4.3角4.余角和补角
- 格式:ppt
- 大小:2.07 MB
- 文档页数:19
4.3 角1.角的定义及其表示方法(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.角也可以看作是由一条射线绕着它的端点旋转而形成的图形.当终边和始边成一条直线时,形成等角;当终边和始边重合时,形成周角.(2)角的表示方法:有四种表示角的方法:①用一个阿拉伯数字表示单独的一个角,在角内用一段弧标注; ②用一个大写英文字母表示单独的一个角,当角的顶点处有两个或两个以上的角时,不能用这种方法表示角;③用一个小写希腊字母表示单独的一个角;④用三个大写英文字母表示任意一个角,这时表示顶点的字母一定要写在中间. 破疑点 角的理解 (1)角的大小与边的长短无关,只与构成角的两条射线张开的幅度大小有关,角可以度量,可以比较大小,可以进行运算;(2)如果没有特别说明,所说的角都是指小于平角的角.【例1-1】 下列说法正确的是( ).A .平角是一条直线B .一条射线是一个周角C .两边成一条直线时组成的角是平角D .一个角不是锐角就是钝角解析:要做对这类题目,一定要理解概念,严格按照概念进行判断,才能得出正确的结论.平角、周角都是特殊角,虽然它们与一般角形象不符,但是它们仍然是角,它们都具有一个顶点和两条边,只不过平角的两边成一条直线,周角的两边重合成一条射线罢了. 答案:C【例1-2】 如图,以点B 为顶点的角有几个?请分别把它们表示出来.分析:.射线BA 与BD ,BA 与BC ,BD 与BC 各组成一个角.表示顶点的字母必须写在中间.当一个顶点处有多个角时,不能用一个表示顶点的大写字母表示,所以不能把∠ABC 错写成“∠B ”.书写力求规范,如用数字或希腊字母表示角时要在靠近顶点处加弧线注上阿拉伯数字或小写的希腊字母.注意:角的符号一定要用“∠”,而不能用“<”. 解:以B 为顶点的角有3个,分别是∠ABC ,∠ABD ,∠DBC .2.角的度量与换算(1)角度制:以度、分、秒为单位的角的度量制,叫做角度制.(2)角度的换算:角的度量单位是度、分、秒,把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份就是1分的角,记作1′;把1分的角60等分,每一份就是1秒的角,记作1″.谈重点 角度的换算 (1)度、分、秒的换算是60进制,与时间中的时、分、秒的换算相同;(2)角的度数的换算有两种方法:①由度化成度、分、秒的形式(即从高位向低位化),用乘法,1°=60′,1′=60″;②由度、分、秒化成度的形式(即从低位向高位化),1″=⎝⎛⎭⎫160′,1′=⎝⎛⎭⎫160°,用除法.度及度、分、秒之间的转化必须逐级进行转化,“越级”转化容易出错.【例2】 (1)将70.23°用度、分、秒表示;(2)将26°48′36″用度表示.分析:(1)70.23°实际是70°+0.23°,这里70°不要变,只要将0.23°化为分,然后再把所得的分中的小数部分化为秒.将0.23°化为分,只要用0.23乘以60′即可.(2)将26°48′36″用度表示,应先将36″化成分,然后再将分化成度就可以了.将36″化成分,可以用⎝⎛⎭⎫160′乘以36.解:(1)将0.23°化为分,可得0.23×60′=13.8′,再把0.8′化为秒,得0.8×60″=48″.所以70.23°=70°13′48″.(2)把36″化成分,36″=⎝⎛⎭⎫160′×36=0.6′,48′+0.6′=48.6′,把48.6′化成度,48.6′=⎝⎛⎭⎫160°×48.6=0.81°. 所以26°48′36″=26.81°.3.角的比较与运算(1)角的比较: ①度量法:用量角器量出角的度数,然后按照度数比较角的大小,度数大的角大,度数小的角小;反之,角大度数大,角小度数小. ②叠合法:把两个角的顶点和一边分别重合,另一边放在重合边的同旁,通过另一边的位置关系比较大小.解技巧 角的比较 ①在度量法中,注意三点:对中、重合、度数;②在叠合法中,要注意顶点重合,一边重合,另一边落在重合这边的同侧.(2)角的和差:角的和、差有两种意义,几何意义和代数意义.几何意义对于今后读图形语言有很大帮助,代数意义是今后角的运算的基础.①几何意义:如图所示,∠AOB 与∠BOC 的和是∠AOC ,表示为∠AOB +∠BOC =∠AOC ;∠AOC 与∠BOC 的差为∠AOB ,表示为∠AOC -∠BOC =∠AOB .②代数意义:如已知∠A =23°17′,∠B =40°50′,∠A +∠B 就可以像代数加减法一样计算,即∠A +∠B =23°17′+40°50′=64°7′,∠B -∠A =40°50′-23°17′=17°33′.(3)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,射线OC 是∠AOB 的平分线,则有∠1=∠2=12∠AOB 或∠AOB =2∠1=2∠2.警误区 角的平分线的理解 角的平分线是一条射线,不是线段,也不是直线,它必须满足下面的条件:①是从角的顶点引出的射线,且在角的内部;②把已知角分成了两个角,且这两个角相等.【例3】 如图所示,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE =20°,∠AOD =40°,求∠DOE 的度数.解:∵OE平分∠BOC,∴∠BOE=∠COE.∵OD平分∠AOC,∴∠AOD=∠COD.又∵∠BOE=20°,∠AOD=40°,∴∠COE=20°,∠COD=40°.∴∠DOE=∠COE+∠COD=20°+40°=60°.4.余角和补角(1)余角和补角的概念:①余角:如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角;②补角:如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.(2)性质:余角的性质:同角(等角)的余角相等.用数学式子表示为:∠1+∠2=90°,∠3+∠4=90°,又因为∠2=∠4,所以∠1=∠3.补角的性质:同角(等角)的补角相等.用数学式子表示为:∠1+∠2=180°,∠3+∠4=180°,又因为∠2=∠4,所以∠1=∠3.(3)方位角:在航海、航空、测绘中,经常会用到一种角,它是表示方向的角,叫做方位角.通常以正北、正南方向为基准,描述物体运动的方向.通常要先写北或南,再写偏东还是偏西.警误区余角和补角的理解余角和补角是成对出现的,它们之间互相依存,只能说∠1的余角是∠2,∠2的余角是∠1,或者说∠1与∠2互余,而不能说∠1是余角.【例4】如图所示,直线AB,CD,EF相交于点O,且∠AOD=90°,∠1=40°,求∠2的度数.解:因为∠AOD+∠AOC=∠AOD+∠BOD=180°,所以∠AOD=∠AOC=∠BOD=90°.又因为∠1+∠FOC=180°,∠DOF+∠FOC=180°,所以∠DOF=∠1=40°.所以∠2=∠BOD-∠DOF=90°-40°=50°.5.运用整体思想解决角的计算问题整体思想就是根据问题的整体结构特征,不拘泥于部分而是从整体上去把握解决问题的一种重要的思想方法.整体思想突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理.整体思想方法在代数式的化简与求值、解方程、几何解证等方面都有广泛的应用,整体代入、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用.【例5】如图所示,∠AOB =90°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,求∠MON 的大小.分析:解决问题的关键是把∠AOC -∠BOC 视为一个整体,代入求值.解:因为ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,所以∠NOC =12∠AOC ,∠MOC =12∠BOC , 所以∠MON =∠NOC -∠MOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12×90°=45°. 6.钟表问题对于钟表问题要掌握基本的数量关系,如走一大格为30度,一小格为6度,分针每分钟转6度,时针每分钟转0.5度,分针是时针转速的12倍等.若已知具体时间,求时针与分针的夹角,只需知道它们相距的格数,便可求得;若是已知时针与分针的夹角求相应的时间,则一般需要建立方程求解.【例6】上午9点时,时针与分针成直角,那么下一次时针与分针成直角是什么时候?解:设经过x 分钟,时针与分针再次成直角,则时针转过(0.5x )°,分针转过(6x )°,如图所示,可列方程360-6x -(90-0.5x )=90,解得x =32811.即过32811分钟,时针与分针再一次成直角.7.角中的实验操作题实验操作题是近年来悄然兴起的一种新形式的考题,它集阅读、作图、实验于一体,要求在规定的条件下进行实验,在动手操作中找出答案.这类题目主要是能画出整个过程中的状态示意图,进而求出点的转动角度.【例7】如图,把作图用的三角尺(含30°,60°的那块)从较长的直角边水平状态下开始,在平面上转动一周,求B 点转动的角度(在点的位置没有发生变化的情况下,一律看作点没有转动).解:如图,从位置①到位置②,B 点转过90°;从位置②到位置③,B 点转过120°;从位置③到位置④,由题意B点看作不动.于是在整个过程中B点转过的角度为90°+120°=210°.8.归纳猜想在角的问题中的运用归纳猜想,是一种很重要的数学思想方法,数学史上的许多重要发现:如哥德巴赫猜想、四色猜想、角谷猜想、费马定理等都是由数学家的探究、猜想、总结而得到的.学习数学必须不断地去探索、猜想,不断地总结规律,才会有新发现.运用n(n-1)2这个式子,能解决很多类似的问题,能达到一石数鸟,这都是大家善于借鉴的结果.在学习过程中,注意不断总结、归纳规律,积累经验,运用总结出来的方法、技巧解决问题.【例8】(1)若在n个人的聚会上,每个人都要与另外所有的人握一次手,问握手总次数是多少?(2)如图①中共有多少条线段?如图②中共有多少个角(指小于平角的角)?解:(1)每个人可与另外(n-1)个人握一次手,n个人就有(n-1)·n次握手,其中各重复一次,所以,握手总次数是n(n-1)÷2次.(2)图①中每两个点构成一条线段(类似于两个人握一次手),所以共有n(n-1)÷2条线段.图②中每条射线都与另外(n-1)条射线构成一个角(类似于握手),所以共有n(n-1)÷2个角.9.方位角的应用(1)如图,画两条互相垂直的直线AB和CD相交于点O,其中一条为水平线,则图中四条射线所指方向就是东西南北四大方向,具体是:向上的射线OA表示正北方向,向下的射线OB表示正南方向,向右的射线OD表示正东方向,向左的射线OC表示正西方向.这四大方向简称为上北下南左西右东.建立这四条方向线后,对于点P,如果点P在射线OA上,则称点P在正北方向;如果点P在射线OB上,则称点P在正南方向;如果点P在射线OC上,则称点P在正西方向;如果点P在射线OD上,则称点P在正东方向.(2)在图中,东西和南北方向线把平面分成四个直角,如果点P在正北方向线OA与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正北方向线OA的夹角是m°,则称点P在北偏东(或西)m°方向;如果点P在正南方向线OB与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正南方向线OB的夹角为m°,则称点P在南偏东(或西)m°方向.例如图中的射线OA,OB,OC,OD分别称为:北偏东40°、北偏西65°、南偏西45°、南偏东20°.对于偏向45°的方位角,有时也可以说成东南(北)方向或西南(北)方向.如图中的OC,除了说成南偏西45°外,还可以说是西南方向,但不要说成南西方向.【例9】如图,OA的方向是北偏东15°,OB的方向是西偏北50°.(1)若∠AOC=∠AOB,则OC的方向是________;(2)OD是OB的反向延长线,OD的方向是____;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是____;(4)在(1)、(2)、(3)的条件下,∠COE=____.解析:(1)∵OB的方向是西偏北50°,∴∠1=90°-50°=40°,∴∠AOB=40°+15°=55°∵∠AOC=∠AOB,∴∠AOC=55°,∴∠FOC=∠AOF+∠AOC=15°+55°=70°,∴OC的方向是北偏东70°.(2)∵OB的方向是西偏北50°,∴∠1=40°,∴∠DOH=40°,∴OD的方向是南偏东40°.(3)∵OE是∠BOD的平分线,∴∠DOE=90°.∵∠DOH=40°,∴∠HOE=50°,∴OE的方向是南偏西50°.(4)∵∠AOF=15°,∠AOC=55°,∴∠COG=90°-∠AOF-∠AOC=90°-15°-55°=20°.∵∠EOH=50°,∠HOG=90°,∴∠COE=∠EOH+∠HOG+∠COG=50°+90°+20°=160°.答案:(1)北偏东70°(2)南偏东40°(3)南偏西50°(4)160°。
人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4.3.3节的内容,本节主要介绍余角和补角的概念、性质及其应用。
通过本节的学习,使学生掌握余角和补角的概念,了解它们之间的关系,能运用余角和补角解决一些实际问题。
二. 学情分析七年级的学生已经学习了角的初步知识,对角的概念有一定的了解。
但是,对于余角和补角这样的概念性知识,还需要通过实例来加深理解。
此外,学生的空间想象能力和逻辑思维能力仍在发展阶段,需要通过大量的练习来巩固所学知识。
三. 教学目标1.了解余角和补角的概念,掌握它们的性质。
2.能够运用余角和补角解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.余角和补角的概念。
2.余角和补角的性质。
3.运用余角和补角解决实际问题。
五. 教学方法采用讲授法、实例分析法、小组讨论法、练习法等多种教学方法,引导学生通过观察、思考、讨论、练习,从而掌握余角和补角的知识。
六. 教学准备1.PPT课件。
2.相关练习题。
3.黑板、粉笔。
七. 教学过程导入(5分钟)利用PPT展示一些生活中的图片,如一副画、一座建筑等,让学生观察其中的角,并提出问题:“这些角之间有什么关系?”引导学生思考,引出余角和补角的概念。
呈现(10分钟)1.讲解余角和补角的概念。
2.通过实例展示余角和补角的性质。
操练(10分钟)学生在课堂上完成PPT上的练习题,教师巡回指导。
巩固(10分钟)学生分组讨论,总结余角和补角的性质,并用它们解决实际问题。
拓展(10分钟)引导学生思考:在实际生活中,除了余角和补角,还有哪些角的概念?它们有什么作用?小结(5分钟)教师总结本节课的主要内容,强调余角和补角的概念和性质。
家庭作业(5分钟)布置相关的练习题,让学生课后巩固所学知识。
板书(5分钟)教师在黑板上板书本节课的主要内容,包括余角和补角的概念、性质等。
教学过程总结:本节课通过导入、呈现、操练、巩固、拓展、小结、家庭作业和板书等环节,使学生掌握了余角和补角的知识。
4.3 角1. 角的定义及其表示方法(1) 角的定义:有公共端点的两条射线构成的图形叫做角,这个公共端点是角的极点,这两条射线是角的两条边.角也能够看作是由一条射线绕着它的端点旋转而形成的图形. 当终边和始边成一条直线时,形成等角;当终边和始边重合时,形成周角.(2)角的表示方法:有四种表示角的方法:①用一个阿拉伯数字表示独自的一个角,在角内用一段弧标明;②用一个大写英文字母表示 独自的一个角,当角的极点处有两个或两个以上的角时,不可以用这种方法表示角;③用一个小写希腊字母表示独自的一个角;④用三个大写英文字母表示随意一个角,这时表示极点的字母必定要写在中间. 破疑点 角的理解 (1)角的大小与边的长短没关,只与构成角的两条射线张开的幅度大小相关,角能够胸怀,能够比较大小,能够进行运算; (2) 假如没有特别说明,所说的角 都是指小于平角的角.【例 1- 1】 以下说法正确的选项是( ) .A .平角是一条直线B .一条射线是一个周角C .两边成一条直线时构成的角是平角D .一个角不是锐角就是钝角分析: 要做对这种题目, 必定要理解观点, 严格依据观点进行判断, 才能得出正确的结论.平角、周角都是特别角,固然它们与一般角形象不符,可是它们仍旧是角,它们都拥有 一个极点和两条边,只可是平角的两边成一条直线,周角的两边重合成一条射线罢了.答案: C【例 1- 2】 如图,以点 B 为极点的角有几个?请分别把它们表示出来.剖析: .射线 BA 与 BD , BA 与 BC ,BD 与 BC 各构成一个角.表示极点的字母一定写在中间. 当一个极点处有多个角时,不可以用一个表示极点的大写字母表示,因此不可以把∠ ABC 错写成 “∠ B ”. 书写力争规范,如用数字或希腊字母表示角时要在凑近极点处加弧线注上 阿拉伯数字或小写的希腊字母.注意:角的符号必定要用 “∠” ,而不可以用 “ <”.解: 以 B 为极点的角有 3 个,分别是 ∠ ABC , ∠ ABD , ∠DBC .2.角的胸怀与换算 (1)角度制:以度、分、秒为单位的角的胸怀制,叫做角度制. (2)角度的换算:角的胸怀单位是度、分、秒,把一个周角360 均分,每一份就是1 度的角,记作 1°;把 1 度的角 6 0 均分,每一份就是 1 分的角,记作 1′;把 1 分的角 60 均分,每一份就是 1秒的角,记作 1″ .谈要点 角度的换算(1)度、分、秒的换算是 60 进制,与时间中的时、分、秒的换算 同样;(2)角的度数的换算有两种方法:(即从高位向低位化 ),用乘法, 1°= 60′ , 1′ = 60″ ;① 由度化成度、分、秒的形式 ② 由度、分、秒化成度的形式 (即从低位向高位化 ),1″= 1 ′,1′= 160 60 °,用除法.度及度、分、秒之间的转变一定逐级进行转变, “越级”转变简单犯错.【例 2】 (1) 将 70.23 °用度、分、秒表示;(2)将 26°48′ 36″用度表示.剖析: (1)70.23 °际是实 70°+ 0.23 °,这里 70°不要变,只需将0.23 °化为分,而后再把所得的分中的小数部分化为秒.将0.23 °化为分,只需用 0.23 乘以 60′即可.(2)将 26°48′ 36″用度表示,应先将 36″化成分,而后再将分化成度就能够了.将 36″1化成分,能够用60′乘以 36.解: (1)将 0.23 °化为分,可得0.23× 60′= 13.8′,再把 0.8′化为秒,得 0.8×60″=48″ .因此 70.23 °= 70°13′ 48″ .1′× 36=0.6 ′,48′+ 0.6′= 48.6′,把 48.6′ 化成度,(2)把 36″化成分, 36″=60148.6′=60°× 48.6= 0.81 .°因此 26°48′ 36″= 26.81 °.3.角的比较与运算(1)角的比较:①胸怀法:用量角度量出角的度数,而后依据度数比较角的大小,度数大的角大,度数小的角小;反之,角大度数大,角小度数小.②叠合法:把两个角的极点和一边分别重合,另一边放在重合边的同旁,经过另一边的地点关系比较大小.解技巧角的比较① 在胸怀法中,注意三点:对中、重合、度数;② 在叠合法中,要注意极点重合,一边重合,另一边落在重合这边的同侧.(2)角的和差:角的和、差有两种意义,几何意义和代数意义.几何意义关于此后读图形语言有很大帮助,代数意义是此后角的运算的基础.①几何意义:如下图,∠ AOB与∠BOC的和是∠ AOC,表示为∠ AOB+∠ BOC=∠AOC ;∠AOC 与∠ BOC 的差为∠ AOB,表示为∠ AOC-∠ BOC=∠ AOB.②代数意义:如已知∠ A=23°17′ ,∠ B=40°50′ ,∠ A+∠ B就能够像代数加减法一样计算,即∠ A +∠B = 23°17′+ 40°50′= 64°7′,∠ B -∠A = 40°50′ - 23°17′=17°33′ .(3)角的均分线:从一个角的极点出发,把这个角分红相等的两个角的射线,叫做这个角的均分线.如图所示,射线OC是∠AOB 的均分线,则有∠1=∠ 2=12∠ AOB或∠ AOB =2∠ 1= 2∠ 2.警误区角的均分线的理解角的均分线是一条射线,不是线段,也不是直线,它一定知足下边的条件:① 是从角的极点引出的射线,且在角的内部;② 把已知角分红了两个角,且这两个角相等.【例 3】如下图, OE 均分∠ BOC, OD 均分∠ AOC,∠ BOE= 20°,∠ AOD = 40°,求∠ DOE 的度数.解:∵ OE 均分∠ BOC,∴∠ BOE=∠ COE.∵OD 均分∠ AOC,∴∠ AOD=∠COD .又∵∠ BOE= 20°,∠AOD =40°,∴∠ COE= 20°,∠COD =40°.∴∠ DOE=∠ COE+∠COD =20°+ 40°= 60°.4.余角和补角(1)余角和补角的观点:①余角:假如两个角的和等于 90°(直角 ),就说这两个角互为余角,即此中一个角是另一个角的余角;②补角:假如两个角的和等于 180°(平角 ),就说这两个角互为补角,即此中一个角是另一个角的补角.(2)性质:余角的性质:同角(等角 )的余角相等.用数学式子表示为:∠1+∠ 2=90°,∠ 3+∠ 4=90°,又由于∠ 2=∠ 4,因此∠ 1=∠ 3.补角的性质:同角(等角 )的补角相等.用数学式子表示为:∠1+∠ 2= 180°,∠ 3+∠ 4= 180°,又由于∠ 2=∠ 4,因此∠ 1=∠3.(3)方向角:在航海、航空、测绘中,常常会用到一种角,它是表示方向的角,叫做方向角.往常以正北、正南方向为基准,描绘物体运动的方向.往常要先写北或南,再写偏东仍是偏西.警误区余角和补角的理解余角和补角是成对出现的,它们之间相互依存,只好说∠ 1的余角是∠2,∠ 2 的余角是∠1,或许说∠ 1 与∠ 2 互余,而不可以说∠ 1是余角.【例 4】如下图,直线 AB ,CD,EF 订交于点 O,且∠ AOD = 90°,∠ 1= 40°,求∠ 2 的度数.解:由于∠ AOD +∠ AOC=∠ AOD+∠ BOD = 180°,因此∠AOD =∠ AOC=∠ BOD = 90°.又由于∠ 1+∠FOC = 180°,∠DOF +∠ FOC =180°,因此∠DOF =∠ 1= 40°.因此∠2=∠ BOD-∠ DOF = 90°- 40°= 50°.5.运用整体思想解决角的计算问题整体思想就是依据问题的整体构造特点,不拘泥于部分而是从整体上去掌握解决问题的一种重要的思想方法.整体思想突出对问题的整体构造的剖析和改造,发现问题的整体构造特点,擅长用“集成”的目光,把某些式子或图形当作一个整体,掌握它们之间的关系,进行有目的的、存心识的整体办理.整体思想方法在代数式的化简与求值、解方程、几何解证等方面都有宽泛的应用,整体代入、 整体运算、整体设元、整体办理、 几何中的补形等都是整体思想方法在解数学识题中的详细运用.【例 5】如下图,∠ AOB = 90°,ON 是∠ AOC 的均分线, OM 是∠ BOC 的均分线,求 ∠MON 的大小.剖析: 解决问题的要点是把 ∠ AOC - ∠BOC 视为一个整体,代入求值. 解: 由于 ON 是 ∠AOC 的均分 线, OM 是 ∠ BOC 的均分线,因此∠ NOC =12∠ AOC ,∠MOC = 1∠ BOC ,21 1 1 1 因此 ∠MON =∠NOC - ∠MOC =∠AOC - ∠BOC = (∠AOC -∠ BOC)= ∠AOB =222212× 90°= 45°.6.钟表问题关于钟表问题要掌握基本的数目关系,如走一大格为 30 度,一小格为 6 度,分针每分钟转 6 度,时针每分钟转 0.5 度,分针是时针转速的 12 倍等.若已知详细时间,求时针与分针的夹角, 只需知道它们相距的格数,即可求得;假如已知时针与分针的夹角求相应的时间,则一般需要成立方程求解.【例 6】上午 9 点时,时针与分针成直角,那么下一次时针与分针成直角是什么时候?解:设经 过 x 分钟,时针与分针再次成直角,则时针转过(0.5x) °,分针转过 (6x) °,如图所示,可列方程360- 6x - (90- 0.5x) =90,解得 x = 32 8.即过 32 8分钟,时针与分针再一11 11次成直角.7.角中的实验操作题实验操作题是最近几年来悄悄盛行的一种新形式的考题,它集阅读、作图、实验于一体,要求在规定的条件下进行实验,在着手操作中找出答案.这种题目主假如能画出整个过程中的状态表示图,从而求出点的转动角度.【例 7】如图,把作图用的三角尺 (含 30°,60°的那块 )从较长的直角边水平状态下开始,在平面上转动一周,求 B 点转动的角度 (在点的地点没有发生变化的状况下,一律看作点没有转动 ).解: 如图,从地点 ① 到地点 ② , B 点转过 90°;从地点 ② 到地点 ③ ,B 点转过 120°;从地点 ③ 到地点 ④ ,由题意 B 点看作不动.于是在整个过程中 B 点转过的角度为90°+ 120°= 210°.8.概括猜想在角的问题中的运用概括猜想, 是一种很重要的数学思想方法, 数学史上的很多重要发现: 如哥德巴赫猜想、四色猜想、角谷猜想、费马定理等都是由数学家的研究、猜想、总结而获得的.学习数学一定不停地去研究、猜想,不停地总结规律,才会有新发现.运用 n(n - 1)这个式子,能解决好多近似的问题,能达到一石数鸟,这都是大家擅长借2鉴的结果.在学习过程中,注意不停总结、概括规律,累积经验,运用总结出来的方法、技巧解决问题.【例 8】(1) 若在 n 个人的聚会上, 每一个人都要与此外全部的人握一次手, 问握手总次数 是多少?(2)如图①中共有多少条线段?如图②中共有多少个角(指小于平角的角 )?解: (1)每一个人可与此外 (n -1) 个人握一次手, n 个人就有 (n - 1) ·n 次握手,此中各重复一次,因此,握手总次数是 n(n -1) ÷2 次.(2)图 ① 中每两个点构成一条线段 (近似于两个人握一次手 ),因此共有 n(n - 1) ÷2 条线段. 图 ② 中每条射线都与此外 (n - 1)条射线构成一个角 (近似于握手 ),因此共有 n(n - 1) ÷2个角.9.方向角的应用(1)如图, 画两条相互垂直的直线 AB 和 CD 订交于点 O ,此中一条为水平线, 则图中四条射线所指方向就是东西南北四大方向, 详细是: 向上的射线 OA 表示正北方向, 向下的射线 OB 表示正南方向,向右的射线 OD 表示正东方向,向左的射线 OC 表示正西方向.这四大方向简称为上北下南左西右东.成立这四条方向线后,关于点 P ,假如点 P 在射线 OA 上,则称点 P 在正 北方向;假如点 P 在射线 OB 上,则称点 P 在正南方向;假如点 P 在射线 OC 上,则称点 P 在正西方向;假如点 P 在射线 OD 上,则称点 P 在正东方向.(2)在图中,东西和南北方向线把平面分红四个直角,假如点 P 在正北方向线 OA 与正东( 或正西 )方向线 OD( 或 OC)的夹角内,且射线 OP 与正北方向线 OA 的夹角是 m °,则称点 P 在北偏东 (或西 )m °方向;假如点 P 在正南方向线 OB 与正东 (或正西 )方向线 OD( 或 OC) 的夹角内,且射线 OP 与正南方向线 OB 的夹角为 m °,则称点 P 在南偏东 (或西 )m °方向.比如图中的射线 OA , OB , OC ,OD 分别称为:北偏东 40°、北偏西 65°、南偏西 45°、南偏东 20°.关于倾向 45°的方向角,有时也能够说成东南 (北 )方向或西南 (北 )方向.如图中的 OC,除了说成南偏西 45°外,还能够说是西南方向,但不要说成南西方向.【例 9】如图, OA 的方向是北偏东15°,OB 的方向是西偏北50°.(1)若∠ AOC =∠ AOB,则 OC 的方向是 ________;(2)OD 是 OB 的反向延伸线,OD 的方向是 ____;(3)∠ BOD 可看作是 OB 绕点 O 逆时针方向至OD,作∠ BOD 的均分线OE,OE 的方向是____ ;(4)在 (1) 、 (2) 、 (3)的条件下,∠ COE = ____.分析: (1)∵ OB 的方向是西偏北50°,∴∠ 1= 90°- 50°= 40°,∴∠ AOB= 40°+ 15°= 55°∵∠ AOC=∠ AOB,∴∠ AOC= 55°,∴∠ FOC=∠ AOF+∠ AOC= 15°+ 55°= 70°,∴ OC 的方向是北偏东70°.(2)∵ OB 的方向是西偏北50°,∴∠ 1= 40°,∴∠ DOH = 40°,∴ OD 的方向是南偏东40°.(3)∵ OE 是∠ BOD 的均分线,∴∠ DOE= 90°.∵∠ DOH = 40°,∴∠ HOE= 50°,∴ OE 的方向是南偏西50°.(4)∵∠ AOF = 15°,∠ AOC= 55°,∴∠ COG= 90°-∠AOF -∠ AOC= 90°-15°- 55°= 20°.∵∠ EOH= 50°,∠HOG = 90°,∴∠ COE=∠ EOH+∠HOG +∠ COG= 50°+ 90°+ 20°=160°.答案: (1)北偏东 70°(2)南偏东 40°(3)南偏西 50°(4)160 °。
4.3.3 余角与补角教学目标1、知识与技能(1)知道余角和补角的定义。
(2)知道余角与补角的性质。
2、过程与方法(3)进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、情感态度与价值观(4)体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
教学与难点1.重点(1).知道余角和补角的定义。
(2).知道余角与补角的性质。
2.难点理解性质的得出过程。
教材分析《余角与补角》是人教版七年级数学第四章第三节的内容。
本节课的主要内容有:余角和补角的定义;通过等量代换得出补角的性质,类似的得到余角的性质,并且利用性质解决相应的问题。
本节内容是角的运算的深化,拓展了对角运用的认识,也为下个学期学习更多的几何知识奠定基础。
学情分析七年级学生在小学阶段已经接触了部分几何知识,但是初中阶段的几何对学生有更高的要求,需要学生通过逻辑分析得出结论,并能将得出的结论运用于生活,而这也正是学生在学习本课内容时感觉困难的地方。
考虑到以上学情,本节课的重点是培养学生分析推理能力,让学生逐步学会用数学语音表达自己的思考过程,形成空间思考能力。
教法为了多方面、多角度为学生搭建学习平台,体现学生为主体、教师为主导的教学观念。
本节课主要采用问答法、自学讨论法和情景教学法。
学法学生是教学活动的主体,要使学生从“学会”转化为“会学”。
本节课主要采用观察法、讨论法、合作探究法和练习法。
实验与教具准备三角板等。
教学过程教学环节和内容教师活动学生活动设计意图出示学习目标多媒体展示:(1)知道余角和补角的定义。
(2)知道余角与补角的性质学生齐读一遍,并回忆预习时的收获和遇到的问题。
整体把握本节课内容,知道学习本节课需要掌握的知识点。
导入新课活动:折纸,提出问题。
观察图片,讨论问题从实际生活中发现数学,引出课题出示自学检测一老师提出以下问题,1、已知∠α=35°,∠α的余角为______。
《七年级第四章图形认识初步》教案4.3. 3余角和补角【教学目标】1、在具体情境中了解余角与补角.懂得等角的余角相等,等角的补角相等.并能运用这些性质解决一些简单的实际问题;理解方位角的意义,掌握方位角的判别与应用.2、经历观察、操作、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;通过现实情境,充分利用学生的生活经验去体会方位角的意义.3、体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心,帮助学生体验数学在生活中的用处,激发学生对数学的学习兴趣【教学重点】余角与补角的性质【教学难点】方位角的判别与应用【教学准备】量角器、三角尺、角的纸片数【教学过程】一、提出问题1、用量角器理出图中的两个角的度数,并求出这两个角的和。
2、说出一副三角尺中各个角的度数。
二、探究新知1、余角与补角的概念在一副三角尺中,每块都有一个角是90度,而其他两个角的和是90度。
一般情况下,如果两个角的和等于90(直角),我们就说这两个角互为余角,即其中一个角是另一个角的余角.例如,∠1与∠2互为余角,∠1是∠2的余角,∠2也是∠1的余角的余角.同样,如果两个角的和等于180度 (平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2、余角与补角的性质问题1:如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2与∠4相等吗?为什么?问题2,如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,那么∠2与∠4相等吗?为什么?学生分组讨论、交流,说出各自的理由,最后师生共同归纳余角与补角的性质:等角的余角相等;等角的补角相等。
三、巩固新知例1 比一比,看谁填得快。
例2:已知一个角的补角是这个角的余角的3倍,求这个角。
例3:一个角是另一个角的3倍,且小角的余角与大角的余角之差为20°,求这两个角的度数.解:设第一个角为x°,则另一个角为3x°,依题义列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30.答:一个角为10°,另一个角为30°.例4:判断正误:(1)在∠AOB的边OA的延长线上取一点D.(2)大于90°的角是钝角.(3)任何一个角都可以有余角.(4)∠A是锐角,则∠A的所有余角都相等.(5)两个锐角的和一定小于平角.(6)直线MN是平角.(7)互补的两个角的和一定等于平角.(8)如果一个角的补角是锐角,那么这个角就没有余角,(9)钝角一定大于它的补角.(10)经过三点一定可以画一条直线.解:(1)错.因为角的两边是射线,而射线是可以向一方无限延伸的,所以就不能再说射线的延长线了.(2)错.钝角的定义是:大于直角且小于平角的角,叫做钝角.(3)错.余角的定义是:如果两个角的和是一个直角,这两个角互为余角.因此大于直角的角没有余角.(4)对.∠A的所有余角都是90°-∠A.(5)对.若∠A<90°,∠B<90°则∠A+∠B<90°+90°=180°.(6)错.平角是一个角就要有顶点,而直线上没有表示平角顶点的点.如果在直线上标出表示角的顶点的点,就可以了.(7)对.符合互补的角的定义.(8)对.如果一个角的补角是锐角,那么这个角一定是钝角,而钝角是没有余角的.(9)对.因为钝角的补角是锐角,钝角一定大于锐角.(10)错.这个题应该分情况讨论:如果这三点在同一条直线上,这个结论是正确的.如果这三个点不在同一条直线上,那么过这三个点就不能画一条直线.四、解决问题1、在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中.此时∠1=∠2,∠3=∠4,并且∠2+∠3=090,∠4+∠5=090.如果黑球与洞口的连线和台球桌面边缘的夹角090,∠5=040,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。