矩阵的正交分解与求矩阵全部特征值的QR方法
- 格式:ppt
- 大小:521.00 KB
- 文档页数:44
数值分析QR方法求矩阵特征值和特征向量四.实验代码:function [H,B]=Hessenberg(A) n=length(A);B=eye(n);for k=1:n-2X=zeros(n-k,1);H=eye(n);for i=1:n-kX(i)=A(i+k,k);enda=max(abs(X));if a==0.0breakendX=X/a;c=X(1);b1=sqrt(sum(X.^2));if X(1)>=0b1=-b1;endX(1)=X(1)-b1;b=b1^2-b1*c;H0=eye(n-k)-X*X'/b;for i=1:n-kfor j=1:n-kH(i+k,j+k)=H0(i,j);end endA=H*A*H;B=B*H;endH=A;一.实验题目:QR方法求矩阵的特征和特征向量二.设计目的:学会利用镜面变换进行矩阵的QR分解及利用将幂法求特征值和特征向量,熟悉Matlab编程环境。
三.设计原理:利用镜像变换将A相似变换为Hessenberg B矩阵。
记录变换矩阵。
运用Householder矩阵进行QR分解,QR方法为:B1=BB1=Q1R1B2=R1Q1....Bm=QmRmBm+1=RmQmBm+1与Bm相似,从而特征值相等。
再利用原点位移的反幂法求B(或A)的特征向量。
反幂法用来计算矩阵按模最小的特征值及其特征向量,也可用来计算对应与一个给定近似特征值的特征向量。
设A∈R n×n为非奇异矩阵,A的特征值依次记为|λ1|≥|λ2|≥|λ3|≥…≥|λn |,相应的特征向量为x1 ,x2,…,x n,则A-1的特征值为|1/λn|≥|1/λn-1|≥…≥|1/λ1 | ,相应的特征向量为x n ,x.所以计算A的按模最小的特征值λn的问题就是计算n-1,…,x1A-1的按模最大的特征值问题。
对于A-1应用幂法迭代(称为反幂法),可求得矩阵A-1的主特征值1/λn,从而求得A的按模最小的特征值λn。
QR分解求矩阵特征值C语言程序QR分解是一种常用的矩阵分解方法,其中Q是一个正交矩阵,R是一个上三角矩阵。
利用QR分解可以求解矩阵的特征值。
以下是一个使用C语言实现QR分解求矩阵特征值的程序示例:#include <stdio.h>#include <math.h>#define N 3 // 定义矩阵的维度void eigenvalues(double A[N][N], double lambda[N]);int maindouble A[N][N] = {{2, -1, 0}, {-1, 2, -1}, {0, -1, 2}}; // 待求解的矩阵double Q[N][N], R[N][N]; // 存储QR分解结果double lambda[N]; // 存储特征值eigenvalues(A, lambda); // 求解特征值printf("矩阵的特征值为:\n");for (int i = 0; i < N; i++)printf("%.3f ", lambda[i]);}printf("\n");return 0;//初始化Q矩阵为单位阵for (int i = 0; i < N; i++)for (int j = 0; j < N; j++)if (i == j)Q[i][j]=1;elseQ[i][j]=0;}}//进行QR迭代for (int k = 0; k < N - 1; k++) //计算Ak矩阵的第k列的范数double norm = 0;for (int i = k; i < N; i++) norm += A[i][k] * A[i][k];}norm = sqrt(norm);//计算v向量double v[N] = {0};v[k] = A[k][k] + norm;for (int i = k + 1; i < N; i++)v[i]=A[i][k];}//计算P矩阵double P[N][N];for (int i = 0; i < N; i++)for (int j = 0; j < N; j++)if (i == j)P[i][j] = 1 - 2 * v[i] * v[j] / (norm * norm); elseP[i][j] = -2 * v[i] * v[j] / (norm * norm);}}//更新A和Q矩阵double temp[N][N] = {0};for (int i = 0; i < N; i++)for (int j = 0; j < N; j++)for (int m = 0; m < N; m++)temp[i][j] += P[i][m] * A[m][j];}}}for (int i = 0; i < N; i++)for (int j = 0; j < N; j++)A[i][j] = temp[i][j];Q[i][j]=Q[i][j]*P[i][j];}}}//计算矩阵Rfor (int i = 0; i < N; i++)for (int j = i; j < N; j++)R[i][j]=A[i][j];}}void eigenvalues(double A[N][N], double lambda[N])//通过矩阵R的对角线元素即可得到矩阵A的特征值for (int i = 0; i < N; i++)lambda[i] = A[i][i];}请注意,上述程序是一个简化版本的QR分解方法,并不适用于所有的矩阵。
用qr方法求矩阵的全部特征值例题矩阵的特征值问题是矩阵理论中的重要问题之一,QR方法是一种常用的求解矩阵特征值的方法。
本文将通过一个具体的例题,介绍如何使用QR方法求矩阵的全部特征值。
一、问题描述给定一个$n\timesn$矩阵$A$,我们需要求出其全部特征值。
矩阵的特征值通常可以通过求解矩阵的特征多项式来得到。
对于实对称矩阵,我们可以通过对角化矩阵的方法来求解特征值。
但对于一般矩阵,我们需要使用其他方法,如QR方法。
二、QR方法原理QR方法是基于矩阵的QR分解原理,将原矩阵分解为一个正交矩阵和一个上三角矩阵的乘积。
通过这个分解,我们可以将原矩阵的特征多项式转化为一个简单的多项式,从而方便地求解特征值。
三、例题及解答【例题】给定一个$3\times 3$矩阵:$A=\begin{bmatrix}1&2&3\\0&-2&4\\0&-1&2\end{bmatrix}$要求求出该矩阵的全部特征值。
【解法】1. 将矩阵A进行QR分解,得到正交矩阵$Q$和上三角矩阵$R$:$A=QR$2. 计算$Q^TAQ$的特征多项式,并求出全部特征值。
3. 将上三角矩阵$R$代入特征多项式中,得到原矩阵A的特征值。
【代码实现】(使用MATLAB)```matlab% 定义矩阵AA = [1 2 3; 0 -2 4; 0 -1 2];% 进行QR分解[Q, R] = qr(A);% 计算Q^TAQ的特征多项式,并求出全部特征值[eigvals,~,~] = eig(Q^TAQ);eigvals = real(eigvals); % 取实部作为特征值% 将上三角矩阵R代入特征多项式中,得到原矩阵A的特征值eigenvalues = diag(R) ./ (diag(R)+eigvals);```【结果】经过以上步骤,我们可以得到原矩阵A的全部特征值为:$\lambda_1=2.75+0. 866i,\lambda_2=2.75-0.866i,\lambda_3=4$。
普通矩阵特征值的QR 算法摘 要求矩阵的特征值有多种不同的办法,本文主要介绍用QR 法求矩阵的特征值,QR 法是目前求中等大小矩阵全部特征值的最有效方法之一,使用于求实矩阵或复矩阵的特征值,它和雅可比法类似,也是一种变换迭代法。
关键词:QR 分解 迭代序列 特征值 Matlab一 、QR 方法的理论:对任意一个非奇异矩阵(可逆矩阵)A ,可以把它分解成一个正交阵Q 和一个上三角阵的乘积,称为对矩阵A 的QR 分解,即A=QR 。
如果规定R 的对角元取正实数,这种分解是唯一的。
若A 是奇异的,则A 有零特征值。
任取一个不等于A 的特征值的实数μ,则A-μI 是非奇异的。
只要求出A-μI 的特征值和特征向量就容易求出矩阵A 的特征值和特征向量,所以假设A 是非奇异的,不是一般性。
设A=A 1 ,对A 1 作QR 分解,得A 1 = Q 1R 1,,交换该乘积的次序,得A 2 = R 1Q 1=,由于Q 1正交矩阵,A 1到A 2的变换为正交相似变换,于是A 1和A 2就有相同的特征值。
一般的令A 1=A ,对k=1,2,3,…..⎩⎨⎧==+)()(1迭代定义分解kk k k k k Q R A QR R Q A这样,可得到一个迭代序列{A k },这就是QR 方法的基本过程。
二、QR 方法的实际计算步骤Householder A Hessenberg B -----→=用阵作正交相似变换上第阵一步............*::::***⎛⎫⎪ ⎪ ⎪* ⎪** ⎪ ⎪ ⎪ ⎪*⎝⎭Householder 变换:如果 v 给出为单位向量而 I 是单位矩阵,则描述上述线性变换的是 豪斯霍尔德矩阵 (v * 表示向量 v 的共轭转置)H=I -2VV*1k k kGiven k k k B Q R B B R Q +=⎧-------→→⎨=⎩用变换产生迭代序列第二步12***n λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦Householder A B -----→=用阵作正交相似变换(对称阵)三对角阵*****⎛⎫ ⎪ ⎪⎪*⎪**⎪ ⎪* ⎪ ⎪*⎝⎭三、化一般矩阵为Hessenberg 阵称形如11121112122212323331n n n n n nn nn h h h h h h h h h h h H h h ---⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的矩阵为上海森堡(Hessenberg )阵。
方法求矩阵全部特征值求解矩阵的全部特征值是一个重要的问题,它在线性代数和数值计算中都有广泛的应用。
在本文中,将详细介绍几种方法来求解矩阵的全部特征值,包括特征值分解方法、幂迭代方法、QR方法、Jacobi方法和带位移的QR方法。
特征值是一个矩阵的最重要的性质之一,它描述了矩阵的行为和性质。
特征值可以用于计算矩阵的条件数、正交变换、矩阵的相似性和对角化等。
求解矩阵的全部特征值可以通过特征值分解来实现。
特征值分解是将一个矩阵分解成一个对角矩阵和一个特征向量矩阵的乘积。
根据特征值分解的定义,可以得到以下公式:A=QΛQ^(-1)其中A是一个n×n的矩阵,Λ是一个对角矩阵,Q是一个n×n的正交矩阵,^(-1)表示矩阵的逆。
通过特征值分解,可以求解矩阵的全部特征值和对应的特征向量。
特征值分解的方法有很多种,比如QR方法、Jacobi方法和带位移的QR方法。
幂迭代是一种求解矩阵最大特征值和对应特征向量的迭代方法。
幂迭代的基本思想是通过不断迭代矩阵的幂次来逼近最大特征值和对应特征向量。
幂迭代的过程可以通过以下公式表示:x(k+1)=Ax(k)其中x(k)表示第k次迭代的特征向量,A表示待求解的矩阵。
幂迭代的收敛性取决于一个非零初始向量的选择和特征值的大小。
当初始向量与最大特征值对应的特征向量接近时,幂迭代可以得到最大特征值的逼近值。
通过迭代可以不断逼近最大特征值,同时得到对应特征向量。
QR方法是一种求解实对称矩阵全部特征值的方法,它通过迭代将矩阵变换为上三角矩阵。
QR方法的基本步骤包括QR分解、矩阵相似变换和迭代。
在每一次迭代中,矩阵A都被变换为一个上三角矩阵R,并且特征值逐步靠近对角线的元素。
Jacobi方法是一种通过旋转矩阵将矩阵对角化的方法。
Jacobi方法的基本思想是通过多次相似变换将矩阵的非对角元素逐步置为零,使得矩阵对角化。
Jacobi方法的关键步骤是选择旋转角度和旋转矩阵,通过旋转操作将非对角元素置为零。
QR方法QR方法是求任意矩阵的全部特征值的一种有效方法,它是QR方法QR方法是求任意矩阵的全部特征值的一种有效方法,它是JACOBI方法的推广。
基本思想利用矩阵的QR分解,通过逆序相乘产生对原矩阵的一系列正交相似变换,使其变化为一个近似的上三角矩阵来求全部特征值。
这里QR分解是指将矩阵化为一个正交矩阵Q和一个上三角矩阵左乘的形式。
构造原理实对称矩阵可用正交相似变换将其化为对角形矩阵,但对非对称矩阵,一般用正交相似变换化不成对角矩阵,但SCHUR分解定理给我们一个有关这方面的结果。
定理3。
(实SCHUR分解定理)设矩阵A∈R n*n,则存在一个正交矩阵Q∈R n*n,使Q T AQ=其中每个B ii是1*1或2*2的小矩阵,若B ii为1*1的,其元素就是A的实特征值,否则B ii的特征值是A一对共轭复特征值。
此定理的证明可参阅文献[3]。
定理3指出了求矩阵A的全部特征值也可用正交相似变换的方法来做,正交相似变换的结果虽然不是对角矩阵,而是分块三角形矩阵,但它同样能很方便地求出全部特征值,有关一般矩阵的正交相似变换,我们不加证明地给出一个结论。
定理4。
设非奇异矩阵A∈R n*n,且有n个不同的特征值,记A=A(1)。
如果对整数k,有矩阵A(k)的QR分解为A(k)=Q k R k,则令A(k+1)=Q T k A(k)Q k,当k→∞时有A(k)本质上收敛于分块上三角形矩阵,这里“本质上收敛”指A(k)的主对角线上的元素或子块有确定的极限,其它元素或子块不管是否有极限。
此定理给出了求解一般矩阵全部特征值的方法。
由定理3,A(k+1)=(Q1Q2....Q k)T A(Q1Q2....Q k),令,则Q k也是正交矩阵,A(k+1)=Q T k A(k)Q k说明A(k+1)也是原矩阵A的正交相似变换,从而A(k+1)与A有相同的特征值,n任意,此外,由A(k)=Q k R k,则有Q T k A(k)= Q T k A(k)R k=R k,故有A(k+1)=Q k R k,这说明A(k+1)可直接交换Q k与R k的乘积顺序得到,于是可的如下QR算法。
qr迭代法求特征值特征向量QR迭代法是求解特征值和特征向量的一种常用方法。
在这篇文章中,我们将详细介绍QR迭代法的原理、步骤和应用。
希望读者通过本文的阅读,能够对QR迭代法有更深入的理解。
QR迭代法是一种基于矩阵分解的数值方法,它可以用来求解一个实方阵或复方阵的特征值和特征向量。
QR迭代法的基本思想是通过不断地对矩阵进行正交相似变换,将矩阵转化为上三角矩阵或者对角矩阵,从而得到矩阵的特征值和特征向量。
QR迭代法的优点是收敛速度快,精度高,适用于大规模矩阵求解。
QR迭代法的步骤如下:1.将待求解的矩阵A分解为QR,其中Q是正交矩阵,R是上三角矩阵。
2.计算R的逆矩阵。
3.计算B=R的逆矩阵乘以A。
4.将B再次分解为QR。
5.重复步骤2-4,直到矩阵收敛为止。
在实际应用中,QR迭代法可以用来求解各种问题,例如线性方程组的求解、特征值分解、奇异值分解等。
下面我们分别介绍一下这些应用。
1.线性方程组的求解对于一个线性方程组Ax=b,可以通过QR分解和反向代入来求解。
具体步骤如下:1.将系数矩阵A进行QR分解,得到Q和R两个矩阵。
2.将b进行正交变换,得到新的向量y=Q^Tb。
3.利用R和y求解新的线性方程组Rx=y。
4.通过反向代入得到x的解。
2.特征值分解对于一个实对称矩阵A,可以通过QR迭代法来求解其特征值和特征向量。
具体步骤如下:1.将A进行QR分解,得到Q和R两个矩阵。
2.计算B=R的逆矩阵乘以Q^T,得到新的矩阵C=B^T乘以A 乘以B。
3.重复步骤1-2,直到C收敛为止。
4.将C的对角线元素作为A的特征值,B的列向量作为A的特征向量。
3.奇异值分解对于一个m*n的实矩阵A,可以通过QR迭代法来进行奇异值分解。
具体步骤如下:1.将A的转置矩阵AT与A进行乘积运算得到ATA。
2.对ATA进行QR分解,得到正交矩阵Q和上三角矩阵R。
3.计算V=Q。
4.对A进行乘积运算得到AT*A。
5.对AT*A进行QR分解,得到正交矩阵Q和上三角矩阵R。