图像平滑(频率域)
- 格式:pptx
- 大小:2.55 MB
- 文档页数:30
图像处理与matlab实例之图像平滑(⼀) ⼀、何为图像噪声?噪声是妨碍⼈的感觉器官所接受信源信息理解的因素,是不可预测只能⽤概率统计⽅法认识的随机误差。
举个例⼦: 从这个图中,我们可以观察到噪声的特点:1>位置随机 2>⼤⼩不规则。
我们将这种噪声称为随机噪声(random noise),这是⼀种⾮常常见的噪声类型。
⼆、噪声的类型 噪声可以借⽤随机过程以及概率密度函数(Probability Density Function,PDF)来描述,通常可采⽤其数组特征,即均值,⽅差,相关函数等。
按照概率密度函数分为⾼斯噪声、瑞利噪声、伽马噪声、指数分布噪声、均匀分布噪声、脉冲噪声、泊松噪声等。
有的噪声与图像信号的强度不相关,如图像传输过程引⼊的信道噪声、摄像机扫描噪声等,这种噪声称为加性噪声(additive noise)。
常见的加性噪声按照概率密度函数特征分为短拖尾加性噪声(如均匀分布噪声)、中拖尾加性噪声(⾼斯分布噪声)、长拖尾加性噪声(如指数分布噪声)、脉冲噪声(如椒盐噪声、随机数脉冲噪声等)。
有的噪声与图像信号有关,往往随着图像信号的变化⽽变化,如光照变化引起的噪声、飞机扫描图像中的噪声、电视扫描光栅中的相⼲噪声、斑点噪声等。
这种噪声称为乘性噪声(multiplicative noise)。
matlab向图中添加噪声的指令: I1=imnoise(I,type,parameters); 其中,当type为gaussian,所加⼊噪声是parameters为m(均值)、v(⽅差)的⾼斯噪声,这是最普通的噪声。
当type为localvar时,所加⼊噪声是parameters为0(均衡)、v(⽅差)的⾼斯噪声。
当type为poission时,所加⼊的是⽆参数的泊松噪声,在照度⾮常⼩时出现,或在⾼倍电⼦放⼤线路中出现。
当type为salt&pepper时,所加⼊的噪声是parameters为d(密度)的椒盐噪声。
空间域滤波和频率域处理的特点1.引言空间域滤波和频率域处理是数字图像处理中常用的两种图像增强技术。
它们通过对图像进行数学变换和滤波操作来改善图像质量。
本文将介绍空间域滤波和频率域处理的特点,并比较它们之间的异同。
2.空间域滤波空间域滤波是一种直接在空间域内对图像像素进行处理的方法。
它基于图像的局部像素值来进行滤波操作,常见的空间域滤波器包括均值滤波器、中值滤波器和高斯滤波器等。
2.1均值滤波器均值滤波器是最简单的空间域滤波器之一。
它通过计算像素周围邻域的平均值来实现滤波操作。
均值滤波器能够有效地去除图像中的噪声,但对图像细节和边缘保留较差。
2.2中值滤波器中值滤波器是一种非线性的空间域滤波器。
它通过计算像素周围邻域的中值来实现滤波操作。
中值滤波器能够在去除噪声的同时保持图像细节和边缘,对于椒盐噪声有较好的效果。
2.3高斯滤波器高斯滤波器是一种线性的空间域滤波器。
它通过对像素周围邻域进行加权平均来实现滤波操作。
高斯滤波器能够平滑图像并保留图像细节,它的滤波核可以通过调整方差来控制滤波效果。
3.频率域处理频率域处理是一种将图像从空间域转换到频率域进行处理的方法。
它通过对图像进行傅里叶变换或小波变换等操作,将图像表示为频率分量的集合,然后对频率分量进行处理。
3.1傅里叶变换傅里叶变换是一种将信号从时域转换到频域的数学变换。
在图像处理中,可以应用二维傅里叶变换将图像从空间域转换到频率域。
在频率域中,图像的低频分量对应于图像的整体结构,高频分量对应于图像的细节和边缘。
3.2小波变换小波变换是一种基于小波函数的时频分析方法。
它能够在频率和时间上同时提供图像的信息,对于图像的边缘和纹理特征有较好的表达能力。
小波变换在图像压缩和特征提取等方面具有广泛应用。
4.空间域滤波与频率域处理的对比空间域滤波和频率域处理都可以用来改善图像质量,但它们有着不同的特点和适用场景。
4.1处理方式空间域滤波是直接对图像像素进行处理,操作简单直接,适用于小规模图像的处理。
图像平滑往往使图像中的边界、轮廓变的模糊,为了减少这类不利效果的影响,这就需要利用图像鋭化技术,使图像的边缘变的清晰。
图像銳化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。
从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。
为了要把图像中间任何方向伸展的的边缘和轮廓线变得清晰,我们希望对图像的某种运算是各向同性的。
可以证明偏导平方和的运算是各向同性的,既:式中()是图像旋转前的坐标,()是图像旋转后的坐标。
梯度运算就是在这个式子的基础上开方得到的。
图像(x,y)点的梯度值:为了突出物体的边缘,常常采用梯度值的改进算法,将图像各个点的梯度值与某一阈值作比较,如果大于阈值,该像素点的灰度用梯度值表示,否则用一个固定的灰度值表示。
我们在对图像增强的过程中,采用的是一种简单的高频滤波增强方法:式中f,g分别为锐化前后的图像,是与扩散效应有关的系数。
表示对图像f进行二次微分的拉普拉斯算子。
这表明不模糊的图像可以由模糊的图像减去乘上系数的模糊图像拉普拉斯算子来得到。
可以用下面的模板H={{1,4,1},{4,-20,4},{1,4,1}}来近似。
在具体实现时,上述模板H中的各个系数可以改变,这个系数的选择也很重要,太大了会使图像的轮廓过冲,太小了则图像锐化不明显。
实验表明,选取2-8之间往往可以达到比较满意的效果。
下面给出等于4的情况下的实现代码和效果图:SetStretchBltMode(hDC,COLORONCOLOR);CDibDoc *pDoc=GetDocument();HDIB hdib;hdib=pDoc->GetHDIB();BITMAPINFOHEADER *lpDIBHdr;//位图信息头结构指针;BYTE *lpDIBBits;//指向位图像素灰度值的指针;lpDIBHdr=( BITMAPINFOHEADER *)GlobalLock(hdib);//得到图像的位图头信息lpDIBBits=(BYTE*)lpDIBHdr+sizeof(BITMAPINFOHEADER)+256*sizeof(RGBQUAD);//获取图像像素值BYTE* pData1;static int a[3][3]={{1,4,1},{4,-20,4},{1,4,1}};//拉普拉斯算子模板;int m,n,i,j,sum;int Width=lpDIBHdr->biWidth;int Height=lpDIBHdr->biHeight;pData1=(BYTE*)new char[WIDTHBYTES(Width*8)*Height];file://进行拉普拉斯滤波运算;for(i=1;i<HEIGHT-1;I++)</HEIGHT-1;I++)for(j=1;j<WIDTH-1;J++)</WIDTH-1;J++){sum=0;for(m=-1;m<2;m++)for(n=-1;n<2;n++)sum+=*(lpDIBBits+WIDTHBYTES(Width*8)*(i+m)+j+n)*a[1+m][1+n];if(sum<0) sum=0;if(sum>255) sum=255;*(pData1+WIDTHBYTES(Width*8)*i+j)=sum;}file://原始图像pData减去拉普拉斯滤波处理后的图像pData1for(i=0;i<HEIGHT;I++)</HEIGHT;I++)for(j=0;j<WIDTH;J++)</WIDTH;J++){ sum=(int)(*(lpDIBBits+WIDTHBYTES(Width*8)*i+j)-4*(*(pData1+WIDTHBYTES(Width* 8)*i+j)));if(sum<0) sum=0;if(sum>255) sum=255;*(lpDIBBits+WIDTHBYTES(Width*8)*i+j)=sum;}StretchDIBits (hDC,0,0,lpDIBHdr->biWidth,lpDIBHdr->biHeight,0,0,lpDIBHdr->biWidth,lpDIBHdr->biHeight,lpDIBBits,(LPBITMAPINFO)lpDIBHdr,DIB_RGB_COLORS,。
浅谈图像平滑滤波和锐化的区别及⽤途总结空域滤波技术根据功能主要分为与滤波。
能减弱或消除图像中的⾼频率分量⽽不影响低频分量,⾼频分量对应图像中的区域边缘等值具有较⼤变化的部分,可将这些分量滤去减少局部起伏,使图像变得⽐较平滑。
也可⽤于消除噪声,或在提取较⼤⽬标前去除太⼩的细节或将⽬标的⼩间断连接起来。
滤波正好相反,滤波常⽤于增强被模糊的细节或⽬标的边缘,强化图像的细节。
⼀、基本的灰度变换函数1.1.图像反转适⽤场景:增强嵌⼊在⼀幅图像的暗区域中的⽩⾊或灰⾊细节,特别是当⿊⾊的⾯积在尺⼨上占主导地位的时候。
1.2.对数变换(反对数变换与其相反)过程:将输⼊中范围较窄的低灰度值映射为输出中较宽范围的灰度值。
⽤处:⽤来扩展图像中暗像素的值,同时压缩更⾼灰度级的值。
特征:压缩像素值变化较⼤的图像的动态范围。
举例:处理傅⾥叶频谱,频谱中的低值往往观察不到,对数变换之后细节更加丰富。
1.3.幂律变换(⼜名:伽马变换)过程:将窄范围的暗⾊输⼊值映射为较宽范围的输出值。
⽤处:伽马校正可以校正幂律响应现象,常⽤于在计算机屏幕上精确地显⽰图像,可进⾏对⽐度和可辨细节的加强。
1.4.分段线性变换函数缺点:技术说明需要⽤户输⼊。
优点:形式可以是任意复杂的。
1.4.1.对⽐度拉伸:扩展图像的动态范围。
1.4.2.灰度级分层:可以产⽣⼆值图像,研究造影剂的流动。
1.4.3.⽐特平⾯分层:原图像中任意⼀个像素的值,都可以类似的由这些⽐特平⾯对应的⼆进制像素值来重建,可⽤于压缩图⽚。
1.5.直⽅图处理1.5.1直⽅图均衡:增强对⽐度,补偿图像在视觉上难以区分灰度级的差别。
作为⾃适应对⽐度增强⼯具,功能强⼤。
1.5.2直⽅图匹配(直⽅图规定化):希望处理后的图像具有规定的直⽅图形状。
在直⽅图均衡的基础上规定化,有利于解决像素集中于灰度级暗端的图像。
1.5.3局部直⽅图处理:⽤于增强⼩区域的细节,⽅法是以图像中的每个像素邻域中的灰度分布为基础设计变换函数,可⽤于显⽰全局直⽅图均衡化不⾜以影响的细节的显⽰。
第七讲数字化医疗影像图像处理冯庆宇【摘要】@@ 经过人体衰减的X射线被探测器获取并量化后,形成线性数字图像矩阵.该数字图像反映了人体的实际X射线吸收率,但无法用于临床诊断,必须经过图像处理,得到符合临床实际需求和人类视觉特性的图像[1].【期刊名称】《中国医疗设备》【年(卷),期】2011(026)002【总页数】7页(P145-151)【作者】冯庆宇【作者单位】【正文语种】中文编者按:数字化医疗影像图像处理包括图像增强的初级处理(输入与输出均为图像)、图像特征提取的中级处理(输入为图像,输出为特征)和图像分析理解的高级处理(智能识别,CAD等)。
实际医疗工作中,最普遍应用的是二维图像矩阵的图像增强,因此本文将主要介绍数字化医疗影像的基础和特点,并结合医疗实际应用介绍图像增强的方法和理论,同时对目前市场主流厂家的图像增强方法进行分析。
经过人体衰减的X射线被探测器获取并量化后,形成线性数字图像矩阵。
该数字图像反映了人体的实际X射线吸收率,但无法用于临床诊断,必须经过图像处理,得到符合临床实际需求和人类视觉特性的图像[1]。
数字图像是通过某种设备将模拟影像采样和量化而得,是空间坐标和灰度上都离散化并进行数字编码的图像,为连续图像的一种近似表达[2]。
对于一幅二维数字图像f(x,y),空间坐标上的离散化称为采样,灰度上的离散化称为量化,采样和量化可以均匀或不均匀。
采样和量化后,数字图像形成了二维矩阵,采样值是决定一幅图像空间分辨率的主要参数,灰度级分辨率指在灰度级别中可分辨的最小变化。
数字图像通常采用2的整数次幂(N)进行量化,因此可以将某数字图像称为N级灰度分辨率。
此处的灰度级分辨率与通常所说的低对比度分辨率不同,仅是对数字图像的数学描述。
在实际工作中,对灰度差的分辨是一个高度主观的评判,受到空间分辨率、噪声等因素的影响。
数字图像处理可以在空间域和频率域实现。
空间域图像处理,是在像素组成的空间里直接对像素进行处理,它可以是在一幅图像像素点间的运算处理,也可以是数幅图像的相应像素点之间的运算处理。
数字图像处理模拟题及参考答案电科08级数字图像处理模拟题及参考答案⼀、填空题1. ⼀般来说,对模拟图像数字化时采样间距越⼤,图像数据越少_,图像质量越_差_______ 2.若灰度图象每像素⽤8位表⽰,则灰度值可以取_0~255 包括0和255间的数值。
3. 在⼏何变换的3×3矩阵___________[p q]______________可以使图像实现平移变换4.⼆值形态学中,腐蚀运算的集合⽅式定义为____}|{XxSxSX?+=Θ____。
5.根据图像编码原理可以将图像编码分为_熵编码__、预测编码、__变换编码__和混合编码6. 图像与灰度直⽅图间的对应关系是_____多对⼀___7. 常⽤的灰度内插法有最近邻域法和 __双线性插值法_。
8.⼀幅图象的分辩率为512×512×8是指_图像的⾼和宽都为512像素,每个像素⽤8位表⽰,该图像⼤⼩约___2048KB9.检测边缘的Sobel算⼦对应的模板形式为_:-1 0 1 -2 0 2 -1 0 1 -1 -2 -10 0 01 2 110.分辩率是⽤来描述图象__清晰程度, ⼀幅图象的分辩率为512×512×8是指_图象宽和⾼都为512象素,每个象素⽤8位表⽰____, 电视摄象机的分辩率为480线是指__⼀副画⾯从上到下扫描⼀遍共有480⾏_________, 激光打印机分辩率为300dpi是指______每英⼨有300个点打印精度。
11.图象直⽅图表⽰:图像上各个灰度级上的像素数⽬。
灰度级01234567像素数33038984532121013.影像数字化包括抽样和量化两过程。
14.图象平滑既可在空间域中进⾏,也可在频率域中进⾏。
边缘检测算⼦对应的模板是:-1-1-1-101000-101111-10117.依据图象的保真度,图象编码可分为⽆失真(⽆损)编码和有失真(有损)编码两种。
18.图像处理中常⽤的两种邻域是 4-邻域和 8—邻域。
数据图像处理期末复习1.1数字图像处理及特点1、什么是数字图像?什么是数字图像处理?数字图像:数字图像是物体的一个数字表示,是以数字格式存放的图像,它传递着物理世界事物状态的信息,是人类获取外界信息的主要途径。
数字图像处理:它指将图像信号转换成数字信号并利用计算机对其进行处理的过程,已提高图像的实用性,达到人们所要求的的预期结果。
2、图像处理的目的①提高图像的视觉质量,以达到赏心悦目的目的。
②提取图像中所包含的某些特征或特殊信息,便于计算机分析。
③对图像数据进行变换、编码和压缩,便于图像的存储和传输。
3、数字图像的特点①处理信息量很大②数字图像处理占用的频带较宽③数字图像中各个像素相关性大1.2数字图像处理系统1、数字图像处理系统的组成(结构)数字图像处理系统由输入设备、输出设备、存储、处理组成。
图像输入设备将图像输入的模拟物理量转变为数字化的电信号,以供计算机处理。
图像输出设备则是将图像处理的中间结果或最后结果显示或打印记录。
图像处理计算机系统是以软件方式完成对图像的各种处理和识别,是数字图像处理系统的核心部分。
由于图像处理的信息量大,还必须有存储设备。
2、数字图像处理的优点①精度高②再现性好③通用性、灵活性强1.3数字图像处理的主要研究内容1、数字图像处理的主要研究内容①图像增强②图像编码③图像复原④图像分割⑤图像分类⑥图像重建1.4数字图像处理的应用和发展1、举例说明数字图像处理有哪些应用和发展?①航天和航空技术方面的应用②生物医学工程方面的应用③通信工程方面的应用④工业和工程方面的应用⑤军事、公安方面的应用⑥文化艺术方面的应用⑦其他方面的应用2、数字图像处理领域的发展方向①图像处理的发展向着高速率、高分辨率、立体化、多媒体化、智能化和标准化方向发展。
②图像、图形结合朝着三维成像或多维成像的方向发展③结合多媒体技术,硬件芯片越来越多,把图像处理的众多功能固化在芯片上将会有更加广阔的应用领域④在图像处理领域近年来引入了一些新的理论并提出了一些新的算法,如神经网络。
Unit 11、图像是对客观存在的物体的一种相似性的、生动的写真或描述。
2、图像处理的内容它是研究图像的获取、传输、存储、变换、显示、理解与综合利用的一门崭新学科。
根据抽象程度不同可分为三个层次:狭义图像处理、图像分析和图像理解。
Unit 21、图像数字化是将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
2、将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
3、将像素灰度转换成离散的整数值的过程叫量化。
4、表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
5、一幅大小为M×N、灰度级数为G的图像所需的存储空间,即图像的数据量,大小为M×N×g (bit)6、数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
7、对比度是指一幅图象中灰度反差的大小。
对比度=最大亮度/最小亮度8、清晰度由图像边缘灰度变化的速度来描述。
9、灰度直方图反映的是一幅图像中各灰度级像素出现的频率。
以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。
10、简述灰度直方图的应用。
1).数字化参数(判断量化是否恰当)。
2). 边界阈值选取(确定图像二值化的阈值)。
3). 利用直方图统计图像中物体的面积。
4). 计算图像信息量H(熵)。
5). 利用直方图分析图像的特性。
6). 利用直方图进行图像增强。
11、对于任一像素(i,j),该像素周围的像素构成的集合{(i+p,j+q),p、q取合适的整数},叫做该像素的邻域。
12、对输入图像IP(i,j)处理时,某一输出像素JP(i,j)值由输入图像像素(i,j)及其邻域N(IP(i,j))中的像素值确定。
这种处理称为局部处理。
13、在局部处理中,当输出值JP(i,j)仅与IP(i,j)有关,则称为点处理。
14、在局部处理中,输出像素JP(i,j)的值取决于输入图像大范围或全部像素的值,这种处理称为大局处理。