神经干动作电位传导速度和不应期测定
- 格式:doc
- 大小:608.00 KB
- 文档页数:4
神经干动作电位、兴奋传导速度和不应期测定试验汇报课程:机能试验基础医学院系临床班姓名学号组员:【试验目】1.了解电生理仪器使用。
2.观察蟾蜍坐骨神经动作电位基础波形;学习神经干动作电位统计方法以及潜伏期、幅值、时程测量;3.学习神经干动作电位传导速度测定方法。
加深了解神经兴奋传导概念及意义。
4.了解神经干兴奋后兴奋性改变。
学习测定不应期方法。
【试验动物】牛蛙【试验结果】图一神经干动作电位观察到一个先升后降双相动作电位波形(有刺激伪迹)。
时程为4ms, 潜伏期为0.6ms, 最大幅度为5.5V, (当刺激强度为1.0V时)。
图二神经干兴奋传导速度测定每个电极间距25mm, 时间约为 1.37ms, 速度测定为18.2m/s图三神经不应期测定(按时间次序, 从上到下、从左到右排列)【试验讨论】神经动作电位观察神经细胞产生兴奋客观标志是神经细胞动作电位。
当神经纤维未受刺激时, 膜外与电极所接触两点之间没有电位差, 所以两电极之间也无电位差存在, 扫描线为一水平基线。
处于兴奋部位膜外电位低于静息部位, 当动作电位经过后, 兴奋部位膜外电位又恢复到静息水平, 用电生理学方法能够引导并统计到此电位改变过程。
将一对引导电极置于神经干表面, 当神经冲动经过时, 两电极之间将产生一短暂电位改变过程, 即为神经干动作电位。
神经干动作电位是复合动作电位, 可沿细胞膜做不衰减传导, 它幅度在一定范围内与刺激强度成正比。
因为引导方法不一样, 统计到神经干动作电位有双相和单相之分, 假如在引导两个电极之间将神经干麻醉或损坏, 阻断其兴奋传导能力, 此时能够统计到单相动作电位。
在神经干左端给与电刺激后, 则产生一个向右传导冲动(负电位), 当冲动传导1电极(负电极)下方时, 此处电位较2处低, 产生了电位差, 扫描线向上偏转, 统计出一个向上波形(在电生理试验中, 要求负波向上)。
随即, 冲动继续向右侧传导, 离开1电极传向2电极处。
模拟实验3 神经干动作电位及其传导速度的测定【目的】应用微机生物信号采集处理系统和电生理实验方法,测定蛙类坐骨神经干的单相、双相动作电位和其中A类纤维冲动的传导速度,并观察机械损伤、药物对神经兴奋和传导的的影响。
【原理】用电刺激神经,在负刺激电极下的神经纤维膜内外产生去极化,当去极化达到阈电位时,膜产生一次在神经纤维上可传导的快速电位反转,此即为动作电位(action potential, AP)。
神经纤维膜外,兴奋部位膜外电位相对静息部位呈负电性质,当神经冲动通过以后,膜外电位又恢复到静息时水平。
如果两个引导电极置于兴奋性正常的神经干表面,兴奋波先后通过两个电极处,便引导出两个方向相反的电位波形,称为双相动作电位。
如果两个引导电极之间的神经纤维完全损伤,兴奋波只通过第一个引导电极,不能传至第二个引导电极,则只能引导出一个方向的电位偏转波形,称为单相动作电位。
神经干由许多神经纤维组成,故神经干动作电位与单根神经纤维的动作电位不同,神经干动作电位是由许多不同直径和类型的神经纤维动作电位叠加而成的综合性电位变化,称复合动作电位,神经干动作电位幅度在一定范围内可随刺激强度的变化而变化。
动作电位在神经干上传导有一定的速度。
不同类型的神经纤维传导速度不同,神经纤维越粗则传导速度越快。
蛙类坐骨神经干以Aa类纤维为主,传导速度大约30~40m/s。
测定神经冲动在神经干上传导的距离(s)与通过这段距离所需时间(t),可根据n=s/t求出神经冲动的传导速度。
【预习要求】1.仪器设备知识参见第二章第三节RM6240微机生物信号采集处理系统(或第四节PcLab和MedLab微机生物信号采集处理系统)。
2.实验理论实验动物知识参见第三章第一节生理科学实验常用实验动物的种类,第四章第一节动物实验的基本操作;统计学知识参见第五章第四节常用统计指标和方法;生理学教材中兴奋性、兴奋的概念,静息电位和动作电位的形成机制,动作电位传导原理及神经纤维的分类。
浙江大学实验报告课程名称:生理学实验实验项目:实验三蛙类坐骨神经动作电位传导速度和不应期的测定实验日期:2016年10月日(周)姓名学号班级:第组,同组者:实验地点:紫金港生物实验中心311[目的]1、测定蛙类坐骨神经的绝对不应期和相对不应期,并了解其测定原理。
2、测定蛙类坐骨神经兴奋的传导速度并了解其原理。
[原理]1、神经在一次兴奋的过程中,其兴奋性也发生一个周期性的变化,而后才恢复正常。
兴奋性的周期变化,依次包括绝对不应期、相对不应期、超常期和低常期4个时期。
为了测定坐骨神经在—次兴奋后兴奋性的周期变化,首先要给神经施加一个条件刺激(S1)引起神经兴奋,然后再用一个测试性刺激(S2),在前一兴奋过程的不同时相给以刺激,用以检查神经的兴奋阈值以及所引起的动作电位的幅值,以判定神经兴奋性的变化。
当刺激间隔时间长于25 ms时,S1和S2分别所引起动作电位的幅值大小基本相同。
随着S2距离S1逐渐接近,发现S2所引起的第二个动作电位幅值开始减小时即为落入相对不应期。
再逐渐使S2向S1靠近,第二个动作电位的幅值则继续减小。
最后可因S2落在第一个动作电位的绝对不应期内而完全消失。
2、神经干受到有效刺激兴奋以后,产生的动作电位以脉冲的形式按一定的速度向远处扩布传导。
不同类型的神经纤维其传导兴奋的速度是各不相同的。
总体说来,直径粗的纤维传导速度快,直径相同的纤维有髓纤维比无髓纤维传导快。
蛙类的坐骨神经干属于混合性神经,其中包含有粗细不等的各种纤维,其直径一般为3--29um,其中直径最粗的有髓纤维为A类纤维,传导速度在正常室温下大约为35--40 m/s。
测定神经纤维上兴奋的传导速度(v)时,在远离刺激点的不同距离处分别引导其动作电位,两引导点之间的距离为s,在两引导点分别引导出的动作电位的时相差为t。
再按照下面的公式来计算其传导速度:v=s/t。
[实验材料]蛙常用手术器械蛙板任氏液培养皿烧杯神经屏蔽盒Medlab生物信号采集系统[实验流程]剥制神经干标本→调试仪器设置实验参数→神经干动作电位传导速度的测定→神经干兴奋不应期的测定[实验步骤]一、蛙坐骨神经干标本制备1.毁蛙脑脊髓,去躯干上部及内脏和皮肤。
牛蛙坐骨神经干复合动作电位及其传导速度、不应期测定【实验原理】:(1)动作电位:用电刺激神经,在刺激电极的负极下神经纤维膜内产生去极化,当去极化达到阈电位,膜上产生一次可传导的快速电位反转,即动作电位。
(2)神经干由许多神经纤维组成。
其动作电位是以膜外记录方式记录到的复合动作电位。
经干引导所获得复合动作电位(compound action potential (CAP)与单神经纤维引导的动作电位的性质有所不同。
(3)双向动作电位:如果两个引导电极置于兴奋性正常的神经干表面,兴奋波先后通过两个电极处,便引导出两个方向相反的电位波形,称双相动作电位。
(4)单向动作电位:如果两个引导电极之间的神经纤维完全损伤,兴奋波只通过第一个引导电极,不能传至第二个引导电极,则只能引导出一个方向的电位偏向波形,称单向动作电位。
神经干受刺激后,以膜外记录方式可记录到一个双相动作电位,在两个引导电极间损伤神经其动作电位变为单相。
在两引导电极间夹伤神经,神经冲动传导被阻断,双相动作电位负相波消失,形成一相正波,于此可见,双相动作电位是神经冲动先后通过两个引导电极形成的,冲动通过第1个电极,形成动作电位的正相波,冲动通过第2个电极,形成动作电位的负相波。
(5)刺激伪迹(Stimulus artifact):刺激伪迹是刺激电流通过导电介质扩散至两引导电极而形成的电位差信号。
(6)动作电位传导速度的测定:(7)不应期:神经组织在接受一次刺激产生兴奋后,其兴奋性将会发生规律性的变化,依次经过绝对不应期、相对不应期、超常期和低常期,然后回到正常水平。
采用两次脉冲,通过调节两次脉冲间隔,可测得坐骨神经的绝对不应期和相对不应期。
【注意事项】:①神经尽可能分离得长一些。
②标本制备时要注意保持标本的湿润。
③标本制备时尽量避免使用尖锐的器械,以免损伤神经。
④使用电刺激时,刺激强度不宜太大,否则可能导致神经的损伤。
⑤注意接地,防止干扰。
1、末梢引导:条件为刺激电压1.2V ,刺激波宽0.1ms 。
生理实验报告!蟾蜍坐骨神经干动作电位的引导、传导速度和兴奋不应期的测定【实验目的】1. 观察蟾蜍坐骨神经动作电位的基本波形,加深理解兴奋传导的概念,理解可兴奋性在兴奋过程中的变化过程;2. 进一步掌握坐骨神经—腓神经标本的制备方法与引导动作电位的方法;3. 进一步熟悉实验室里仪器设备的操作。
【实验原理】1. 神经干动作电位是神经兴奋的客观标志。
当神经受到有效刺激时,处于兴奋部位的膜外电位负于静息部位,当动作电位通过后,兴奋处的膜外电位又恢复到静息时的水平。
神经干兴奋过程所发生的这种膜电位变化称神经复合动作单位。
如果将两个引导电极置于神经干表面时(双极引导),动作电位将先后通过两个引导电极,可记录到两个相反的电位偏转波形,称为双向动作电位;2. 神经纤维兴奋的标志是产生一个可传播的动作电位。
测定神经干上的神经冲动的传导速度,可以了解神经的兴奋状态。
在示波器上测量动作电位传导一定距离所耗费的时间,便可计算出兴奋的传导速度;3. 神经与肌肉等可兴奋组织的兴奋性在一次兴奋过程中可发生一系列变化,及绝对不应期、相对不应期、超常期和低常期,组织的兴奋性才可恢复。
为了测定神经干在兴奋过程中的兴奋性变化,可用双刺激法检查刺激引起的兴奋阙值和电位变化,即可观察到神经组织兴奋性的变化过程。
【实验对象】蟾蜍【实验器材】蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液(林格液)等。
【实验步骤】制备蟾蜍坐骨神经-腓神经标本,并放入神经屏蔽盒内;(一)双相动作电位1.打开BL-410?实验项目?神经肌肉实验?神经干动作电位引导?记录出双相动作电位;2.由小到大改变刺激强度,记录阈强度和最大刺激强度;3.观察双相动作电位波形,测量最适刺激强度时的潜伏期、时程和波幅; (二)引导出最大刺激强度时的动作电位波形1.BL-410仪器操作:实验项目?神经肌肉实验?神经干动作电位传导速度测定?输入两电极之间的距离分别用潜伏期法和潜峰法测量其传导速度;2.潜伏期法:测量第一个通道动作电位潜伏期的时间(t),输入刺激电极到第一个引导电极间的距离(S),屏幕右上角显示传导速度和根据速度的公式计算传导速度:v=S/t;3.潜峰法:测量两个通道电位的动作电位的波峰间的时间差,为(t2-t1),测量并输入两对引导电极间的距离为(S2-S1),屏幕右上角显示传导速度和用公式计算传导速度:v=(S2-S1)/(t2-t1)。
神经干动作电位、传导速度及不应期的测定【目的和原理】神经纤维的兴奋表现为动作电位的产生和传导,神经纤维上传导的动作电位通常称为神经冲动。
在神经细胞外表面,已兴奋部位带“负电”,未兴奋部位带“正电”,用引导电极引导出此电位差,输入到示波器,则可记录到动作电位的波形。
本实验用细胞外记录法,可引导出坐骨神经的复合动作电位。
神经纤维兴奋的标志是产生一个可以传导的动作电位,它依局部电流或跳跃传导的方式沿神经纤维传导。
其传导速度取决于神经纤维的直径、内阻、有无髓鞘等因素,可用电生理学方法来记录和测量。
神经纤维在一次兴奋过程中,其兴奋性可发生周期性变化,包括绝对不应期、相对不应期、超常期和低常期。
本实验主要目的是学习电生理仪器的使用方法,掌握离体神经干动作电位的细胞外记录法及其基本波形的判断和测量。
掌握神经干动作电位传导速度及其不应期的测定方法,通过调整条件刺激和测试刺激之间的时间间隔,来测定坐骨神经干的绝对不应期。
【实验对象】蟾蜍或蛙。
【实验器材和药品】蛙类手术器械一套、电子刺激器、示波器(或计算机实时分析系统)、神经屏蔽盒、任氏液。
【实验步骤】1.制备坐骨神经——胫、腓神经标本操作方法详见3.8。
2.连接装置(见图8-1-1)。
3.准备仪器:(1)刺激器:调节刺激器各项参数:刺激方式连续刺激,频率16Hz,刺激强度0.5v,波宽0.1ms。
调节延迟使动作电位的图像位于示波器荧光屏的中央。
(2)示波器:灵敏度:1~2mv/cm,扫描速度:1~2ms/cm,引导电极输入到示波器的“AC”端,双边输入,刺激器的“同步输出”接示波器“外触发输入”,触发选择设置为“同步触发”。
4.观察项目:图8-1-1 神经干动作电位引导装置图(1)测量单、双相动作电位的潜伏期、时程和振幅,填入下表:(2)测算动作电位的传导速度:V=S/△t (米/秒)式中:S为R1到R3的神经干长度,以米为单位。
t为上、下线动作电位起点的时间差,以秒为单位。
实验五 神经干动作电位传导速度和蛙坐骨神经不应期的测定
一、目的
学习掌握神经干动作电位传导速度和不应期的测定的原理和方法。
二、原理
神经动作电位以局部电流的形式进行传导,在蛙的坐骨神经两端分别连接接口,计算2个接口电位之间出现的时间差,将接口之间的距离除以时间即可得到动作电位的传导速度。
动作电位传导时有不应期,绝对不应期在动作电位上升支和大部分的下降支,相对不应期在部分下降支。
逐步缩小刺激的时间间隔,从前后2个电位上可以分析其相对不应期和绝对不应期。
三、步骤(略)
四、结果
1. 传导速度
动作电位在蛙坐骨神经干上的传导速度=1.5cm/(0.0112s-0.0104s )=18.75 m/s 。
2. 不应期
当刺激间隔为7ms 时,第二个动作电位的峰变低,当刺激间隔为3ms 时,第二个动作电位消失。
蛙坐骨神经干的绝对不应期是3ms, 相对不应期是3~7ms.
图1 2个接口检测到的动作电位 第一处到达顶峰为0.0104s ,第二处为0.0112s 。
2个接口相距1.5 cm
图2 相邻刺激下的动作电位
刺激间隔为3 ms 。
只出现一个电位。
神经干动作电位传导速度和不应期测定
课程:机能实验学系级班姓名:学号:
组员:
【实验目的】
(1)学习牛蛙坐骨神经干标本的制备。
(2)观察神经干动作电位的波形。
(3)学习神经兴奋传导速度的测定方法。
(4)观察神经干在一次兴奋后兴奋性的变化。
(5)熟悉BL-420生物机能实验系统对生物信号的采集,处理和分析方法。
【实验动物】
牛蛙
【实验结果】
1.神经干双相动作电位曲线
2.阈刺激、最大刺激强度及相关参数
3.动作电位不应期及相关参数
(1)相对不应期
(2)绝对不应期
4.单向动作电位及相关参数
5.传导速度
T1=6.00ms,T2=6.70ms ==>ΔT=0.70ms 量得S R1R2=2.00cm
故动作电位的传导速度v= S R1R2/ΔT=28.57m/s
【实验讨论】
【实验结论】
完成报告: 年月日批改报告: 年月日
教师签名:。