功率半导体器件(LDMOS VDMOS)
- 格式:pdf
- 大小:340.71 KB
- 文档页数:9
军工功率半导体军工领域中,功率半导体是一项至关重要的技术,它在军事装备和武器系统中发挥着不可或缺的作用。
功率半导体器件可以将电能转化为其他形式的能量,如机械能或热能,用于驱动各种军事设备的运行。
它们的高效率和可靠性使得军事装备能够在极端环境下持续工作,确保战斗力的稳定输出。
功率半导体器件的应用范围非常广泛,包括导弹、雷达、通信设备、飞机、坦克等。
举例来说,导弹系统中的功率半导体器件能够提供足够的能量来驱动导弹发射装置,确保导弹能够准确地发射并追踪目标。
雷达系统中的功率半导体器件能够提供稳定的能量输出,确保雷达设备能够准确地探测目标并提供精确的信息。
功率半导体器件的关键技术包括材料选择、制备工艺和封装技术。
在材料选择方面,高性能的功率半导体器件通常采用化合物半导体材料,如碳化硅和氮化镓。
这些材料具有优异的导电性能和热导性能,能够在高温和高电压条件下稳定工作。
制备工艺方面,功率半导体器件的制备过程需要高精度的工艺控制和严格的质量检测,以确保器件的性能和可靠性。
封装技术则是将器件封装在适当的封装材料中,以保护器件免受外界环境的影响,提高器件的可靠性和耐久性。
军工领域对功率半导体器件提出了更高的要求,如高功率密度、高工作温度和抗辐射性能等。
为了满足这些要求,研究人员不断探索新的材料和制备工艺,并不断改进现有的器件结构和设计。
同时,军工企业也在不断推动功率半导体器件的发展,加强与科研机构的合作,共同推动军事装备的现代化和智能化。
功率半导体在军工领域的应用不仅提高了军事装备的性能和可靠性,还推动了军工技术的发展和创新。
随着科技的不断进步,功率半导体技术将继续发展,为军事装备的现代化提供更多的可能性和选择。
我们有理由相信,军工领域中的功率半导体技术将继续发挥重要作用,为保卫国家安全和维护世界和平作出积极贡献。
LDMOS器件80年代以来,迅猛发展的超大规模集成电路技术给高压大电流半导体注入了新的活力,一批新型的声控功放器件诞生了,其中最有代表性的产品就是VDMOS场效应功率晶体管。
这种电流垂直流动的双扩散MOS器件是电压控制型器件。
在合适的栅极电压的控制下,半导体表面反型,形成导电沟道,于是漏极和源极之间流过适量的电流VDMOS兼有双极晶体管和普通MOS器件的优点。
与双极晶体管相比,它的开关速度,开关损耗小;输入阻抗高,驱动功率小;频率特性好;跨导高度线性。
特别值得指出的是,它具有负的温度系数,没有双极功率的二次击穿问题,安全工作区大。
因此,不论是开关应用还是线性应用,VDMOS都是理想的功率器件。
现在,VDMOS器件已广泛应用于各种领域,包括电机调速、逆变器、不间断电源、开关电源、电子开关、高保真音响、汽车电器和电子镇流器等。
由于VDMOS的性能价格比已优于双极功率器件,它在功率器件市场中的份额已达42%。
并将继续上升。
飞利浦半导体为目前市场中能够大批量生产高效能LDMOS产品的领导制造商之一。
LDMOS初期主要面向移动电话基站的RF功率放大器,也可以应用于HF、VHF与UHF广播传输器以及微波雷达与导航系统等等。
凌驾于所有RF功率技术,侧面扩散MOS (LDMOS, Laterally Diffused Metal Oxide Semiconductor) 晶体管技术为新一代基站放大器带来较高的功率峰均比(PAR, Peak-to-Aerage)、更高增益与线性度,同时为多媒体服务带来更高的数据传输率。
此外,卓越的效能也随着效率以及功率密度持续不断地提升。
过去四年来,飞利浦第二代0.8微米LDMOS技术在GSM、EDGE与CDMA系统上拥有耀眼的效能与稳定的批量生产能力,现阶段为了满足多载波功率放大器(MCPA) 与W-CDMA标准的需求,还提供了更新的LDMOS技术。
飞利浦第三代0.8微米超低失真LDMOS技术采用非统一参杂(doping) 方式,称之为分散Vt概念,与传统的LDMOS比较,补偿线性提升了5到8dB,使得这项技术特别适合应用于3G基站内的MCPA驱动器,同时比上一代LDMOS产品的功率增益要高2 dB。
POWER MOSFETS平面VDMOS的剖面图,一般是60V以上的器件,采用1.5um以上的工艺,所以国内以前做IC的厂家都能做。
一般是60V以下的器件,沟槽VDMOS的剖面图,厂家才能做。
IC采用0.5um以下的工艺,所以国内高档的所以加工线的条件非常重要,如加工的线条、刻槽技术、工艺线的环境。
加工线的条件不太重要,所以现在很多的老的5寸、6寸线在做。
但对材料要求很高,是高阻厚外延材料。
加工线的条件及材料要求都很高。
只有国外几家公司在做,如IR、INFINEON。
随着加工技术及设计技术的提高器件的特性不断地改进(以导通电阻为列)。
平面IGBT的剖面图,一般是400V以上的器件,采用2um 以上的工艺,所以国内以前做IC的厂家都能做,但设计及材料要求都很高。
VDMOS和双极管特性比较VDMOS的击穿电压:BV、V DSS BRVDMOS的击穿电压决定于:1、外延材料;浓度及厚度2、体单胞间距3、终端设计4、表面态等工艺控制VDMOS的导通电阻:R )(DSON低压(200V以下VDMOS的导通电阻(由大到小排列)1、单胞密度(沟道电阻)表面浓度(积累层电阻)2、3、外延材料;浓度及厚度(耐压区电阻)4、设计(颈部电阻)5、封装(有时会到主要地位)6、表面金属化(表面接触电阻)高压200V以上VDMOS的导通电阻(由大到小排列)外延材料;浓度及厚度(耐压区电阻)、1.单胞密度(沟道电阻)、23、设计(颈部电阻)4、表面浓度(积累层电阻)5、表面金属化(表面接触电阻)6、封装VDMOS的跨导:Gfs1、栅、源电压对漏电流的控制能力:在一定的漏电压下,漏电流除以栅、源电压(漏电流为最大允许漏流的一半)2、处决于沟道密度及沟道宽度(从80年到今60倍)VDMOS的域值电压:Vth为使沟道反型所需最小栅、源电压值。
一般高压器件为2—4V低压器件为1—3V寄生二极管的正向压降:一般在1V到1。
6V之间。
高压的器件要大。
关于功率MOSFET(VDMOS & LDMOS)的报告---时间日期:2009.11.12---报告完成人:祝靖1.报告概况与思路报告目的:让研一新同学从广度认识功率器件、了解功率器件的工作原理,起到一个启蒙的作用,重点在“面”,更深层次的知识需要自己完善充实。
报告内容:1)从耐压结构入手,说明耐压原理;2)从普通MOS结构到功率MOS结构的发展;(功率MOS其实就是普通MOS结构和耐压结构的结合);3)纵向功率MOS(VDMOS)的工作原理;4)横向功率MOS(LDMOS)的工作原理;5)功率MOSFET中的其它关键内容;(LDMOS和VDMOS共有的,如输出特性曲线)报告方式:口头兼顾板书,点到即止,如遇到问题、疑惑之处或感兴趣的地方,可以随时打断提问。
2.耐压结构(硅半导体材料)目前在我们的研究学习中涉及到的常见耐压结构主要有两种:①反向PN结②超结结构(包括);2.1 反向PN结(以突变结为例)图2.1所示的是普通PN结的耐压原理示意图,当这个PN结工作在一定的反向电压下,在PN结内部就会产生耗尽层,P区一侧失去空穴会剩下固定不动的负电中心,N区一侧会失去电子留下固定不动的正电中心,并且正电中心所带的总电量=负电中心所带的总电量,如图2.1a所示,A区就是所谓耗尽区。
图2.1b所示的是耗尽区中的电场分布情况(需熟悉了解),耗尽区以外的电场强度为零,Em称为峰值电场长度(它的位置在PN,阴影部分的面积就是此时所加在PNP区和N区共同耐压。
图2.2所示的是P+N结的情况,耐压原理和图1中的相同,但是在这种情况中我们常说N负区是耐压区域(常说的漂移区)(a)(b)图2.1 普通PN结耐压示意图(N浓度=P浓度)图2.2 P+N结耐压示意图(N浓度<<P浓度)图2.3所示的是反向电压变化情况下的耗尽层内部的电场强度的变化情况,随着N一侧的电压的上升,耗尽层在展宽(对于P+N-结来说,耗尽层展宽的区域为N区一侧,也就是耐压区一侧),峰值电场强度Em的值也在不断升高,但是当Em=Ec时,PN结发生击穿,Ec称为临界电场强度,此时加在PN结两端的电压大小就是击穿电压(BV(如表2.1所示),同种材料不同浓度的临界电场也不同,但是对于硅材料来说,在我们目前关系的浓度范围之内,浓度变化对电场强度的影响不大,因图 2.3 电场强度和电压的关系示意图 Table2.1 不同材料的临界电场2.2 超结结构(SuperJunction )(了解)除了上述所说的P+N-结结构之外,还有一种我们会接触到的耐压结构——超结结构。
什么是RF LDMOS晶体管DMOS主要有两种类型,垂直双扩散金属氧化物半导体场效应管VDMOSFET(vertical double-diffused MOSFET)和横向双扩散金属氧化物半导体场效应管LDMOSFET (lateral double-dif fused MOSFET)。
LDMOS由于更容易与CMOS工艺兼容而被广泛采用。
LDMOSLDMOS (横向扩散金属氧化物半导体)LDMOS器件结构如图1所示,LDMOS是一种双扩散结构的功率器件。
这项技术是在相同的源/漏区域注入两次,一次注入浓度较大(典型注入剂量1015cm-2)的砷(As),另一次注入浓度较小(典型剂量1013cm-2)的硼(B)。
注入之后再进行一个高温推进过程,由于硼扩散比砷快,所以在栅极边界下会沿着横向扩散更远(图中P阱),形成一个有浓度梯度的沟道,它的沟道长度由这两次横向扩散的距离之差决定。
为了增加击穿电压,在有源区和漏区之间有一个漂移区。
LDMOS中的漂移区是该类器件设计的关键,漂移区的杂质浓度比较低,因此,当LDMOS 接高压时,漂移区由于是高阻,能够承受更高的电压。
图1所示LDMOS的多晶扩展到漂移区的场氧上面,充当场极板,会弱化漂移区的表面电场,有利于提高击穿电压。
场极板的作用大小与场极板的长度密切相关[6]。
要使场极板能充分发挥作用,一要设计好SiO2层的厚度,二要设计好场极板的长度。
LDMOS元件具有基底,基底中形成有源极区与漏极区。
在源极与漏极区之间的一部分基底上提供了一个绝缘层,以便在绝缘层与基底表面之间提供一个平面介面。
然后在绝缘层的一部分之上形成绝缘构件,在部分绝缘构件与绝缘层之上形成栅极层。
通过使用此结构,发现存在有平直的电流通道,使之能减少接通电阻,同时维持高击穿电压。
LDMOS与普通MOS管主要有两点区别:1,采用LDD结构(或称之为漂移区);2,沟道由两次扩散的横向结深控制。
LDMOS 的优势• 卓越的效率,可降低功率消耗与冷却成本• 卓越的线性度,可将信号预校正需求降到最低• 优化超低热阻抗,可缩减放大器尺寸与冷却需求并改善可靠度• 卓越的尖峰功率能力,可带来最少数据错误率的高3G 数据率• 高功率密度,使用较少的晶体管封装• 超低感抗、回授电容与串流闸阻抗,目前可让LDMOS 晶体管在双载子器件上提供7 bB 的增益改善• 直接源极接地,提升功率增益并免除BeO 或AIN 隔离物质的需求• 在GHz 频率下拥有高功率增益,带来更少设计步骤、更简易更具成本效益的设计(采用低成本、低功率驱动晶体管)• 绝佳的稳定性,由于负漏极电流温度常数,所以不受热散失的影响• 比双载子更能忍受较高的负载未匹配现象(VSWR),提高现场实际应用的可靠度• 卓越的射频稳定度,在栅极与漏极间内置隔离层,可以降低回授电容• 在平均无故障时间(MTTF) 上有相当好的可靠度LDMOS主要的缺点1.功率密度低;2.容易受到静电的破坏。
功率半导体器件“power semiconductor device”和“power integrated circuit(简写为power IC或PIC)”直译就是功率半导体器件和功率集成电路。
在国际上与该技术领域对应的最权威的学术会议就叫做International Symposium on Power Semiconductor Devices and ICs,即功率半导体器件和功率集成电路国际会议。
“power”这个词可译为动力、能源、功率等,而在中文里这些词的含义不是完全相同的。
由于行业的动态发展,“power”的翻译发生了变化。
从上世纪六七十年代至八十年代初,功率半导体器件主要是可控硅整流器(SCR)、巨型晶体管(GTR)和其后的栅关断晶闸管(GTO)等。
它们的主要用途是用于高压输电,以及制造将电网的380V或220V交流电变为各种各样直流电的中大型电源和控制电动机运行的电机调速装置等,这些设备几乎都是与电网相关的强电装置。
因此,当时我国把这些器件的总称———power semiconductor devices没有直译为功率半导体器件,而是译为电力电子器件,并将应用这些器件的电路技术power electronics没有译为功率电子学,而是译为电力电子技术。
与此同时,与这些器件相应的技术学会为中国电工技术学会所属的电力电子分会,而中国电子学会并没有与之相应的分学会;其制造和应用的行业归口也划归到原第一机械工业部和其后的机械部,这些都是顺理成章的。
实际上从直译看,国外并无与电力电子相对应的专业名词,即使日本的“电力”与中文的“电力”也是字型相同而含义有别。
此外,当时用普通晶体管集成的小型电源电路———功率集成电路,并不归属于电力电子行业,而是和其他集成电路一起归口到原第四机械工业部和后来的电子工业部。
20世纪80年代以后,功率半导体行业发生了翻天覆地的变化。
功率半导体器件变为以功率金属氧化物半导体场效应晶体管(功率MOSFET,常简写为功率MOS)、绝缘栅双极晶体管(IGBT)以及功率集成电路(power IC,常简写为PIC)为主。
vdmos名词解释
VDMOS是Vertical Double-diffused Metal-Oxide-Semiconductor的缩写,中文意思为垂直双扩散金属氧化物半导体
器件。
VDMOS是一种常见的功率MOSFET(金属氧化物半导体场效应
晶体管)结构,常用于功率放大器和开关电路中。
它的结构特点是
在P型衬底上沉积N型外延层,并在N型外延层上再沉积P型扩散层,形成N-P-P+的结构。
VDMOS具有低导通电阻、高开关速度和良
好的耐压特性,因此在功率电子器件中得到广泛应用。
从物理结构来看,VDMOS具有垂直结构,电流主要是在垂直方
向上流动,因此具有较大的功率承受能力。
另外,VDMOS的栅极结
构和电荷平衡设计使得其在高频开关应用中具有较好的性能。
此外,VDMOS还具有较好的热特性,能够在高温环境下工作。
总的来说,VDMOS器件因其结构特点和性能优势,在功率电子
领域得到广泛应用,包括电源管理、电动车控制、工业控制等领域。
希望这些信息能够全面回答你的问题。
一功率半导体简介功率半导体器件种类很多,器件不同特性决定了它们不同的应用范围,常用半导体器件的特性如下三图所示。
目前来说,最常用的功率半导体器件为功率MOSFET和IGBT。
总的来说,MOSFET的输出功率小,工作频率高,但由于它导通电阻大的缘故,功耗也大。
但它的功耗随工作频率增加幅度变化很小,故MOSFET更适合于高频场合,主要应用于计算机、消费电子、网络通信、汽车电子、工业控制和电力设备领域。
IGBT的输出功率一般10KW~1000KW之间,低频时功耗小,但随着工作频率的增加,开关损耗急剧上升,使得它的工作频率不可能高于功率MOSFET,IGBT主要应用于通信、工业、医疗、家电、照明、交通、新能源、半导体生产设备、航空航天以及国防等领域。
图1.1 功率半导体器件的工作频率范围及其功率控制容量图1.2 功率半导体器件工作频率及电压范围图1.3 功率半导体器件工作频率及电流范围二不同结构的功率MOSFET特性介绍功率MOSFET的优点主要有驱动功率小、驱动电路简单、开关速度快、工作频率高,随着工艺的日渐成熟、制造成本越来越低,功率MOSFET应用范围越来越广泛。
我们下面主要介绍一些不同结构的MOSFET的特性。
VVMOSFET图2.1 VVMOS结构示意图VVMOS采用各向异性腐蚀在硅表面制作V 形槽,V形槽穿透P与N+连续扩散的表面,槽的角度由硅的晶体结构决定,而器件沟道长度取决于连续扩散的深度。
在这种结构中,表面沟道由V 形槽中的栅电压控制,电子从表面沟道出来后乡下流到漏区。
由于存在这样一个轻掺杂的漂移区且电流向下流动,可以提高耐压而并不消耗表面的面积。
这种结构提高了硅片的利用率,器件的频率特性得到很大的改善。
同时存在下列问题:1,V形槽面之下沟道中的电子迁移率降低;2,在V槽的顶端存在很强的电场,严重影响器件击穿电压的提高;3,器件导通电阻很大;4,V槽的腐蚀不易控制,栅氧暴露,易受离子玷污,造成阈值电压不稳定,可靠性下降。
浅谈半导体功率器件国内功率半导体器件需求很火,功率半导体器件,以前也被称为电力电子器件,简单来说,就是进行功率处理的,具有处理高电压,大电流能力的半导体器件。
给个数量吧,电压处理范围从几十V~几千V,电流能力最高可达几千A。
典型的功率处理,包括变频、变压、变流、功率管理等等。
其中大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。
可以分为半控型器件、全控型器件和不可控型器件,其中晶闸管为半控型器件,承受电压和电流容量在所有器件中最高;电力二极管为不可控器件,结构和原理简单,工作可靠;还可以分为电压驱动型器件和电流驱动型器件,其中GTO、GTR为电流驱动型器件,IGBT、电力MOSFET为电压驱动型器件。
早期的功率半导体器件:大功率二极管、晶闸管等等,主要用于工业和电力系统(正因如此,早期才被称为电力电子器件)。
后来,随着以功率MOSFET器件为代表的新型功率半导体器件的迅速发展,现在功率半导体器件已经非常广泛啦,在计算机、通行、消费电子、汽车电子为代表的4C行业(computer、communication、consumer electronics、cartronics)。
功率半导体器件现在可以说是越来越火,国家不是要节能环保吗,低碳生活,那就需要对能量的处理进行合理的管理,power是啥?通俗的理解就是功率P=IV 吗,所以就需要对电压电流的运用进行有效的控制,这就与功率器件密不可分!功率管理集成电路(Power Management IC,也被称为电源管理IC)已经成为功率半导体器件的热点,发展非常迅速噢。
功率半导体器件,在大多数情况下,是被作为开关使用(switch),开关,简单的说,就是用来控制电流的通过和截断。
那么,一个理想的开关,应该具有两个基本的特性:1,电流通过的时候,这个理想开关两端的电压降是零。
2,电流截断的时候,这个理想开关两端可以承受的电压可以是任意大小,也就是0~无穷大因此,功率半导体器件的研究和发展,就是围绕着这个目标不断前进的。
LDMOS横纵向电场同时优化及关键技术LDMOS横纵向电场同时优化及关键技术LDMOS(Laterally Diffused Metal Oxide Semiconductor)是一种常用于功率放大器的半导体器件。
它具有高电压处理能力和低电流漏泄的特点,广泛应用于射频功率放大、调制、天线开关等领域。
然而,LDMOS器件在工作过程中还存在一些问题,如电场集中、漏电流增加等。
为了优化LDMOS器件的工作性能,需要同时优化横向和纵向电场分布。
横向电场集中导致电导丧失,纵向电场集中会导致漏电流增加。
因此,要同时优化这两者是非常重要的。
在优化LDMOS器件的横向电场分布时,可以采用多种方法。
一种方法是通过改变多晶硅的浓度分布来调整电场分布。
这可以通过在表面引入P型离子来完成,从而降低表面电导率,减少横向电流。
另一种方法是在晶体管的表面加上掺杂剂层,形成渐变掺杂电场,使电场均匀分布。
对于纵向电场的优化,常用的方法是采用隔离结构和结阻控技术。
隔离结构可以将漏电流限制在所需的范围内,减少电场集中。
结阻控技术包括增加漏结电阻和优化源漏结电容,以降低漏电流的影响。
除了以上的优化方法,还有一些关键技术可以提高LDMOS器件的性能。
一种关键技术是缩小LDMOS器件的结构尺寸。
通过缩小尺寸,可以提高器件的开关速度和功耗。
另一个关键技术是改善接触电阻。
接触电阻会导致能量损失和热耗散,所以改善接触电阻对于提高LDMOS器件的效率非常重要。
此外,制造工艺的改进也是提高LDMOS器件性能的关键。
对于LDMOS器件来说,源漏电极和栅极之间的电极距离、掺杂浓度和材料选择等都会影响器件的性能。
因此,优化这些工艺参数对于提高LDMOS器件的性能非常重要。
综上所述,LDMOS横纵向电场的同时优化是提高器件性能的关键。
通过采用适当的技术和工艺,我们可以有效地改善LDMOS器件的横向和纵向电场分布,并提高器件的电导能力和降低漏电流。
在继续深入研究中,我们可以进一步探索新的方法和技术,以进一步提高LDMOS器件的性能和应用综合以上所述,采用隔离结构和结阻控技术是优化LDMOS 器件纵向电场分布的常用方法。