电磁感应计算题总结(易错题型)
- 格式:doc
- 大小:888.66 KB
- 文档页数:21
法拉第电磁感应定律易错题知识点及练习题附答案一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如图所示,垂直于纸面的匀强磁场磁感应强度为B。
纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。
从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR3.如图,匝数为N、电阻为r、面积为S的圆形线圈P放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P通过导线与阻值为R的电阻和两平行金属板相连,两金属板之间的距离为d,两板间有垂直纸面的恒定匀强磁场。
备战高考物理复习法拉第电磁感应定律专项易错题及答案解析一、法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;(2)金属杆速度为2.0m/s 时的加速度大小;(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】(1)由题图知,杆运动的最大速度为4/m v m s =,有22sin sin mB L v F mg F mg Rαα=+=+安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安得222222212sin 182100.52/2/2B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:211sin 2Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.3.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。
高考物理新电磁学知识点之电磁感应易错题汇编附解析一、选择题1.穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2Wb,则()A.线圈中感应电动势每秒增加2VB.线圈中感应电动势始终为2VC.线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2VD.线圈中感应电动势每秒减少2V2.如图所示,有一正方形闭合线圈,在足够大的匀强磁场中运动。
下列四个图中能产生感应电流的是A.B.C.D.3.如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.4m,电阻不计。
导轨所在平面与磁感应强度B为0.5T的匀强磁场垂直。
质量m为6.0×10-3kg电阻为1Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触。
导轨两端分别接有滑动变阻器R2和阻值为3.0Ω的电阻R1。
当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27W。
则()A.ab稳定状态时的速率v=0.4m/sB.ab稳定状态时的速率v=0.6m/sC.滑动变阻器接入电路部分的阻值R2=4.0ΩD.滑动变阻器接入电路部分的阻值R2=6.0Ω4.如图所示,用粗细均匀的铜导线制成半径为r、电阻为4R的圆环,PQ为圆环的直径,在PQ的左右两侧均存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B,但方向相反,一根长为2r、电阻为R的金属棒MN绕着圆心O以角速度 顺时针匀速转动,金属棒与圆环紧密接触。
下列说法正确的是()A .金属棒MN 两端的电压大小为2B r ωB .金属棒MN 中的电流大小为22B r R ωC .图示位置金属棒中电流方向为从N 到MD .金属棒MN 转动一周的过程中,其电流方向不变5.如图所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中。
两板间有一个质量为m 、电荷量为+q 的油滴恰好处于平衡状态,则线圈中的磁场B 的变化情况和磁通量变化率分别是( )A .正在增强;t φ∆∆dmg q = B .正在减弱;dmg t nq φ∆=∆ C .正在减弱;dmg t q φ∆=∆ D .正在增强;dmg t nqφ∆=∆ 6.如图甲所示,矩形线圈位于一变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,磁感应强度B 随时间t 的变化规律如图乙所示.用I 表示线圈中的感应电流,取顺时针方向的电流为正.则下图中的I -t 图像正确的是 ( )A.B.C.D.7.如图甲所示,一根电阻R=4 Ω的导线绕成半径d=2 m的圆,在圆内部分区域存在变化的匀强磁场,中间S形虚线是两个直径均为d的半圆,磁感应强度随时间变化如图乙所示(磁场垂直于纸面向外为正,电流逆时针方向为正),关于圆环中的感应电流—时间图象,下列选项中正确的是( )A. B.C.D.8.有一种自行车,它有能向自行车车头灯泡供电的小型发电机,其原理示意图如图甲所示,图中N,S是一对固定的磁极,磁极间有一固定的绝缘轴上的矩形线圈,转轴的一端有一个与自行车后轮边缘结束的摩擦轮.如图乙所示,当车轮转动时,因摩擦而带动摩擦轮转动,从而使线圈在磁场中转动而产生电流给车头灯泡供电.关于此装置,下列说法正确的是()A.自行车匀速行驶时线圈中产生的是直流电B.小灯泡亮度与自行车的行驶速度无关C.知道摩擦轮与后轮的半径,就可以知道后轮转一周的时间里摩擦轮转动的圈数D.线圈匝数越多,穿过线圈的磁通量的变化率越大9.物理课上老师做了这样一个实验,将一平整且厚度均匀的铜板固定在绝缘支架上,将一质量为m的永磁体放置在铜板的上端,t=0时刻给永磁体一沿斜面向下的瞬时冲量,永磁体将沿斜面向下运动,如图甲所示。
高中物理电磁感应现象易错题知识归纳总结及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2mgRsin B L vθ(2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 U E BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.3.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。
法拉第电磁感应定律易错题知识归纳总结附答案一、高中物理解题方法:法拉第电磁感应定律1.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m2.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2222mR grx B L=,两棒速度稳定之后,再经过一段时间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =2rhx ∆= (3) 12Q mgr =【解析】 【分析】 【详解】(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:2012mgr mv =解得a 棒沿圆弧轨道最低点M 时的速度02v gr =从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:012mv mv =解得两棒以相同的速度做匀速运动的速度0122gr v v ==(2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:2222A B L xI ILBt BL Rit R∆Φ===由动量定理:21A I mv mv --=解得22grv =由平抛运动规律得,两棒落到地面后的距离()1222h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热:220111(2)22Q mv m v =- 解得:12Q mgr =3.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
易错点12电磁感应目录01易错陷阱(3大陷阱)02举一反三【易错点提醒一】根据楞次定律判断电流方向分不清因果,混淆两种磁场方向【易错点提醒二】计算感应电动势分不清的平均值不是瞬时值或有效长度错误【易错点提醒三】分析与电路综合问题没有弄清电路结构,错误把内电路当外电路【易错点提醒四】分析力学综合问题不会受力分析,错误地用功能关系列式。
03易错题通关易错点一:错误地运用楞次定律求感应电流1.判断电磁感应现象是否发生的一般流程2.“阻碍”的含义及步骤楞次定律中“阻碍”的含义“四步法”判断感应电流方向易错点二:钷亶地运用法拉北电磁感应定律求感应电动势和分析自感现象1.感应电动势两个公式的比较公式E =nΔΦΔt E =Blv 导体一个回路一段导体适用普遍适用导体切割磁感线意义常用于求平均电动势既可求平均值也可求瞬时值联系本质上是统一的.但是,当导体做切割磁感线运动时,用E =Blv 求E 比较方便;当穿过电路的磁通量发生变化时,用E =nΔΦΔt求E 比较方便2E=Blv 的三个特性正交性本公式要求磁场为匀强磁场,而且B 、l 、v 三者互相垂直有效性公式中的l 为导体棒切割磁感线的有效长度,如图中ab相对性E =Blv 中的速度v 是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系3动生电动势的三种常见情况情景图研究对象一段直导线(或等效成直导线)绕一端转动的一段导体棒绕与B 垂直的轴转动的导线框表达式E =BLvE =12BL 2ωE =NBSωsin ωt易错点三:错误求解电磁感应与电路和力学的综合问题1.电磁感应与电路综合问题的求解(1)电磁感应中电路知识的关系图(2).分析电磁感应电路问题的基本思路求感应电动势E=Blv 或E=ΕΔ→画等效电路图→求感应电流内=B外=tB外=B 外总=B2。
2。
电磁感应中的动力学问题的求解(1)导体受力与运动的动态关系(2).力学对象和电学对象的相互关系(3).解决电磁感应中的动力学问题的一般思路4.求解焦耳热Q的三种方法.【易错点提醒一】根据楞次定律判断电流方向对穿两线圈的磁通量变化情况判断错误【例1】(多选)如图所示软铁环上绕有M、N两个线圈,线圈M通过滑动变阻器及开关与电源相连,线圈N连接电流表G,下列说法正确的是()A.开关闭合瞬间,通过电流表G的电流由a到bB.开关闭合稳定后,通过电流表G的电流由b到aC.开关闭合稳定后,将滑动变阻器滑片向右滑动,通过电流表G的电流由a到bD.开关闭合稳定后再断开瞬间,通过电流表G的电流由a到b易错分析:误选A的原因:对穿两线圈的磁通量变化情况判断错误,不能根据楞次定律正确判断感应定流方向。
易错点24 电磁感应中的电路和图像问题易错总结以及解题方法一、电磁感应中的电路问题处理电磁感应中的电路问题的一般方法1.明确哪部分电路或导体产生感应电动势,该部分电路或导体就相当于电源,其他部分是外电路.2.画等效电路图,分清内、外电路.3.用法拉第电磁感应定律E =n ΔΦΔt 或E =Blv sin θ确定感应电动势的大小,用楞次定律或右手定则确定感应电流的方向.注意在等效电源内部,电流方向从负极流向正极. 4.运用闭合电路欧姆定律、串并联电路特点、电功率等公式联立求解. 二、电磁感应中的电荷量问题闭合回路中磁通量发生变化时,电荷发生定向移动而形成感应电流,在Δt 内通过某一截面的电荷量(感应电荷量)q =I ·Δt =E R 总·Δt =n ΔΦΔt ·1R 总·Δt =n ΔΦR 总.(1)由上式可知,线圈匝数一定时,通过某一截面的感应电荷量仅由回路电阻和磁通量的变化量决定,与时间无关.(2)求解电路中通过的电荷量时,I 、E 均为平均值. 三、电磁感应中的图像问题 1.问题类型(1)由给定的电磁感应过程选出或画出正确的图像. (2)由给定的图像分析电磁感应过程,求解相应的物理量. 2.图像类型(1)各物理量随时间t 变化的图像,即B -t 图像、Φ-t 图像、E -t 图像和I -t 图像. (2)导体做切割磁感线运动时,还涉及感应电动势E 和感应电流I 随导体位移变化的图像,即E -x 图像和I -x 图像.3.解决此类问题需要熟练掌握的规律:安培定则、左手定则、楞次定律、右手定则、法拉第电磁感应定律、欧姆定律等.判断物理量增大、减小、正负等,必要时写出函数关系式,进行分析.【易错跟踪训练】易错类型1:挖掘隐含条件、临界条件不够1.(2021·湖北孝感高中高三月考)如图所示,在天花板下用细线悬挂一个闭合金属圆环,圆环处于静止状态。
上半圆环处在垂直于环面的水平匀强磁场中,规定垂直于纸面向外的方向为磁场的正方向,磁感应强度B 随时间t 变化的关系如图乙所示。
电磁感应现象易错题综合题及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)00.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为: 0.05V BE Ld t tΦ=== 感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -= 解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
高考物理复习法拉第电磁感应定律专项易错题一、法拉第电磁感应定律1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。
线圈的半径为r1。
在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。
导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)2020 3n B rRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。
(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==2.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
高考物理复习法拉第电磁感应定律专项易错题含答案解析一、法拉第电磁感应定律1.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
(2)a 、b 两点间电压U ab 为2.4V 。
2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。
(1)求金属棒达到稳定时的速度是多大;(2)金属棒从静止开始到稳定速度的过程中,电阻R 上产生的热量是多少?(3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t =1s 时磁感应强度应为多大? 【答案】(1)8m/s 5 (2)0.0183J(3) 5T 46【解析】 【详解】(1) 在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有sin A mg F θ=其中,A EF BIL I R r==+ 根据法拉第电磁感应定律,有E BLv = 联立解得:m 1.6sv =(2) 根据能量关系有21·sin 2mgs mv Q θ=+ 电阻R 上产生的热量R RQ Q R r=+ 解得:0.0183J R Q =(3) 当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有:sin mg ma θ=根据位移时间关系公式,有212x vt at =+设t 时刻磁感应强度为B ,总磁通量不变,有:()BLs B L s x '=+当t =1s 时,代入数据解得,此时磁感应强度:5T 46B '=3.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m4.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2mR grx =,两棒速度稳定之后,再经过一段时间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =rhx ∆=12Q mgr =【解析】 【分析】 【详解】(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:2012mgr mv =解得a 棒沿圆弧轨道最低点M 时的速度02v gr 从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:012mv mv =解得两棒以相同的速度做匀速运动的速度0122grv v ==(2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:2222A B L xI ILBt BL Rit R∆Φ===由动量定理:21A I mv mv --=解得22grv =由平抛运动规律得,两棒落到地面后的距离()1222h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热:220111(2)22Q mv m v =- 解得:12Q mgr =5.如图甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L=0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg 、电阻r=0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B=0.5T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示。
电磁感应现象易错题知识归纳总结含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mvI Rt-=3.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-4.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。
高考物理法拉第电磁感应定律易错题知识点及练习题及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
(2)a 、b 两点间电压U ab 为2.4V 。
2.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V BE L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件: F +mg sin30° -F 安=0 F =-0.5N外力F 大小为0.5N .方向沿斜面向上 (3)q =It ,EI R r =+;E t∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++3.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。
(每日一练)高中物理电磁学电磁感应易错题集锦单选题1、如图所示,光滑的水平桌面上放着a和b两个完全相同的金属环。
如果一条形磁铁的N极竖直向下迅速靠近两环,则()A.a、b两环均静止不动B.a、b两环互相靠近C.a、b两环互相远离D.a、b两环均向上跳起答案:C解析:当条形磁铁的N极竖直向下迅速靠近两环时,两环中的磁通量增大,根据楞次定律可知两环中的感应电流将阻碍这种变化,于是相互远离。
故选C。
2、老师做了一个物理小实验让学生观察:一轻质横杆两侧各固定一金属环,横杆克绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是()A.磁铁插向左环,横杆发生转动B.磁铁插向右环,横杆发生转动C.无论磁铁插向左环还是右环,横杆都不发生转动D.无论磁铁插向左环还是右环,横杆都发生转动答案:B解析:左环没有闭合,在磁铁插入过程中,不产生感应电流,故横杆不发生转动.右环闭合,在磁铁插入过程中,产生感应电流,横杆将发生转动,故B正确,ACD错误.3、人们对电磁炮的研究不断深入。
某高中科研兴趣小组利用学过的知识制造了一台电磁炮,其原理示意图如图甲所示,高压直流电源电动势为E,大电容器的电容为C。
线圈套在中空的塑料管上,管内光滑,将直径略小于管的内径的金属小球静置于管口附近。
首先将开关S接1,使电容器完全充电,然后立即将S转接2,此后电容器放电,通过线圈的电流随时间的变化如图乙所示,金属小球在0~t1的时间内被加速发射出去,t1时刻刚好运动到管口。
下列关于该电磁炮的说法正确的是()A.小球在塑料管中做匀变速直线运动B.在0~t1的时间内,小球中产生的涡流从左向右看是顺时针方向的C.在t1时刻,小球受到的线圈磁场对它的作用力为零D.在0~t1的时间内,电容器储存的电能全部转化为小球的动能答案:C解析:A. 线圈中的磁场强弱程度与通过线圈的电流大小成正比,根据乙图可知,线圈中产生的磁感应强度(磁通量)变化步调与电流i的变化步调一致,在0~t1时间内,线圈电流i从0逐渐增大,但其变化率却逐渐减小至0,所以线圈中的磁通量变化率也逐渐减小至0,金属小球中感应电动势也逐渐减小至0,金属小球中的涡流也逐渐减小至0,可知t=0时刻,金属小球受到线圈磁场对它的作用力为0,t1时刻,金属小球受到线圈磁场对它的作用力也为0,故0~t1时间内,金属小球受到线圈磁场对它的作用力应先增大后减小,即加速度应先增大后减小,A错误;B. 0~t1时间内,由安培定则知线圈电流在线圈内的磁场方向向右,线圈电流在增大,则产生的磁场在增大,通过金属小球磁通量在增大,根据楞次定律可知金属小球中产生涡流的磁场方向向左,由安培定则可知,金属小球中产生的涡流从左向右看是逆时针方向的,B错误;C. t1时刻,线圈中电流i的变化率为零,所以线圈中磁通量变化率为零,金属小球中感应电动势为零,金属小球中的涡流为零,所以小球受线圈作用力为零,C正确;D. 在0~t1的时间内,电容器减少的电场能转化为磁场能,磁场能有一部分转化为小球的动能,还留有一部分磁场能。
电磁感应易错题1如图所示,边长L=0.20m的正方形导线框ABCD由粗细均匀的同种材料制成,正方形导线框每边的电阻R)=Q,金属棒MNW正方形导线框的对角线长度恰好相等,金属棒MN勺电阻r= Q。
导线框放置在匀强磁场中,磁场的磁感应强度B=,方向垂直导线框所在平面向里。
金属棒MN与导线框接触良好,且与导线框对角线BD垂直放置在导线框M 上,金属棒的中点始终在BD连线上。
若金属棒以v=4.0m/s 的速度向右匀速运动,当金属棒运动至AC的位置时,求:(计算结果保留两位有效数字)(1)金属棒产生的电动势大小;(2)金属棒MN上通过的电流大小和方向;(3 )导线框消耗的电功率。
2.如图所示,正方形导线框abed的质量为m边长为I,导线框的总电阻为R。
导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,ed边保持水平。
磁场的磁感应强度大小为B,方向垂直纸面向里,磁场上、下两个界面水平距离为I。
已知ed边刚进入磁场时线框恰好做匀速运动。
重力加速度为g o(1 )求cd边刚进入磁场时导线框的速度大小。
(2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。
(3 )求从线框cd边刚进入磁场到ab边刚离开磁场的过程中,线框克服安培力所做的功。
3 .如图所示,在高度差h= 0.50m的平行虚线范围内,有磁感强度B=、方向水平向里的匀强磁场,正方形线框abed的质量仆0.10kg、边长L=0.50m、电阻R=Q,线框平面与竖直平面平行,静止在位置“ I”时,ed边跟磁场下边缘有一段距离。
现用一竖直向上的恒力F=向上提线框,该框由位置"I”无初速度开始向上运动,穿过磁场区,最后到达位置"n”(ab边恰好出磁场),线框平面在运动中保持在竖直平面内,且ed边保持水平。
设ed边刚进入磁场时,线框恰好开始做匀速运动。
一、法拉第电磁感应定律1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.(1)求磁感应强度B的大小;(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1 T (2)0.3 m(3)0.3n J【解析】【详解】(1)当h=2L时,bc进入磁场时线框的速度===v gh gL222m/s此时金属框刚好做匀速运动,则有:mg=BIL又E BLv==IR R联立解得1mgR=BL v代入数据得:1TB=(2)当h>2L时,bc边第一次进入磁场时金属线框的速度022v gh gL =>即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。
2.如图所示,垂直于纸面的匀强磁场磁感应强度为B 。
纸面内有一正方形均匀金属线框abcd ,其边长为L ,总电阻为R ,ad 边与磁场边界平行。
(每日一练)高中物理电磁学电磁感应易错知识点总结单选题1、在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm2。
螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF。
在一段时间内,垂直穿过螺线管的磁场的磁感应强度B的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是()A.螺线管中产生的感应电动势为1.2VB.闭合K,电路中的电流稳定后,电容器的下极板带负电C.闭合K,电路中的电流稳定后,电阻R1的电功率为2.56×10-2WD.闭合K,电路中的电流稳定后,断开K,则K断开后,流经R2的电荷量为1.8×10-2C答案:C解析:A.根据法拉第电磁感应定律可得螺线管中产生的感应电动势为E=n ΔΦΔt=nSΔBΔt=0.8V故A错误;B.根据楞次定律可以判断回路中感应电流的方向应为逆时针方向,所以电容器的下极板带正电,故B错误;C.闭合K,电路中的电流稳定后,电阻R1的电功率为P=(ER1+R2+r)2R1=2.56×10−2W故C正确;D.闭合K,电路中的电流稳定后电容器两端的电压为U=R2R1+R2+rE=0.4VK断开后,流经R2的电荷量即为K闭合时电容器一个极板上所带的电荷量,即Q=CU=1.2×10-5C故D错误。
故选C。
2、如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环。
圆环初始时静止。
将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到()A.拨至M端或N端,圆环都向左运动B.拨至M端或N端,圆环都向右运动C.拨至M端时圆环向左运动,拨至N端时向右运动D.拨至M端时圆环向右运动,拨至N端时向左运动答案:B解析:无论开关S拨至哪一端,当把电路接通一瞬间,左边线圈中的电流从无到有,电流在线圈轴线上的磁场从无到有,从而引起穿过圆环的磁通量突然增大,根据楞次定律(增反减同),右边圆环中产生了与左边线圈中方向相反的电流,异向电流相互排斥,所以无论哪种情况,圆环均向右运动。
易错点23 法拉第电磁感应定律 自感和涡流 易错总结一、法拉第电磁感应定律1.法拉第电磁感应定律(更多免费资源关注公众号拾穗者的杂货铺)(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,其中n 为线圈的匝数. 2.磁通量Φ、磁通量的变化量ΔΦ及磁通量的变化率ΔΦΔt 的比较: 3.公式E =n ΔΦΔt 的理解 感应电动势的大小E 由磁通量变化的快慢,即磁通量变化率ΔΦΔt决定,与磁通量Φ、磁通量的变化量ΔΦ无关.4.导线切割磁感线时感应电动势表达式的推导如图所示,闭合电路一部分导线ab 处于匀强磁场中,磁感应强度为B ,ab 的长度为l ,ab 以速度v 匀速垂直切割磁感线.则在Δt 内穿过闭合电路磁通量的变化量为ΔΦ=B ΔS =Blv Δt根据法拉第电磁感应定律得E =ΔΦΔt =Blv . 5.对公式的理解(1)当B 、l 、v 三个量的方向互相垂直时,E =Blv ;当有任意两个量的方向互相平行时,导线将不切割磁感线,E =0.(2)当l 垂直B 且l 垂直v ,而v 与B 成θ角时,导线切割磁感线产生的感应电动势大小为E =Blv sin θ.(3)若导线是弯折的,或l 与v 不垂直时,E =Blv 中的l 应为导线在与v 垂直的方向上的投影长度,即有效切割长度.图甲中的有效切割长度为:L =cd sin θ;图乙中的有效切割长度为:L =MN ;图丙中的有效切割长度为:沿v 1的方向运动时,L =2R ;沿v 2的方向运动时,L =R .6.导体转动切割磁感线产生的电动势如图所示,导体棒在磁场中绕A 点在纸面内以角速度ω匀速转动,磁感应强度为B ,则AC在切割磁感线时产生的感应电动势为E =Bl v =Bl ·ωl 2=12Bl 2ω.二、自感和互感1.当一个线圈中的电流变化时,它产生的磁场就发生变化,变化的磁场在周围空间产生感生电场,在感生电场的作用下,另一个线圈中的自由电荷定向运动,于是产生感应电动势.2.一个线圈中电流变化越快(电流的变化率越大),另一个线圈中产生的感应电动势越大.3.应用与危害(1)应用:变压器、收音机的磁性天线都是利用互感现象制成的.(2)危害:在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时要设法减小电路间的互感.例如在电路板的刻制时就要设法减小电路间的互感现象.三、涡流1.产生涡流的两种情况(1)块状金属放在变化的磁场中.(2)块状金属进出磁场或在非匀强磁场中运动.2.产生涡流时的能量转化(1)金属块在变化的磁场中,磁场能转化为电能,最终转化为内能.(2)金属块进出磁场或在非匀强磁场中运动,由于克服安培力做功,金属块的机械能转化为电能,最终转化为内能.3.涡流的应用与防止(1)应用:真空冶炼炉、探雷器、安检门等.(2)防止:为了减小电动机、变压器铁芯上的涡流,常用电阻率较大的硅钢做材料,而且用相互绝缘的硅钢片叠成铁芯来代替整块硅钢铁芯.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2021·全国高三专题练习)如图甲所示,圆形线圈处于垂直于线圈平面的匀强磁场中,磁感应强度的变化如图乙所示。
电磁感应易错点一、对Φ、ΔΦ、ΔΔt Φ的意义理解不清对Φ、ΔΦ、ΔΔt Φ的理解和应用易出现以下错误: (1)不能通过公式正确计算Φ、ΔΦ和ΔΔt Φ的大小,错误地认为它们都与线圈的匝数n 成正比;(2)认为公式中的面积S 就是线圈的面积,而忽视了无效的部分;不能通过Φ–t (或B –t )图象正确求解ΔΔtΦ;(3)认为Φ=0(或B =0)时,ΔΔt Φ一定等于零; (4)不能正确地分析初、末状态穿过线圈的磁通量的方向关系,从而不能正确利用公式ΔΦ=Φ2–Φ1求解ΔΦ.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B ,在此过程中,线圈中产生的感应电动势为A .t Ba Δ22 B .t nBa Δ22 C .t nBa Δ2D .t nBa Δ22【错因分析】有效面积的计算错误,或者用法拉第电磁感应定律求电动势的时候忘记乘以匝数n 而导致错解。
【正确解析】磁感应强度的变化率Δ2ΔΔΔB B B B t t t -==,法拉第电磁感应定律可以写成 ΔΔΔΔB E n n S t t Φ==,其中磁场中的有效面积212S a =,代入得22ΔBa E n t =,选项B 正确.【正确答案】B.1.(多选)如图所示,磁场中S 1处竖直放置一闭合圆形线圈.现将该圆形线圈从图示S 1位置处水平移动到S 2位置处,下列说法正确的是A .穿过线圈的磁通量在减少B .穿过线圈的磁通量在增加C .逆着磁场方向看,线圈中产生的感应电流方向是逆时针D .逆着磁场方向看,线圈中产生的感应电流方向是顺时针2.(2019·广东广州联考)如图所示,闭合线圈abcd 水平放置,其面积为S ,匝数为n ,线圈与匀强磁场B 夹角为θ=45°。
现将线圈以ab 边为轴顺时针转动90°,则线圈在初、末位置磁通量的改变量的大小为A.0B.错误!BS C.2nBS D.无法计算易错点二、“三定则"的比较及其联系比较项目左手定则右手定则安培定则应用磁场对运动电荷、电流作用力方向的判断对导体切割磁感线而产生的感应电流方向的判断电流产生磁场涉及方向的物理量磁场方向、电流(电荷运动)方向、安培力(洛伦兹力)方向磁场方向、导体切割磁感线的运动方向、感应电动势的方向电流方向、磁场方向各物理量方向间的关系图例因果关系电流→运动运动→电流电流→磁场应用实例电动机发电机电磁流量计(多选)如图所示,水平放置的光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动,则PQ所做的运动可能是A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动【错因分析】不能正确区分使用“三定则"的使用环境导致本题错解。
高考物理复习法拉第电磁感应定律专项易错题及详细答案一、法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。
PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。
一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。
求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00BSv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;(2)金属杆速度为2.0m/s 时的加速度大小;(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】(1)由题图知,杆运动的最大速度为4/m v m s =,有22sin sin mB L v F mg F mg Rαα=+=+安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安得222222212sin 182100.52/2/2B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =,由能量的转化和守恒定律得:211sin 2Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.3.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q【答案】(1) 1V ;a 端电势高;(2) 0.1kg ; 0.5J 【解析】 【详解】解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;ab 杆加速度为:a gsin α=2s t =时刻速度为:10m/s v at ==ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1E I R ===⨯ 对cd 杆有:30mgsin BIL ︒= 解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热根据能量守恒定律则有:300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=4.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2) 0.1B T = (3) 0.26J 【解析】 【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。
电磁感应易错题1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。
导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。
金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。
若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字)(1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。
2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。
导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。
磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。
已知cd 边刚进入磁场时线框恰好做匀速运动。
重力加速度为g 。
(1)求cd 边刚进入磁场时导线框的速度大小。
(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。
(3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。
3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。
现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。
设cd 边刚进入磁场时,线框恰好开始做匀速运动。
(g 取10m /s 2) 求:(1)线框进入磁场前距磁场下边界的距离H 。
(2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F 做的功是多少?线框内产生的热量又是多少?b d cll4.如图所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP '是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里。
在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R 。
使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP '为止。
从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q 。
求:(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电量是多少? (2)线框是从cd 边距边界PP'多高处开始下落的? (3)线框的cd 边到达地面时线框的速度大小是多少?5.如图所示,质量为m 、边长为l 的正方形线框,从有界的匀强磁场上方由静止自由下落.线框电阻为R ,匀强磁场的宽度为H (l <H ),磁感应强度为B ,线框下落过程中ab 边与磁场边界平行且沿水平方向.已知ab 边刚进入磁场和刚穿出磁场时线框都作减速运动,加速度大小都是31g .求:(1)ab 边刚进入磁场时与ab 边刚出磁场时的速度大小. (2)cd 边刚进入磁场时,线框的速度大小. (3)线框进入磁场的过程中,产生的热量.6.如图所示,竖直平面内有一半径为r 、内阻为R 1、粗细均匀的光滑半圆形金属环,在M 、 N 处与相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R 2,已知 R 1=12R ,R 2=4R 。
在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小 均为B 。
现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A 处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道中够长。
已知导体棒ab 下落r /2时的速度大小为v 1,下落到MN 处的速度大小为v 2。
(1)求导体棒ab 从A 下落r /2时的加速度大小; (2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和R 2上的电功率P 2;(3)若将磁场II 的CD 边界略微下移,导体棒ab 刚进入磁场II 时速度大小为v 3,要使其在外力F 作用下做匀加速直线运动,加速度大小为a ,求所加外力F 随时间变化的关系式。
Hh l 2l 1a b c dP P ′ Bb ad cH7. 如图所示,空间存在垂直纸面向里的两个匀强磁场区域,磁感应强度大小均为B ,磁场 Ⅰ宽为L ,两磁场间的无场区域为Ⅱ,宽也为L ,磁场Ⅲ宽度足够大。
区域中两条平行直光 滑金属导轨间距为l ,不计导轨电阻,两导体棒ab 、cd 的质量均为m ,电阻均为r 。
ab 棒静 止在磁场Ⅰ中的左边界处,cd 棒静止在磁场Ⅲ中的左边界处,对ab 棒施加一个瞬时冲量, ab 棒以速度v 1开始向右运动。
(1)求ab 棒开始运动时的加速度大小;(2)ab 棒在区域Ⅰ运动过程中,cd 棒获得的最大速度为v 2,求ab 棒通过区域Ⅱ的时间; (3)若ab 棒在尚未离开区域Ⅱ之前,cd 棒已停止运动,求:ab 棒在区域Ⅱ运动过程中产生的焦耳热。
8.如图所示,一正方形平面导线框abcd ,经一条不可伸长的绝缘轻绳与另一正方形平面导线框a 1b 1c 1d 1相连,轻绳绕过两等高的轻滑轮,不计绳与滑轮间的摩擦.两线框位于同一竖直平面内,ad 边和a 1d 1边是水平的.两线框之间的空间有一匀强磁场区域,该区域的上、下边界MN 和PQ 均与ad 边及a 1d 1边平行,两边界间的距离为h =78.40 cm .磁场方向垂直线框平面向里.已知两线框的边长均为l = 40. 00 cm ,线框abcd 的质量为m 1 = 0. 40 kg ,电阻为R 1= 0. 80Ω。
线框a 1 b 1 c 1d 1的质量为m 2 = 0. 20 kg ,电阻为R 2 =0. 40Ω.现让两线框在磁场外某处开始释放,两线框恰好同时以速度v =1.20 m/s 匀速地进入磁场区域,不计空气阻力,重力加速度取g =10 m/s 2.(1)求磁场的磁感应强度大小.(2)求ad 边刚穿出磁场时,线框abcd 中电流的大小.9.如图所示,倾角为θ=37o 、电阻不计的、间距L =0.3m 且足够长的平行金属导轨处在磁感强 度B =1T 、方向垂直于导轨平面的匀强磁场中.导轨两端各接一个阻值R 0=2Ω的电阻.在平行 导轨间跨接一金属棒,金属棒质量m =1kg 电阻r =2Ω,其与导轨间的动摩擦因数μ=0.5。
金 属棒以平行于导轨向上的初速度υ0=10m/s 上滑直至上升到最高点的过程中,通过上端电阻 的电量Δq =0.1C (g =10m/s 2)(1)金属棒的最大加速度;(2)上端电阻R 0中产生的热量。
10.如图所示,金属框架竖直放置在绝缘地面上,框架上端接有一c d a b LL l Ⅰ ⅢⅡ R 0 R 0v 0θ电容为C 的电容器,框架上有一质量为m 、长为L 的金属棒平行于地面放置,与框架接触良好无摩擦。
离地高为h 、磁感应强度为B 匀强磁场与框架平面相垂直,开始时电容器不带电,自静止起将棒释放,求棒落到地面的时间。
不计各处电阻。
11.如图所示,一直导体棒质量为m 、长为l 、电阻为r ,其两端放在位于水平面内间距也为l 的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面。
开始时,给导体棒一个平行于导轨的初速度v 0。
在棒的运动速度由v 0减小至v 1的过程中,通过控制负载电阻的阻值使棒中的电流强度I 保持恒定。
导体棒一直在磁场中运动。
若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率。
12.磁悬浮列车运行的原理是利用超导体的抗磁作用使列车向上浮起,同时通过周期性变换磁极方向而获得推进动力,其推进原理可简化为如图所示的模型,在水平面上相距L 的两根平行导轨间,有竖直方向且等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽度都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动,这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动,设直导轨间距L = 0.4m ,B = 1T ,磁场运动速度为v = 5 m/s ,金属框的电阻R = 2Ω。
试问:(1)金属框为何会运动,若金属框不受阻力时金属框将如何运动?(2)当金属框始终受到f = 1N 阻力时,金属框最大速度是多少? (3)当金属框始终受到1N 阻力时,要使金属框维持最大速度,每秒钟需消耗多少能量?这些能量是谁提供的?13.图中虚线为相邻两个匀强磁场区域1和2的边界,两个区域的磁场方向相反且都垂直于纸面,磁感应强度大小都为B ,两个区域的高度都为l 。
一质量为m 、电阻为R 、边长也B hC B 1B 2vabcdlLlL为l 的单匝矩形导线框abcd ,从磁场区上方某处竖直自由下落,ab 边保持水平且线框不发生转动。
当ab 边刚进入区域1时,线框恰开始做匀速运动;当线框的ab 边下落到区域2的中间位置时,线框恰又开始做匀速运动。
求:(1)当ab 边刚进入区域1时做匀速运动的速度v 1;(2)当ab 边刚进入磁场区域2时,线框的加速度的大小与方向; (3)线框从开始运动到ab 边刚要离开磁场区域2时的下落过程中产生的热量Q 。
14.半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径O O '的瞬时(如图所示)MN 中的电动势和流过灯L 1的电流。
(2)撤去中间的金属棒MN 将右面的半圆环O OL '2以O O '为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为ΔB/Δt =(4 /π)T/s ,求L 1的功率。