第四章频率域滤波介绍
- 格式:ppt
- 大小:12.66 MB
- 文档页数:190
频域滤波的基本原理频域滤波的基本原理频域滤波是一种信号处理技术,它根据信号的频率特征对信号进行处理,从而达到去噪、滤波等目的。
频域滤波的基本原理就是将时域中的信号转化为频域中的信号,利用频域中的特征进行处理,最后再将处理后的信号转回时域。
一、时域和频域时域和频域是信号处理中常用的两个概念。
时域是指信号随时间变化的情况,它通常用时域波形来表示。
例如,我们平常看到的声音、图像等都是时域信号。
频域是指信号在频率上的特征,与时域不同,它通常用其频谱图表示。
频谱图是一种表示信号频率分布情况的图形,它能够显示信号中存在的各种频率成分。
例如,下图分别是一个声音信号的时域波形和频谱图:二、傅里叶变换频域处理的基础是傅里叶变换。
傅里叶变换是一种将时域信号转换为频域信号的方法,它可以将任意周期的连续信号分解成一系列正弦和余弦函数的和。
傅里叶变换的基本形式为:F_freq(x) = ∫_{-∞}^∞f_time(t)e^{-2πif t}dt其中,f_{time}是时域信号,F_{freq}是频域信号,i表示虚数单位。
需要注意的是,傅里叶变换通常是定义在连续信号上的,在实际应用中,离散信号也常常需要进行傅里叶变换,这时候可以使用离散傅里叶变换(DFT)。
三、频域滤波的基本原理频域滤波是指利用傅里叶变换将信号从时域转换到频域,然后在频域中对信号进行滤波,最后再将信号从频域转回时域的一种信号处理方法。
在频域中,我们可以通过观察信号的频谱图来判断信号中是否存在噪声或需要滤除的部分。
例如,下图中的频谱图显示了一个信号中存在高频噪声:为了去除这种噪声,我们可以在频域中将高频的部分过滤掉,实现去噪的效果。
具体而言,频域滤波通常包括以下几个步骤:1. 将时域信号x(t)进行傅里叶变换,得到频域信号X(f);2. 在频域中对X(f)进行滤波处理,得到滤波后的频域信号Y(f),过滤方式包括低通、高通、带通滤波等;3. 将Y(f)进行傅里叶反变换,得到处理后的时域信号。
频率域滤波频率域滤波是经典的信号处理技术之一,它是将信号在时域和频域进行分析以达到信号处理中的一定目的的技术。
它在诸多技术方面有着广泛的应用,比如音频信号处理、通信信号处理、部分图像处理和生物信号处理等。
本文将从以下几个方面来介绍频率域滤波的基本原理:概念的介绍、频谱的概念、傅里叶变换的原理、频率域滤波的基本原理、应用场景。
一、概念介绍频率域滤波是一种信号处理技术,它可以将时域信号转换成频域信号,并根据信号特征在频率域中对信号进行处理以达到特定的目的,如去除噪声和滤波等。
一般来说,信号处理包括两个阶段:时域处理和频域处理。
时域处理会涉及到信号的时间特性,而频率域处理则涉及到信号的频率特性。
二、频谱概念频谱是指信号分析中信号频率分布的函数,它是信号的频率特性的反映。
一个信号的频谱是一个衡量信号的能量随频率变化的曲线。
通过对信号的频谱进行分析,可以提取出信号中不同频率成分的信息,从而对信号进行更深入的分析。
三、傅里叶变换傅里叶变换是将时域信号转换成频域信号的基本手段。
傅里叶变换是指利用线性无穷积分把一个函数从时域转换到频域,即将一个函数的时间属性转换为频率属性的过程。
傅里叶变换会将时域信号映射到频域,从而可以分析信号的频率分布情况。
四、频率域滤波的基本原理频率域滤波的基本原理是先将信号进行傅里叶变换,然后将信号在频域进行处理。
根据不同的应用需求,可以采用低通滤波、高通滤波或带通滤波等滤波器对信号进行处理,从而获得滤波后的信号。
最后,再将滤波后的信号进行反变换即可。
五、应用场景由于具有时域和频域双重处理功能,频率域滤波技术在诸多技术领域都有广泛应用。
例如,在音频信号处理方面,频率域滤波可以去除音频信号中的噪声,使得信号变得更加清晰。
此外,在以图像处理方面,频率域滤波技术可以有效去除图像中的多余信息,从而提高图像的质量。
在通信领域,频率域滤波技术可以应用于对通信信号的滤波和信号分离,从而有效提升信号的传输效率。
地震拓频处理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!地震拓频处理作为地震勘探领域中的重要技术手段,被广泛应用于地质勘探、油气勘探以及地震地质研究领域。
时域滤波器和频域滤波器的变换卷积定理函数空间域的卷积的傅⾥叶变换是函数傅⾥叶变换的乘积。
对应地,频率域的卷积与空间域的乘积存在对应关系。
由卷积定理可知所有频域的滤波理论上都可以转化为空域的卷积操作。
给定频率域滤波器,可对其进⾏傅⾥叶逆变换得到对应的空域滤波器;滤波在频域更为直观,但空域适合使⽤更⼩的滤波模板以提⾼滤波速度。
因为相同尺⼨下,频域滤波器效率⾼于空域滤波器,故空域滤波需要⼀个更⼩尺⼨的模板近似得到需要的滤波结果。
空域卷积将模板在图像中逐像素移动,将卷积核的每个元素分别和图像矩阵对应位置元素相乘并将结果累加,累加和作为模板中⼼对应像素点的卷积结果。
通俗的讲,卷积就是对整幅图像进⾏加权平均的过程,每⼀个像素点的值,都由其本⾝和邻域内的其他像素值经过加权平均后得到。
在像素的处理上,是先将结果暂存在于⼀个副本,最后统⼀拷贝,故不会出现处理顺序不同⽽结果不同的情况。
⼆维连续卷积的数学定义:离散形式:频域滤波频率域是由傅⾥叶变换和频率变量 (u,v)定义的空间,频域滤波处理过程:先对图像进⾏傅⾥叶变换,转换⾄频率域,在频域使⽤滤波函数进⾏滤波,最后将结果反变换⾄空间域。
即:⾼斯函数公式:形状:空域⾼斯平滑滤波⾼斯模板的⽣成因为图像是离散存储的,故我们需要⼀个⾼斯函数的离散近似。
具体地,对⾼斯函数进⾏离散化,以离散点上的⾼斯函数值作为权值,组成⼀定尺⼨的模板,⽤此模板对图像进⾏卷积。
由于⾼斯分布在任意点处都⾮零,故理论上需要⼀个⽆穷⼤的模板,但根据" 准则",即数据分布在的概率是0.9974,距离函数中⼼超过数据所占权重可以忽略,因此只需要计算的矩阵就可以保证对⾼斯函数的近似了。
假设⼆维模板⼤⼩,则模板上元素处的值为:前⾯的系数在实际应⽤中常被忽略,因为是离散取样,不能使取样和为1,最后还要做归⼀化操作。
程序:function filt=mygaussian(varargin)%参数初始化,使⽤varargin处理可变参数情况siz=varargin{1};%模板尺⼨if(numel(siz)==1)siz=[siz,siz];endstd=varargin{2};%⽅差centa = (siz(1)+1)/2;%此处不要取整centb = (siz(1)+1)/2;filt = zeros(siz(1),siz(2));summ=0;for i=1:siz(1)for j=1:siz(2)radius = ((i-centa)^2+(j-centb)^2);filt(i,j) = exp(-(radius/(2*std^2)));summ=summ+filt(i,j);endendfilt=filt/summ;%归⼀化测试:执⾏mygaussian(4,1)得:0.0181 0.0492 0.0492 0.01810.0492 0.1336 0.1336 0.04920.0492 0.1336 0.1336 0.04920.0181 0.0492 0.0492 0.0181执⾏fspecial('gaussian',4,1)得:0.0181 0.0492 0.0492 0.01810.0492 0.1336 0.1336 0.04920.0492 0.1336 0.1336 0.04920.0181 0.0492 0.0492 0.0181可以看出与Matlab结果相同。
图像滤波也是一种图像增强的方法,主要有空间域滤波和频率域滤波,空间域滤波又包括图像平滑和图像锐化。
空间域滤波常用方法是:卷积运算。
缺点是:随着采用的模板窗口的扩大,运算量越来越大。
解决方法是:可在频率域中通过简单的乘法计算来实现。
受传感器和大气影响,图像上会存在噪声。
表现为:亮点或者亮度过大的区域。
图像平滑的目的是抑制噪声改善图像质量。
噪声:按产生原因分为外部噪声和内部噪声;从噪声幅度分布形态可以分为高斯型和瑞利型;从统计理论观点来看分为平稳噪声和非平稳噪声;按产生过程分为量化噪声和椒盐噪声。
噪声可以看作是对亮度的干扰,具有随机性,用随机过程来描述,由于分布函数或者密度函数很难测出或者描述,常用统计特征(均值、方差、总功率)来描述噪声。
加性噪声模型和乘性噪声模型。
遥感图像中常见噪声有高斯噪声、脉冲噪声(椒盐噪声)和周期噪声。
均值滤波(典型的线性滤波):4邻域、8邻域。
优点:算法简单,计算速度快缺点:噪声图像模糊,削弱了边缘和细节信息。
算法改进:引进阈值T,滤波后的图像每个像素点的值与原来图像对应像素点的值得差,若大于阈值,就设为g,若小于等于阈值,则设为f。
中值滤波:将窗口内的所有像素值按大小排序后,取中值作为中心像素的新值。
原理是取合理的邻近像素值来代替噪声点,所以只适合于椒盐噪声的去除,不适合高斯噪声的去除。
两者比较:(1)对于脉冲噪声干扰的椒盐噪声,中值滤波是非常有效的。
原因是椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。
中值滤波是选择适当的点来代替污染点的值,所以处理效果好。
因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。
(2)对于高斯噪声的抑制比均值滤波差一些。
因为高斯噪声是幅值近似正太分布,但分布在每点像素上,这样图像的每点都是污染点,所以中值滤波选不到合适的干净点。
又因为正太分布的均值为0,所以根据统计数学,均值可以消除噪声。
(实际上只能削弱,不能消除。
《地震勘探资料处理》第一章~第六章复习要点总结第一章 地震数据处理基础一维谱分析数字地震记录中,每个地震道是一个按一定时间采样间隔排列的时间序列,每一个地震道都可以用一系列具有不同频率、不同振幅、相位的简谐曲线叠加而成。
应用一维傅里叶变换可以得到地震道的各个简谐成分;应用一维傅里叶反变换可以将各个简谐成分合并为原来的地震道序列。
连续函数正反变换公式:dt et x X t i ωω-∞∞-⎰=)()(~ 正变换 ωωπωd e X t x t i ⎰∞∞-=)(~21)( 反变换 通常由傅里叶变换得到的频谱为一个复函数,称为复数谱。
它可以写成指数形式 )()()(|)(~|)(~ωφωφωωωi i e A e X X ==式中)(ωA 为复数的模,称为振幅谱;)(ωϕ为复数的幅角,称为相位谱。
)()()(22ωωωi r X X A +=,)()(tan )(1ωωωφr i X X -=(弧度也可换算为角度)离散情况下和这个差不多(看PPT 和书P2-3)一维傅里叶变换频谱特征:1、一维傅里叶变换的几个基本性质(推导)线性 翻转 共轭 时移 褶积 相关(功率谱),P3-72、Z 变换(推导)3、采样定理 假频 尼奎斯特频率,tf N ∆=21二维谱分析二维傅里叶变换),(k X ω称为二维函数),(t x X 的频——波谱。
其模量|),(|k X ω称为函数),(t x X 的振幅谱。
由),(k X ω这些频率f 与波数k 的简谐成分叠加即可恢复原来的波场函数),(t x X (二维傅里叶反变换)。
如果有效波和干扰波的在f-k 平面上有差异,就可以利用二维频率一波数域滤波将它们分开,达到压制干扰波,提高性噪比的目的。
二维频谱产生空间假频的原因数字滤波在地震勘探中,用数字仪器记录地震波时,为了保持更多的波的特征,通常利用宽频带进行记录,因此在宽频带范围内记录了各种反射波的同时,也记录了各种干扰波。