995~985,915~905(单 取代烯) 980~960(反式二取代烯) 690(顺式二取代烯) 910~890(同碳二取代烯) 840~790(三取代烯)
C H 面外 弯曲振动
660~630(末端炔烃)
烷烃:C—H伸缩振动 2940 cm-1和 2860 cm-1,C—H 面内
弯曲1460(不对称)和1380 cm-1 (对称), -(CH2)n- (n>=4)一般在 720 cm-1处有特征峰(弱)
第八章 有机化合物的波谱分析
1.分子吸收光谱和分子结构 2.红外吸收光谱 3.核磁共振谱
第八章
1.紫外光谱(UV) 2.红外光谱(IR)
有机化合物的波谱分析
3.核磁共振谱(NMR ) 4.质谱(MS)
有机化学中应用最广泛的四大波谱:
一、分子的吸收光谱和分子结构 E= hν= hc/λ ν= c/λ 1/λ=σ E 代表光子的能量,单位为J; h planck 常数 6.63x10-34J•S
TMS:四甲基硅烷
低场
屏蔽效应大,共振信号在高场,
CH3
吸收峰为单峰,化学惰性。
TMS 化学位移定为0 ppm 高场
10
9
8பைடு நூலகம்
7
6
5
4
3
2
1
零 点
-1
-2
-3
TMS
三、核磁共振谱
3. 影响化学位移的因素
(1). 电负性的影响 电负性较大的吸电子基团,使与之相连的碳上的质子周围 电子云密度降低,屏蔽作用弱,共振信号→低场(位移增大)
1
0
一张NMR谱图,通常可以给出四种重要的结构信息:化学位 移、自旋裂分、偶合常数和峰面积(积分线) 峰面积大小与质子数成正比,可由阶梯式积分曲线高度求出。