三轮复习:命题与定理一.选择题(共10小题)1.(2021•呼和浩特)以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5,4,3,2,1场,则由此可知,还没有与B队比赛的球队可能是D队;③两个正六边形一定位似;④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多,比其他的都少.其中真命题的个数有()A.1个B.2个C.3个D.4个2.(2021•潍坊一模)下列命题为真命题的是()A.对角线相等的四边形是矩形B.相似三角形面积之比等于相似比C.顺次连接矩形各边的中点所得的四边形是正方形D.两条直线被一组平行线所截,所得的对应线段成比例3.(2021•安徽模拟)下列命题中是真命题的是()①相等的角是对顶角.②在同一平面内,过一点有且只有一条直线与已知直线垂直.③两条直线被第三条直线所截,同位角相等.④如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.①④B.②③C.①③D.②④4.(2021•临沂模拟)下列命题中:①立方根等于自身的数是0,±1,平方根等于自身的数是0;②若,互为相反数,则2x+3y=0;③若点P(2m﹣4,m+7)到坐标轴距离相等,则m=11或﹣1;④若a+b,a﹣b,ab,中恰有三个数相等,则ab=±,正确的个数是()A.1B.2C.3D.45.(2020•德州)下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A.1B.2C.3D.4 6.(2020•岳阳二模)下列命题:①若直线a∥b,b∥c,则a∥c;②等边三角形既是轴对称图形又是中心对称图形;③有两边和一角对应相等的两个三角形全等;④依次连接任意一个四边形各边的中点所得的四边形是平行四边形.其中真命题有:()A.4 个B.3个C.2个D.1个7.(2020•安徽)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC8.(2020•西湖区校级模拟)下列关于函数y=x2﹣4x+6的四个命题:①当x=0时,y有最小值6;②若n>1,则x=2+n时的函数值大于x=n时的函数值;③若n>2且n是整数,当n<x<n+1时,y的整数函数值有(2n﹣4)个;④若函数图象过点(a,y0),(b,y0+1),则a<b,其中真命题的序号是()A.①②B.②③C.③④D.②④9.(2021•中江县模拟)给出下列命题及函数y=﹣x,y=﹣x2,y=﹣的图象.①如果a <﹣1那么﹣a>﹣>﹣a2;②如果﹣1<a<0,那么﹣>﹣a2>﹣a;③如果0<a<1,那么﹣a2>﹣a>﹣;④如果a>1,那么﹣>﹣a2>﹣a,则正确命题的序号是()A.①②B.②③C.①③D.③④10.(2021•深圳模拟)在平面直角坐标系中,对任意两点A(x1,y1)、B(x2,y2),规定运算如下:①A⊕B=(x1+x2,y1+y2);②A⊗B=x1x2+y1y2;③当x1=x2.且y1=y2时,称A=B.则下面命题是假命题的为()A.若A(﹣1,2),B(2,1),则A⊕B=(1,3),A⊗B=0B.若三点A(x1,y1)、B(x2,y2)、C(x3,y3)满足A⊕B=B⊕C,则A=CC.若三点A(x1,y1)、B(x2,y2)、C(x3,y3)满足A⊗B=B⊗C,则A=CD.任意三点A(x1,y1)、B(x2,y2)、C(x3,y3),恒有(A⊕B)⊕C=A⊕(B⊕C)成立二.填空题(共10小题)11.(2020•东胜区一模)下列命题中,是真命题的是.①的平方根是±3;②有一个角是70o的两个等腰三角形相似;③定理的逆命题是真命题;④,π,3.14144,,有4个无理数;⑤垂直于弦的直径一定平分弦所对的弧.12.(2020•建邺区一模)下列关于反比例函数y=(k≠0)的命题:①若函数图象经过点(2,1),则k=2;②过函数图象上一点A,作x轴、y轴的垂线,垂足分别为B、C,若△ABC的面积为2,则k=4;③当k>0时,y随x的增大而减小;④函数图象关于原点中心对称.其中所有真命题的序号是.13.(2021•东胜区二模)下列命题中,是真命题的是.(填序号)①代数式中x的取值范围是x≥;②平面内,过一点有且只有一条直线与已知直线平行;③平面直角坐标系中,点P(4,2)关于y轴对称的点的坐标是(4,﹣2);④点A为直线a外一点,点B是直线a上一点,点A到直线a的距离为5,则线段AB的长度不小于5.14.(2021•潍城区二模)下列命题是真命题的是.A.正八边形的外角和为360°B.圆周角的度数等于它所对弧的度数的一半C.对角线互相垂直平分的四边形是正方形D.三角形的内心到该三角形三个顶点的距离相等15.(2021•潍坊模拟)定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+x称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧;(2)函数y=的所有“派生函数”的图象都经过同一点.下列判断正确的是.A.命题(一)是真命题;B.命题(二)是真命题;C.命题(一)是假命题;D.命题(二)是假命题.16.(2021•杭锦旗二模)下列命题正确的是.(请直接填写序号)①平行四边形既是轴对称图形又是中心对称图形;②的算术平方根是6;③三角形的内心到这个三角形三条边的距离相等;④若甲数据的方差S甲2=0.05,乙数据的方差S乙2=0.1,则甲数据比乙数据稳定;⑤如果一个多边形的内角和是外角和的3倍,则这个多边形是六边形.17.(2020•安徽模拟)有下列四个命题:①有公共顶点,没有公共边的两个角一定是对顶角;②实数与数轴上的点是一一对应的;③过一点有且只有一条直线与已知直线平行;④如果点P(x,y)的坐标满足xy>0,那么点P一定在第一象限.其中正确命题的序号是.18.(2021•嵊州市模拟)在△ABC中,∠B=30°,∠C=α,点D是AB的中点,E是BC 边上一点(包括端点B、C),显然命题“若DE=AC,则DE是△ABC的中位线”是假命题,要使得上述命题为真命题,α的值可以是.(填序号)①0°<α<30°;②30°<α<90°;③α=90°;④90°<α<120°;⑤120°<α<150°.19.(2020•丰台区一模)如图,▱ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O,以下三个条件:①BO=DO;②EO=FO;③AE=CF,以其中两个作为题设,余下的一个作为结论组成命题,其中真命题的个数为.20.(2021•广汉市模拟)如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根为﹣3和1;④4a﹣2b+c>0.⑤关于x的一元二次方程ax2+bx+c+4a=0有两个相等的解,其中正确的命题是.(只要求填写正确命题的序号)2022年中考数学三轮复习:命题与定理参考答案与试题解析一.选择题(共10小题)1.(2021•呼和浩特)以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5,4,3,2,1场,则由此可知,还没有与B队比赛的球队可能是D队;③两个正六边形一定位似;④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多,比其他的都少.其中真命题的个数有()A.1个B.2个C.3个D.4个【考点】命题与定理.【专题】统计的应用;图形的相似;推理能力.【分析】利用三角形的中位线的性质、相似多边形的定义及平均数的知识分别判断后即可确定正确的选项.【解答】解:①任意三角形的一条中位线与第三边上的中线互相平分,如图所示:连接DF、EF,∵D、F分别是AB、BC的中点,∴DF∥AC,同理可得:EF∥AB,∴四边形ADFE是平行四边形,∴DE与AF互相平分,∴选项D不符合题意;正确,是真命题,符合题意;②由每个队分别与其它队比赛一场,最多赛5场,A队已经赛完5场,则每个队均与A队赛过,E队仅赛一场(即与A队赛过),所以E队还没有与B队赛过,故原命题错误,是假命题,不符合题意.③两个正六边形一定相似但不一定位似,故原命题错误,是假命题,不符合题意;④小王的捐款数比他所在学习小组中13人捐款的平均数多2元,小王的捐款数不会是最少的,捐款数可能最多,也可能排在第12位,故原命题正确,是真命题,符合题意,正确的有2个,故选:B.【点评】考查了命题与定理的知识,解题的关键是了解三角形的中位线的性质、位似的定义及平均数的知识,难度不大.2.(2021•潍坊一模)下列命题为真命题的是()A.对角线相等的四边形是矩形B.相似三角形面积之比等于相似比C.顺次连接矩形各边的中点所得的四边形是正方形D.两条直线被一组平行线所截,所得的对应线段成比例【考点】命题与定理.【专题】线段、角、相交线与平行线;三角形;矩形菱形正方形;应用意识.【分析】根据两条直线被一组平行线所截,所得的对应线段成比例等知识,一一判断即可.【解答】解:A、对角线相等的四边形是矩形,错误,是假命题,本选项不符合题意.B、相似三角形面积之比等于相似比,错误,是假命题,本选项不符合题意.C、顺次连接矩形各边的中点所得的四边形是正方形,错误,是假命题,本选项不符合题意.D、两条直线被一组平行线所截,所得的对应线段成比例,正确,是真命题,本选项符合题意.故选:D.【点评】本题考查两条直线被一组平行线所截,所得的对应线段成比例等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2021•安徽模拟)下列命题中是真命题的是()①相等的角是对顶角.②在同一平面内,过一点有且只有一条直线与已知直线垂直.③两条直线被第三条直线所截,同位角相等.④如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.①④B.②③C.①③D.②④【考点】命题与定理.【专题】特定专题;应用意识.【分析】根据对顶角的定义,平行线的判定和性质以及垂线公理一一判断即可.【解答】解:①相等的角是对顶角.是假命题.②在同一平面内,过一点有且只有一条直线与已知直线垂直.真命题.③两条直线被第三条直线所截,同位角相等.假命题.④如果两条直线都与第三条直线平行,那么这两条直线也互相平行.真命题.故选:D.【点评】本题考查对顶角的定义,平行线的判定和性质以及垂线公理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(2021•临沂模拟)下列命题中:①立方根等于自身的数是0,±1,平方根等于自身的数是0;②若,互为相反数,则2x+3y=0;③若点P(2m﹣4,m+7)到坐标轴距离相等,则m=11或﹣1;④若a+b,a﹣b,ab,中恰有三个数相等,则ab=±,正确的个数是()A.1B.2C.3D.4【考点】命题与定理.【专题】线段、角、相交线与平行线;推理能力.【分析】根据立方根、相反数、坐标以及数的比较判断即可.【解答】解:①立方根等于自身的数是0,±1,平方根等于自身的数是0,是真命题;②若,互为相反数,则2x+3y=0,是真命题;③若点P(2m﹣4,m+7)到坐标轴距离相等,则m=11或﹣1,是真命题;④若a+b,a﹣b,ab,中恰有三个数相等,则ab=±,原命题是真命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(2020•德州)下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A.1B.2C.3D.4【考点】命题与定理.【专题】矩形菱形正方形;推理能力.【分析】根据平行四边形的判定、菱形的判定、正方形和矩形的判定判断即可.【解答】解:①一组对边平行且这组对边相等的四边形是平行四边形,原命题是假命题;②对角线互相垂直且平分的四边形是菱形,是真命题;③一个角为90°且一组邻边相等的平行四边形是正方形,原命题是假命题;④对角线相等的平行四边形是矩形,是真命题;故选:B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(2020•岳阳二模)下列命题:①若直线a∥b,b∥c,则a∥c;②等边三角形既是轴对称图形又是中心对称图形;③有两边和一角对应相等的两个三角形全等;④依次连接任意一个四边形各边的中点所得的四边形是平行四边形.其中真命题有:()A.4 个B.3个C.2个D.1个【考点】命题与定理.【专题】线段、角、相交线与平行线;推理能力.【分析】根据平行线的判定、中心对称图形、三角形全等、平行四边形的判定判断即可.【解答】解:①若直线a∥b,b∥c,则a∥c,是真命题;②等边三角形既是轴对称图形但不是中心对称图形,原命题是假命题;③有两边和其夹角对应相等的两个三角形全等,原命题是假命题;④依次连接任意一个四边形各边的中点所得的四边形是平行四边形,是真命题;故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.(2020•安徽)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【考点】命题与定理.【专题】圆的有关概念及性质;推理能力.【分析】根据垂径定理,平行四边形的性质判断即可.【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,过O作OQ⊥AC于Q,交⊙O于P,连接P A,PC,∵∠ABC=120°,∴∠APC=120°,∠AOC=360°﹣2×120°=120°,∵OA=OC,∴∠AOC=∠OCA=30°,在Rt△OQA中,OQ=OA,∴OQ=OP,∴AC平分OP,∴只有当OB⊥AC时,弦AC平分半径OB,∴弦AC不一定平分半径OB,故C项是假命题;若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(2020•西湖区校级模拟)下列关于函数y=x2﹣4x+6的四个命题:①当x=0时,y有最小值6;②若n>1,则x=2+n时的函数值大于x=n时的函数值;③若n>2且n是整数,当n<x<n+1时,y的整数函数值有(2n﹣4)个;④若函数图象过点(a,y0),(b,y0+1),则a<b,其中真命题的序号是()A.①②B.②③C.③④D.②④【考点】二次函数的性质;命题与定理.【专题】二次函数图象及其性质;推理能力.【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个小题中的结论是否成立,从而可以解答本题.【解答】解:∵y=x2﹣4x+6=(x﹣2)2+2,∴当x=2时,该函数有最小值2,故①错误;∵该函数的对称轴为直线x=2,函数图象开口向上,∴若n>1,则x=2+n时的函数值大于x=n时的函数值,故②正确;∵[(n+1﹣2)2+2]﹣[(n﹣2)2+2]=n2﹣2n+3﹣n2+4n﹣6=2n﹣3,∴若n>2且n是整数,当n<x<n+1时,y的整数函数值有2n﹣3﹣1=(2n﹣4)个,故③正确;∵函数图象过点(a,y0),(b,y0+1),∴当(a,y0),(b,y0+1)在对称轴同侧时,点2≤a<b或b<a≤2;当(a,y0),(b,y0+1)在对称轴两侧时,或a到2的距离小于b到2的距离,故④错误;故选:B.【点评】本题考查二次函数的性质、命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.(2021•中江县模拟)给出下列命题及函数y=﹣x,y=﹣x2,y=﹣的图象.①如果a <﹣1那么﹣a>﹣>﹣a2;②如果﹣1<a<0,那么﹣>﹣a2>﹣a;③如果0<a<1,那么﹣a2>﹣a>﹣;④如果a>1,那么﹣>﹣a2>﹣a,则正确命题的序号是()A.①②B.②③C.①③D.③④【考点】命题与定理.【专题】一次函数及其应用;反比例函数及其应用;二次函数图象及其性质;应用意识.【分析】根据函数图象与不等式的关系:函数图象在上方的函数值大,函数图象在下方的函数值小,可得答案.【解答】解:①当a<﹣1时,一次函数函数的图象在最上方,反比例函数的图象在中间,二次函数的图象在下方,故①正确;②当﹣1<a<0时,反比例函数的图象在最上方,一次函数的图象在中间,二次函数的图象在下方,故②错误;③当0<a<1时,二次函数的图象在最上方,一次函数的图象在中间,反比例函数图象在下方,故③正确;④当a>1时,反比例函数的图象在最上方,一次函数的图象在中间,二次函数的图象在最下方,故④错误;故选:C.【点评】本题考查了二次函数图象与几何变换,利用了函数与不等式的关系:函数图象在上方的函数值大,函数图象在下方的函数值小.10.(2021•深圳模拟)在平面直角坐标系中,对任意两点A(x1,y1)、B(x2,y2),规定运算如下:①A⊕B=(x1+x2,y1+y2);②A⊗B=x1x2+y1y2;③当x1=x2.且y1=y2时,称A=B.则下面命题是假命题的为()A.若A(﹣1,2),B(2,1),则A⊕B=(1,3),A⊗B=0B.若三点A(x1,y1)、B(x2,y2)、C(x3,y3)满足A⊕B=B⊕C,则A=CC.若三点A(x1,y1)、B(x2,y2)、C(x3,y3)满足A⊗B=B⊗C,则A=CD.任意三点A(x1,y1)、B(x2,y2)、C(x3,y3),恒有(A⊕B)⊕C=A⊕(B⊕C)成立【考点】命题与定理.【专题】平面直角坐标系;推理能力.【分析】A、根据新定义的运算法则,可计算出A⊕B=(3,1),A⊗B=0;B、设C(x3,y3),根据新定义得A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),则x1+x2=x2+x3,y1+y2=y2+y3,于是得到x1=x3,y1=y3,然后根据新定义即可得到A=C;C、由于A⊗B=x1x2+y1y2,B⊗C=x2x3+y2y3,则x1x2+y1y2=x2x3+y2y3,不能得到x1=x3,y1=y3,所以A≠C;D、根据新定义的运算法则,可得(A⊕B)⊕C=A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3).【解答】解:A、∵A(﹣1,2),B(2,1),∴A⊕B=(﹣1+2,2+1),A⊗B=﹣1×2+2×1,即A⊕B=(1,3),A⊗B=0,故A正确;B、设C(x3,y3),则A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),而A⊕B=B⊕C,所以x1+x2=x2+x3,y1+y2=y2+y3,则x1=x3,y1=y3,所以A=C,故B正确;C、A⊗B=x1x2+y1y2,B⊗C=x2x3+y2y3,而A⊗B=B⊗C,则x1x2+y1y2=x2x3+y2y3,不能得到x1=x3,y1=y3,所以A≠C,故C不正确;D、因为(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),所以(A⊕B)⊕C=A⊕(B⊕C),故D正确.综上所述,正确的命题为A,B,D.故选:C.【点评】本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二.填空题(共10小题)11.(2020•东胜区一模)下列命题中,是真命题的是①⑤.①的平方根是±3;②有一个角是70o的两个等腰三角形相似;③定理的逆命题是真命题;④,π,3.14144,,有4个无理数;⑤垂直于弦的直径一定平分弦所对的弧.【考点】命题与定理.【专题】等腰三角形与直角三角形;圆的有关概念及性质;推理能力.【分析】根据平方根的概念、相似三角形的判定定理、命题与定理、无理数的概念、垂径定理判断即可.【解答】解:①=9,9的平方根是±3,本小题说法是真命题;②有一个角是70o的两个等腰三角形相似,本小题说法是假命题,例如:内角为70°、55°、55°的三角形与内角为70°、70°、40°的三角形不相似;③定理的逆命题不一定是真命题,本小题说法是假命题;④,π,3.14144,,有2个无理数,本小题说法是假命题;⑤垂直于弦的直径一定平分弦所对的弧,本小题说法是真命题;故答案为:①⑤.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.(2020•建邺区一模)下列关于反比例函数y=(k≠0)的命题:①若函数图象经过点(2,1),则k=2;②过函数图象上一点A,作x轴、y轴的垂线,垂足分别为B、C,若△ABC的面积为2,则k=4;③当k>0时,y随x的增大而减小;④函数图象关于原点中心对称.其中所有真命题的序号是①④.【考点】命题与定理.【专题】反比例函数及其应用;运算能力.【分析】根据反比例函数图象上点的坐标特征、反比例函数系数k的几何意义、反比例函数的性质判断即可.【解答】解:①若函数图象经过点(2,1),则k=1×2=2,①说法是真命题;②过函数图象上一点A,作x轴、y轴的垂线,垂足分别为B、C,设点A的坐标为(x,y),∵△ABC的面积为2,∴xy=2,则k=xy=±4,②说法是假命题;③当k>0时,在每个象限,y随x的增大而减小,③说法是假命题;④函数图象关于原点中心对称,④说法是真命题;故答案为:①④.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.本题判断命题的真假关键是要熟悉反比例函数的性质.13.(2021•东胜区二模)下列命题中,是真命题的是①④.(填序号)①代数式中x的取值范围是x≥;②平面内,过一点有且只有一条直线与已知直线平行;③平面直角坐标系中,点P(4,2)关于y轴对称的点的坐标是(4,﹣2);④点A为直线a外一点,点B是直线a上一点,点A到直线a的距离为5,则线段AB的长度不小于5.【考点】命题与定理.【专题】二次根式;平移、旋转与对称;推理能力.【分析】利用二次根式、分式有意义的条件、平行线的判定、关于坐标轴对称的点的坐标特点及垂线段的性质分别判断后即可确定正确的答案.【解答】解:①代数式中x的取值范围是x≥,正确,是真命题,符合题意;②平面内,过直线外一点有且只有一条直线与已知直线平行,故原命题错误,是假命题,不符合题意;③平面直角坐标系中,点P(4,2)关于y轴对称的点的坐标是(﹣4,2),故原命题错误,是假命题,不符合题意;④点A为直线a外一点,点B是直线a上一点,点A到直线a的距离为5,则线段AB的长度不小于5,正确,是真命题,符合题意,真命题由①④,故答案为:①④.【点评】考查了命题与定理的知识,解题的关键是了解二次根式、分式有意义的条件、平行线的判定、关于坐标轴对称的点的坐标特点及垂线段的性质,难度不大.14.(2021•潍城区二模)下列命题是真命题的是A.A.正八边形的外角和为360°B.圆周角的度数等于它所对弧的度数的一半C.对角线互相垂直平分的四边形是正方形D.三角形的内心到该三角形三个顶点的距离相等【考点】命题与定理.【专题】圆的有关概念及性质;推理能力.【分析】利用多边形、正方形的判定、三角形的外接圆与内切圆及三角形的内心的定义分别判断后即可确定正确的选项.【解答】解:A.正八边形的外角和为360°,是真命题,符合题意;B.,在同圆或等圆中,同弧所对的圆周角的度数等于圆心角度数的一半,是假命题,不符合题意;C.对角线互相垂直平分且相等的四边形是正方形,是假命题,不符合题意;D.三角形的内心到三角形的三边的距离相等,是假命题,不符合题意;故答案为:A.【点评】本题考查了命题与定理的知识,解题的关键是了解多边形、正方形的判定、三角形的外接圆与内切圆及三角形的内心的定义等知识,难度不大.15.(2021•潍坊模拟)定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+x称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧;(2)函数y=的所有“派生函数”的图象都经过同一点.下列判断正确的是B、C.A.命题(一)是真命题;B.命题(二)是真命题;C.命题(一)是假命题;D.命题(二)是假命题.【考点】命题与定理.【专题】反比例函数及其应用;二次函数图象及其性质;推理能力.【分析】(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,即可得出结论.【解答】解:(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都经过同一点,是真命题.故答案为:B、C.【点评】本题考查命题与定理、二次函数的性质,理解题意是解题的关键,记住二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧,属于基础题.16.(2021•杭锦旗二模)下列命题正确的是③④.(请直接填写序号)①平行四边形既是轴对称图形又是中心对称图形;②的算术平方根是6;③三角形的内心到这个三角形三条边的距离相等;④若甲数据的方差S甲2=0.05,乙数据的方差S乙2=0.1,则甲数据比乙数据稳定;⑤如果一个多边形的内角和是外角和的3倍,则这个多边形是六边形.【考点】命题与定理.【专题】实数;统计的应用;多边形与平行四边形;推理能力.【分析】利用平行四边形的对称性、算术平方根的定义、三角形的内心的性质、方差的意义及多边形的内角和定理分别判断后即可确定正确的选项.【解答】解:①平行四边形是中心对称图形但不是轴对称图形,故错误,不符合题意;②的算术平方根是,故错误,不符合题意;③三角形的内心到这个三角形三条边的距离相等,正确,符合题意;④若甲数据的方差S甲2=0.05,乙数据的方差S乙2=0.1,则甲数据比乙数据稳定,正确,符合题意;⑤如果一个多边形的内角和是外角和的3倍,则这个多边形是八边形,故原命题错误,不符合题意,故答案为:③④.【点评】考查了命题与定理的知识,解题的关键是了解平行四边形的对称性、算术平方根的定义、三角形的内心的性质、方差的意义及多边形的内角和定理,难度不大.17.(2020•安徽模拟)有下列四个命题:①有公共顶点,没有公共边的两个角一定是对顶角;②实数与数轴上的点是一一对应的;③过一点有且只有一条直线与已知直线平行;④如果点P(x,y)的坐标满足xy>0,那么点P一定在第一象限.其中正确命题的序号是②.【考点】命题与定理.【专题】实数;线段、角、相交线与平行线;推理能力.【分析】由对顶角定义、实数与数轴的关系、平行公里以及点的坐标等知识分别对各个命题进行判断即可.【解答】解:∵有公共顶点,没有公共边的两个角不一定是对顶角;∴①不正确;∵实数与数轴上的点是一一对应的;∴②正确;∵过已知直线外一点有且只有一条直线与已知直线平行;∴③不正确;∵如果点P(x,y)的坐标满足xy>0,那么点P一定在第一象限或第三象限;∴④不正确.故答案为:②.【点评】本题考查了命题与定理;熟练掌握对顶角定义、实数与数轴的关系、平行公里以及点的坐标等知识是解题的关键.18.(2021•嵊州市模拟)在△ABC中,∠B=30°,∠C=α,点D是AB的中点,E是BC。
专题复习(三) 多结论判断题在四川中考中,多结论判断题一般位于选择题或填空题的最后一个,综合性很强,难度很大,且考查频率较高,属于拉分题,复习时要注意这类题型的练习.类型1 代数结论判断题(2014·南充)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若ax21+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有( )A.①②③B.②④C.②⑤D.②③⑤【解答】∵抛物线开口向下,∴a<0.∵抛物线对称轴为x=-b2a=1,∴b =-2a >0,即2a +b =0,故②正确; ∵抛物线与y 轴的交点在x 轴上方, ∴c >0.∴abc<0,故①错误; ∵抛物线对称轴为x =1, ∴函数的最大值为a +b +c.∴当m≠1时,a +b +c >am 2+bm +c ,即a +b >am 2+bm ,故③正确; ∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为x =1, ∴抛物线与x 轴的另一个交点在(-1,0)的右侧. ∴当x =-1时,y <0, ∴a -b +c <0,故④错误;∵ax 21+bx 1=ax 22+bx 2,∴ax 21+bx 1-ax 22-bx 2=0,∴a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)=0. ∴(x 1-x 2)[a(x 1+x 2)+b]=0.又x 1≠x 2,∴a(x 1+x 2)+b =0,即x 1+x 2=-ba .∵b =-2a ,∴x 1+x 2=2,故⑤正确. 故选D.本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线开口向上;当a <0时,抛物线开口向下;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左边;当a 与b 异号时(即ab <0),对称轴在y 轴右边;常数项c 决定抛物线与y 轴交点.抛物线与y 轴交于(0,c);抛物线与x 轴交点个数由Δ决定,Δ=b 2-4ac >0时,抛物线与x 轴有2个交点;Δ=b 2-4ac =0时,抛物线与x 轴有1个交点;Δ=b 2-4ac <0时,抛物线与x 轴没有交点.1.(2015·南充)关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m-1)2+(n -1)2≥2;③-1≤2m-2n≤1.其中正确结论的个数是( )A .0个B .1个C .2个D .3个 2.(2013·自贡)已知关于x 的方程x 2-(a +b)x +ab -1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x 21+x 22<a 2+b 2.则正确结论的序号是________.(填上你认为正确结论的所有序号)3.(2013·绵阳)二次函数y =ax 2+bx +c 的图象如图所示,给出下列结论:①2a+b >0;②b>a >c ;③若-1<m <n <1,则m +n <-ba ;④3|a|+|c|<2|b|.其中正确的结论是________(写出你认为正确结论的所有序号).4.(2013·德阳)已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a +c ;③4a+2b +c >0;④2c<3b ;⑤a+b <m(am +b)(m≠1的实数),其中正确结论的序号有________.类型2 几何结论判断题(2015·攀枝花)如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=32CG2;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为( )A .4B .3C .2D .1【解答】 ①∵ABCD 为菱形,∴AB =AD.∵AB=BD ,∴△ABD 为等边三角形.∴∠A=∠BDF=60°.又∵AE =DF ,AD =BD ,∴△AED ≌△DFB.故本选项正确;②∵∠BGE =∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B 、C 、D 、G 四点共圆.∴∠BGC=∠BDC=60°,∠DGC =∠DBC=60°.∴∠BGC =∠DGC=60°,过点C 作CM⊥GB 于M ,CN ⊥GD 于N(如图1),则△CBM≌△CDN(AAS),∴S 四边形BCDG =S 四边形CMGN ,S 四边形CMGN =2S △CMG .∵∠CGM =60°,∴GM =12CG ,CM =32CG ,∴S 四边形CMGN =2S △CMG =2×12×12CG ×32CG =34CG 2,故本选项错误;③过点F 作FP∥AE 于P 点(如图2),∵AF =2FD ,∴FP ∶AE =DF∶DA=1∶3.∵AE=DF ,AB =AD ,∴BE =2AE.∴FP∶BE=FP∶12AE =1∶6.∵FP∥AE,∴PE ∥BE ,∴FG ∶BG =FP∶BE=1∶6,即BG =6GF ,故本选项正确;④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE =∠DBG=30°.∴DG =BG.在△GDC 与△GBC 中,∵DG =BG ,CG =CG ,CD =CB ,∴△GDC ≌△GBC ,∴∠DCG =∠BCG,∴CH ⊥BD ,即CG⊥BD,故本选项错误;⑤∵∠BGE =∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确; 综上所述,正确的结论有①③⑤,共3个,故选B.图1 图2 图31.(2015·绥化)如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC=60°,AB =12BC ,连接OE.下列结论:①∠CAD=30°,②SABCD=AB·AC,③OB =AB ,④OE =14BC ,成立的个数有( )A .1个B .2个C .3个D .4个2.(2015·达州)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,连接OD 、OC ,下列结论:①∠DOC=90°,②AD +BC =CD ,③S △AOD ∶S △BOC =AD 2∶AO 2,④OD ∶OC =DE∶EC,⑤OD 2=DE·CD,正确的有( )A.2个 B.3个 C.4个D.5个3.(2015·湖州)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连接OG,DG,若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是( )A.CD+DF=4 B.CD-DF=23-3 C.BC+AB=23+4 D.BC-AB=24.(2014·攀枝花)如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC的平分线GH过点D,交BE于H,连接OH、FH,EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO 12BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有( )A .1个B .2个C .3个D .4个5.(2013·南充)如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1 cm/s ,设P ,Q 出发t 秒时,△BPQ的面积为y cm 2,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE =5 cm ;②当0<t≤5时,y =25t 2;③直线NH 的解析式为y =-52t +27;④若△ABE 与△QBP 相似,则t=294秒.其中正确的结论个数为( )A .4B .3C .2D .16.(2013·广元)以如图1(以O 为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图2的有________(只填序号).①只要向右平移1个单位;②先以直线AB 为对称轴进行翻折,再向右平移1个单位; ③先绕着点O 旋转180°,再向右平移一个单位; ④绕着OB 的中点旋转180°即可.7.(2015·南充)如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连接DQ.给出如下结论:①DQ=1;②PQ BQ =32;③S △PDQ =18;④cos ∠ADQ =35.其中正确结论是________.(填写序号)8.(2015·广元)如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G.连接AD ,分别交CE ,CB 于点P ,Q ,连接AC.关于下列结论:①∠BAD =∠ABC;②GP=GD ;③点P 是△ACQ 的外心.其中正确的是________(只需填写序号).9.(2013·攀枝花)如图,分别以直角△ABC 的斜边AB ,直角边AC 为边向△ABC 外作等边△ABD 和等边△ACE,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,∠ACB =90°,∠BAC=30°.给出如下结论:①EF ⊥AC ;②四边形ADFE 为菱形;③AD=4AG ;④FH=14BD.其中正确结论的为________(请将所有正确的序号都填上).10.(2015·宜宾)如图,在正方形ABC'D 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H.给出下列结论:①△ABE ≌△DCF ;②FP PH =35;③DP 2=PH·PB;④S △BPD S 正方形ABCD =3-14.其中正确的是________(写出所有正确结论的序号).11.(2014·德阳)在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD.连接DE 交对角线AC 于H ,连接BH.下列结论正确的是________.(填序号)①AC⊥DE;②BE HE =12;③CD=2DH ;④S △BEH S △BEC =DH AC.参考答案类型1 代数结论判断题1.D 2.①② 3.①③④ 4.①③④类型2 几何结论判断题1.C 2.D 3.A 4.C 5.B 6.②③④ 7.①②④ 8.②③ 9.①③④10.①③④ 11.①③④。