6-2实对称矩阵
- 格式:ppt
- 大小:412.00 KB
- 文档页数:20
摘要:本文将运用高等代数中一系列矩阵理论的相关知识,给出了实对称矩阵的若干个判定定理及其证明,并且得到了实对称正定矩阵的若干重要结论.关键词:实对称正定矩阵;等价定理;充分条件Decision of Real Positive Definite Matrixand Its Important ConclusionAbstract:This paper provide a series of matrix theory knowledge of higher algebra ,give some of the equivalence theorem of real symmetric matrix and its proof and obtain some of the important conclusions of real symmetry positive definite matrix .Keywords:real symmetry positive definite matrix, equivalence theorem , sufficient condition禄 鹏(天水师范学院数学与统计学院,甘肃天水,741000)摘 要: 本文将运用高等代数中一系列矩阵理论的相关知识,给出了实对称矩阵的若干个判定定理及其证明,并且得到了实对称正定矩阵的若干重要结论.关键词: 实对称正定矩阵; 等价定理; 充分条件1 引言矩阵理论是数学的一个重要分支,它不仅是一门基础学科,也是最具有使用价值、应用广泛的数学理论[]2,1,现已成为处理有限维空间形式和数量关系的强有力的工具. 正定矩阵作为一类常用矩阵,其在数学学科和其他学科技术领域的应用也非常广泛[]4,3,因此它的判断问题一直倍受关注.虽然个别判定条件已被人们所熟知,但缺少系统的总结,本文将尽可能给出多个实对称正定矩阵的判定定理和重要结论,从而使人们能够更好地使用正定矩阵这个工具.2 实正定矩阵的等价定理定义1[]5 实二次型()n x x x f ,,,21 称为正定的,如果对于任意一组不全为零的实数n c c c ,,,21 都有()n c c c f ,,,21 0>.定义2[]5 实对称矩阵A 称为正定的,如果二次型AX X T 正定.引理1[]5 n 元实二次型()n x x x f ,,,21 是正定的充分必要条件是它的正惯性指数等于n .引理2[]5 任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.引理3[]6 设A 是n 阶实对称矩阵,则存在正交矩阵T 使得()n T diag AT T AT T λλλ,,,211 ==-, ()1 其中n λλλ,,,21 为A 的特征值. 引理4[]7 任何可逆实方阵都可以分解为正交矩阵Q 和上三角矩阵R 的乘积,其中R 的主对角元均为正.定理1 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是对于任意的n 维非零列向量X ,即10⨯∈≠n R X ,使0>AX X T .证明 由定义1和定义2可证.定理2 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的一切顺序主子式大于0.证明[]5 必要性, 因为A 是实对称正定矩阵,由定义2知,存在二次型 ()n x x x f ,,,21 ∑∑===ni nj j i ij x x a 11是正定的.对于每个k ,,1n k ≤≤令()k k x x f ,,1 ∑∑===ki kj j i ij x x a 11.我们来证明k f 是一个k 元的正定二次型. 对于任意一组不全为零的实数,,,1k c c 有()k k c c f ,,1 ∑∑===ki kj j i ij c c a 11=()0,,0,,,1 k c c f .0>因此()k k x x f ,,1 是正定的. 由正定矩阵的行列式大于零可知,k f 的行列式,01111>kk k ka a a an k ,,1 =. 这就证明了矩阵A 的一切顺序主子式大于0.充分性, 对n 作数学归纳法. 当1=n 时, ().21111x a x f = 由条件011>a ,显然有()1x f 是正定的.假设充分性的论断对于1-n 元二次型成立,现在来证明n 元的情形.令 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=----1,11,11,1111n n n n a a a a A ,=α⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-n n n a a ,11 ,于是矩阵A 可以分块写成A ⎥⎦⎤⎢⎣⎡=nn T a A αα1. 既然A 的顺序主子式全大于零,当然1A 的顺序主子式也全大于零. 由归纳法假定, 1A 是正定矩阵,换句话说,有可逆的1-n 阶矩阵G 使 11-=n T E G A G ,这里1-n E 代表1-n 阶单位矩阵. 令⎥⎦⎤⎢⎣⎡=1001G C , 于是 =11AC C T ⎥⎦⎤⎢⎣⎡100T G ⎥⎦⎤⎢⎣⎡nn T a A αα1⎥⎦⎤⎢⎣⎡100G ⎥⎦⎤⎢⎣⎡=-nn T T n a G G E αα1. 再令 ⎥⎦⎤⎢⎣⎡-=-1012αT n G E C , 有 2112C AC C C T T ⎥⎦⎤⎢⎣⎡-=-101G E T n α⎥⎦⎤⎢⎣⎡-nn T T n a G G E αα1⎥⎦⎤⎢⎣⎡--101αT n G E ⎥⎦⎤⎢⎣⎡-=-ααT T nn n GG a E 001. 令 21C C C =, ,ααT T nn GG a a -=就有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a AC C T 11 . 两边取行列式, a A C =2. 由条件,0>A ,因此0>a . 显然⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a 11 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a 11⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a 11 . 这就是说,矩阵A 与单位矩阵合同,所以A 是正定矩阵.定理3 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的一切顺序主子矩阵都是正定矩阵.证明 由定理2可证.定理4 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的特征值全大于0.证明 必要性,A 为正定矩阵,若A 的全部特征值为n λλλ,,,21 不全大于0,不妨设01≤λ.由引理3存在正交矩阵T 使得()1式成立.令 (),,,,21n T ααα = 则i i i A αλα=()n i ,,2,1 =,即i α为A 的属于特征值i λ的特征向量. 特别的,取单位特征向量01≠β,即111βλβ=A .于是有 11111βλβββT T A =01≤=λ,这与A 为正定矩阵相矛盾,故A 的全部特征值为n λλλ,,,21 都大于0.充分性: 设A 的特征值为n λλλ,,,21 ,由引理3知存在正交矩阵T ,使得 ()n T diag AT T AT T λλλ,,,211 ==-. 从而有 ()T n T Tdiag A λλλ,,,21 =.任取0≠X ,则AX X T ()X T Tdiag X T n T λλλ,,,21 =()Y diag Y n T λλλ,,,21 =,其中 T X Y T T =()0,,,21≠n y y y ,于是AX X T 02222211>+++=n n y y y λλλ ,即A 为正定矩阵.定理5 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 合同与E .证明 必要性, 由引理1和引理2知正定二次型()n x x x f ,,,21 可经过一适当的非退化线性替换TY X =化为规范形 22221ny y y +++ .其对应的矩阵为单位矩阵E . 即()()TY A TY T EY Y T =⇒()EY Y Y AT T Y T T T =,故A 合同与E .充分性, 由于A 合同与E ,即存在可逆矩阵C 使得C C EC C A T T ==.任取0≠X ,令()Tn y y y Y CX ,,,21 ==,则0≠Y ,于是Y Y CX C X AX X T T T T ===22221ny y y +++ 0>. 故A 是正定矩阵. 定理6 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的一切主子式都大于0. 证明 必要性,A 正定,令 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n a a a a A 1111,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111, 其中 k A 为A 的主子矩阵, n i i k ≤<<≤ 11()n k ,,2,1 =.设矩阵A 与k A 的二次型分别为AY Y T 和X A X k T . 对任意(),0,,10≠=Ti i mb b X 存在(),0,,10≠=Tn c c Y 其中⎩⎨⎧==.;,,,0,1other i i k b c k k k 由A 正定,00AY Y T ,0>得00X A X k T是正定的, 故存在实可逆矩阵k T , 使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k T k T A T λλ 1, 其中(),,,10k i i =>λ 从而k k k k T k T A T A T λλ 12==0>. 又 02>k T ,故 0>k A ()n k ,,2,1 =.充分性, 实对称矩阵A 的一切主子式都大于0, 所以A 的一切顺序主子式都大于0. 由定理2可证A 为正定矩阵.定理7 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的一切主子矩阵都是正定矩阵.证明 必要性,A 正定,令 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n a a a a A 1111,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111, 其中 k A 为A 的主子矩阵, n i i k ≤<<≤ 11()n k ,,2,1 =.显然 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111()n k ,,2,1 =也是实对称矩阵.又因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111的k 个顺序主子式均为A 的k 个主子式,由定理6知k 个主子式都大于零, 从而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111()n k ,,2,1 =为正定矩阵.充分性, 实对称矩阵A 的一切主子矩阵都是正定矩阵, 则矩阵A 的一切主子式都大于零, 由定理6即证A 是正定矩阵.定理8 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 半正定且0≠A .证明 必要性, 因为A 正定,则显然A 一定半正定,且0≠A .充分性, 设A 的特征值为n λλλ,,,21 ,由A 半正定可知,i λ(),,,2,10n i =≥又021≠⋅⋅⋅=n A λλλ ,故(),,,2,10n i i =>λ 由定理4可知A 正定.定理9 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是对于任意的实列满秩矩阵m n C ⨯, 都有AC C T 为正定矩阵.证明 必要性, 首先()TT ACC AC C T =,对任意的1⨯∈m R X ,0≠X ,由秩C n =, 知,0≠CX 而A 为正定矩阵, 故()()(),0>=CX A CX X AC C X TT T即 AC C T 为正定矩阵.充分性, AC C T 正定, 则对任意的1⨯∈m R X ,0≠X , 由秩C n =, 知,0≠CX 并且 ()()CX A CX T=()0>X AC C X T T , 即A 为正定矩阵.定理10 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是对于任意的实可逆矩阵T , 都有AT T T 为正定矩阵.证明 必要性,首先()TT ATT AT T T =, 对任意的1⨯∈n R X ,0≠X ,由秩T n =, 知,0≠TX 而A 为正定矩阵, 故()()(),0>=TX A TX X AT T X TT T即 AT T T 为正定矩阵.充分性,AT T T 正定, 则对任意的1⨯∈n R X , 0≠X , 由秩T n =,知,0≠TX 并且 ()()TX A TX T=()0>X AT T X T T , 即A 为正定矩阵.定理11 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在正定矩阵B ,使2B A =. 证明 必要性, 设A 的全部特征值为n λλλ,,,21 全大于0,由引理3得 ()121,,,-=T Tdiag A n λλλ=()],,,[121-T Tdiag n λλλ ()],,,[121-T Tdiag n λλλ =2B ,其中 =B ()],,,[121-TTdiag nλλλ .因为B 为实对称矩阵,且特征值0>i λ(),,,2,1n i = 所以B 为正定矩阵.充分性, 由于B 为正定矩阵, 使2B A =,则B 为实对称可逆矩阵,且有 2B A =B B T =EB B T =,即A 合同与E .再由定理5得A 为正定矩阵.定理12 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在实可逆矩阵P ,使得P P A T =.证明 必要性,A 是实对称正定矩阵,则存在实可逆矩阵P 使得 EP P A T =P P T =, 其中E 为n 阶单位矩阵.充分性, 因为存在实可逆矩阵P , 使得P P A T =,并且P P A T =EP P T =, 其中E 为n 阶单位矩阵. 即实对称矩阵A 合同与E ,所以A 为正定矩阵.定理13 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在实列满秩矩阵n m Q ⨯, 使Q Q A T =.证明 必要性, 因为A 为正定矩阵, 则存在n 阶实可逆矩阵P , 使得 P P A T =()()n m n T nn P -⨯⨯=0()⎪⎪⎭⎫⎝⎛⨯-⨯n n m n n P 0. 令 =Q ()⎪⎪⎭⎫⎝⎛⨯-⨯n n m n n P 0, 则 Q Q A T=, 其中Q 为n m ⨯列满秩矩阵.充分性,n m Q ⨯为实列满秩矩阵,则Q Q T 为n 阶可逆矩阵,故对任意的1⨯∈n R X ,0≠X , 由秩Q m =, 知,0≠QX 并且=AX X T QX Q X T T ()()QX QX T=,0>即A 为正定矩阵.定理14 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在n 阶主对角元素都大于零的上三角矩阵R ,使得R R A T =.证明 必要性, 因为A 是实对称正定矩阵,则存在实可逆矩阵P ,使得P P A T =. 又由引理4知,存在矩阵Q 和P 使得 QR P =, 其中Q 为n 阶正交矩阵,R 为n 阶主对角元素都大于零的上三角矩阵, 从而P P A T =QR Q R T T =R R T =.充分性, 因为存在n 阶主对角元素都大于零的上三角矩阵R ,使得R R A T =. 则显然矩阵R 可逆, 由定理12即可证A 是正定矩阵.定理15 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在n 阶主对角元素都大于零的下三角矩阵U ,U U A T =.证明 类似于定理14.定理16 实对称矩阵=A ⎥⎦⎤⎢⎣⎡3221A A A A T为正定矩阵的充要条件是1A 和21123A A A A T --为正定矩阵.证明 当1A 可逆时,有⎥⎦⎤⎢⎣⎡--E A A ET 1120⎥⎦⎤⎢⎣⎡3221A A A A T ⎥⎦⎤⎢⎣⎡--E A A E0211⎥⎦⎤⎢⎣⎡-=-21123100A A A A A T ()2 必要性, 若A 正定,那么1A 也正定,11-A 存在. 令⎥⎦⎤⎢⎣⎡-=-E A A E T 0211,则T 可逆,所以AT T T 也正定.从而⎥⎦⎤⎢⎣⎡--2112310A A A A AT 为正定矩阵,因此它的主子矩阵1A 和21123A A A A T --为正定矩阵.充分性, 由1A 和21123A A A A T--为正定矩阵.且两个正定矩阵的和也是正定矩阵知⎥⎦⎤⎢⎣⎡--2112310A A A A AT 为正定矩阵. 再由()2式得⎥⎦⎤⎢⎣⎡=3221A A A A A T=()TT 1-⎥⎦⎤⎢⎣⎡--2112300A A A A A T 1-T ,即A 为正定矩阵.定理17 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的正惯性指数等于A 的维数n .证明 由引理1和定义2显然可证.定理18 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在正交向量组,,,,21n ααα 使.2211Tn n T T A αααααα+++=证明必要性,A 是正定矩阵,则由引理3可知,存在正定矩阵,U 使 ()U diag U A n T λλλ,,,21 =,()Tn U βββ,,,21 =,令 i i i βλα=()n i ,,2,1 =,为正交向量组, 即得.2211Tn n T T A αααααα+++=充分性,T n n T T A αααααα+++= 2211=[]T n TT ααα 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n ααα 21 U U T = (U 为正交矩阵), 显然A 是正定矩阵.3 实正定矩阵的重要结论对于实对称正定矩阵除了上面的一些充要条件用于判定一个矩阵是否为正定矩阵外, 还有一些很重要的结论,下面给出详细内容及其证明. ()1 若A 是n 阶实对称正定矩阵, 则0>A .证明 设A 是一正定矩阵,因为A 与单位矩阵合同,所以有实可逆矩阵C 使 C C EC C A T T ==. 两边取行列式, 就有02>==C C C A T.()2 若A 是n 阶实对称正定矩阵,则1-A 也是实对称正定矩阵. 证明 因为A 是实对称正定矩阵, 则0>A , 所以A 可逆. 又因为 ()(),111---==A A A T T所以1-A 也是实对称矩阵.设A 定特征值为,,,,21n λλλ 则由A 正定有 ()n i i ,,2,10 =>λ, 但1-A 的全部特征值为01>iλ()n i ,,2,1 =, 即1-A 为正定矩阵.()3 若A 是n 阶实对称正定矩阵, 则*A 也是正定矩阵(其中*A 表示A 的伴随矩阵).证明 已知*A =,1n n R A A ⨯-∈ 且()(),***==A A A T T又A 是正定矩阵, 所以0>A .设A 的特征值为,,,,21n λλλ 则由A 正定有 ()n i i ,,2,10 =>λ,于是*A 的n 个特征值为11211,,,---n A A A λλλ 也都大于零, 即*A 也是正定矩阵.()4 若A 是n 阶实对称正定矩阵,则k A (k 是正整数)也是正定矩阵.证明 设A 的全部特征值为,,,,21n λλλ 则由A 正定有 ()n i i ,,2,10 =>λ,则k A 对全部特征值为,,,,21knk k λλλ 也都大于零, 即k A 也是正定矩阵. ()5 若A 是n 阶实对称正定矩阵,则必有nn a a a ,,,2211 都大于零,即主对角线上的元素都大于零.证明 根据定义1和定义2可知,对任意的1⨯∈n R X ,且0≠X 有0>AX X T ,故依次令,100,,001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= X可得,011>a ,022>a , ,0>nn a 即证主对角线上的元素都大于零.()6 若A 是n 阶实对称正定矩阵,则存在实数,a 使得A aE -是正定矩阵. 证明 设A 的全部特征值为,,,,21n λλλ 则由A 正定有 ()n i i ,,2,10 =>λ, 则A aE -的特征值为 .,,1n a a λλ--令 {}1,,2,1,max +==n i a i λ, 则有()n i a i ,,2,10 =>-λ从而A aE -是正定矩阵, 即证存在实数a 使得A aE -是正定矩阵.()7 若A 是n 阶实对称矩阵,E 为n 阶单位矩阵, 证明:存在正数ε,是得A E ε+为正定矩阵.证明 可证A E ε+为实对称矩阵, 且存在正交矩阵T ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T AT T λλ 1, 其中n λλλ,,,21 为A 的全部特征值,令 {}n λλλλ,,,max 210 =.不妨设0λ0>(因为,若0λ0=,则01===n λλ ,0=A ,结论已证). 再令 110+=λε, 那么110<+λλi ()n i ,,2,1 =.所以 ()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++=-110011λλλλεn T A T⇒()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++++=+-11110011λλλλεn T A E T ,其中0110>++λλi ()n i ,,2,1 =, 故A E ε+为正定矩阵.()8 若B A ,都是n 阶实对称矩阵,A 是正定矩阵, 证明: 存在实可逆矩阵T , 使得AT T T 与BT T T 同时为对角形.证明 由于A 是正定矩阵,则A 合同与单位矩阵E ,即存在实可逆矩阵,P 使得 E AP P T =.而且BP P T 仍为实对称矩阵, 从而存在正交矩阵,Q 使得(),1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T T Q BP P Q λλ 其中n λλλ,,,21 是BP P T 对特征值.令 PQ T =,则AT T T ()()()E Q AP P Q PQ A PQ T T T===,=BT T T ()()()===Q BP P Q PQ B PQ T T T ,1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n λλ其中E 为n 阶单位矩阵.()9 若B A ,都是n 阶实对称正定矩阵,证明 .B A B A +>+证明 由于A 是正定矩阵,则A 合同与单位矩阵E ,即存在实可逆矩阵,P 使得 E AP P T =.而且BP P T 仍为实对称正定矩阵, 从而存在正交矩阵,Q 使得(),1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T T Q BP P Q λλ 其中n λλλ,,,21 都大于零是BP P T 对特征值.令 PQ T =, 则 AT T T ()()()E Q AP P Q PQ A PQ T T T===,其中E 为n 阶单位矩阵,=BT T T ()()()===Q BP P Q PQ B PQ T T T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n λλ 1, ()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++=+n T T B A T λλ111 , 有 ()()()n T B A λλλ+++=+111212.又知 12=P A ,n P B λλ 12=. 而PQ T =,其中Q 为正交矩阵, 则1±=Q , 且2222P Q P T ==.所以 ()()()n P B A λλλ+++=+111212n λλλ 211+≥,而 []n P B A λλλ 2121+=+, 即证 B A B A +>+.()10 若B A ,都是n 阶实对称正定矩阵,则B A +也正定.证明 B A ,都是n 阶实对称正定矩阵, 则()B A B A T +=+, 且对任意的1⨯∈n R X ,0≠X 有()0>+=+BX X AX X X B A X T T T , 所以B A +也正定.()11 若A 是n 阶实对称正定矩阵,证明:nn a a a A 2211≤, 其中()n i a ii ,,2,1 =为A 的主对角元素.证明 设 ⎥⎦⎤⎢⎣⎡=nn Ta A A αα1, 其中1A 为A 的1-n 阶顺序主子阵, ()n n n n T a a a ,121,,,-= α因为A 正定, 所以1A 正定,11-A 存在,于是⎥⎦⎤⎢⎣⎡---10111A E T n α⎥⎦⎤⎢⎣⎡nn Ta A αα1⎥⎦⎤⎢⎣⎡---1111αA E n ⎥⎦⎤⎢⎣⎡-=-αα11100A a A T nn ,两边取行列式得()αα111--=A a A A T nn .因为1A 正定, 所以11-A 正定,011≥-ααA T ,01>A , 则由上式可得 nn a A A 1≤.同理1,121--≤n n a A A , 其中2A 为A 的2-n 阶顺序主子阵, 这样继续下去,可得 nn a A A 1≤nn n n a a A 1,12--≤≤≤ nn a a a 2211.()12 若B A ,都是n 阶实对称正定矩阵,证明:AB 的特征值均大于零.证明 由于A 是正定矩阵, 则A 合同与单位矩阵E , 即存在实可逆矩阵,P 使得 E PAP T =.()()()11111-----==P B P BP P PAP PABP TTT .因为B 为正定矩阵, ()()11--P B P T也正定, 从而它的特征值全大于零. 再由上式可知AB 与()()11--P B P T相似, 所以它们有相同的特征值, 因此AB 的特征值均大于零.()13 若B A ,都是n 阶实对称正定矩阵, 且BA AB =, 证明AB 为正定矩阵. 证明 见参考文献[]7第273271-页.参考文献[1] Pullman NP. Matrix Theory and its Applications[M],Academic Press,1976. [2] COM PA. Principles and Practice of Mathematics[M],SpringerVerlag,Berlin Heidelberg,1998.[3] Johnson CR. Positive definite matrices[J],AmerMathMothly ,1970.[4] 胡跃进. 广义正定矩阵的一个不等式[J],阜阳师范学院学报(自然科学版),2001. [5] 北京大学数学系几何与代数教研室前代数小组. 高等代数(第三版)[M],北京:高等教 育出版社,2003.[6] 张禾瑞,郝镔新. 高等代数(第三版)[M],北京:高等教育出版社,1983. [7] 钱吉林. 高等代数解题精粹(修订版)[M],北京:中央民族大学出版社,2002.。
正交阵实对称阵的正交化标准形及在历年考硕试卷中的相关题型分析摘要: 实对称阵的正交化标准形涉及正交阵,施密特正交变换以及矩阵的特征值,特征向量和对角形等方面的知识点,在矩阵函数的学习内容中占据着极其重要的基础地位,是我们全面掌握矩阵与二次型函数相关内容的关键环节。
关键词:实对称阵 正交阵 标准形 对角阵 正交化定义1. ()n n A a R ij⨯=∈,若E AA '=,则称A 为正交阵.正交阵的等价定义还有:()n n A a R ij⨯=∈ 11221(),1,2,,.0i j i j in jn i j i a a a a a a i j n i j =⎧+++==⎨≠⎩即同一行的乘积之和等于1,不同行的乘积之和等于0。
11221(),1,2,,0i j i j ni nj i jii a a a a a a i j n i j=⎧+++==⎨≠⎩1()iii A A -'=定理1 若A 为正交阵,则︱A ︱=1或-1引理1 正交阵的特征值的模为1,如果有实特征值B 能是±1, 以上定理及引理证明显然,我们不给出证明过程。
定义2 正交矩阵A 可以对角化,即存在复可逆矩阵T ,使11n A T T λλ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中1,,n λλ 为A 的全部特征值,即1,(1,2,,)i i n λ== 下面我们给出史密特(shmidt )正交化的概念 设1,,()n n n Rαα⨯(1) 正交化。
令11βα=,,1,1111,11,1()()(2,3,,)()()k k k k k k k k k n αβαββαββββββ----=---=(2) 单位化。
令1,(1,2,,)k k kk n ηββ==(3)若令1(,,)n A ηη= ,则为正交矩阵 引理2 设A 是实对称阵,则A 的特征值皆为实数 证明: 设0λ是A 的特征值,于是有非零向量12n x xx ξ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭满足0A ξλξ= 令12n x x x ξ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭其中i x 是i x 的共轭复数,则0A ξλξ= 考察等式 ()()(),A A A A ξξξξξξξξ'''''===其左边为0λξξ',右边为0λξξ'。
2023-11-11CATALOGUE 目录•实对称矩阵的定义与性质•实对称矩阵的对角化•实对称矩阵的正交变换与标准形•实对称矩阵标准形的求解方法•实对称矩阵标准形的应用01实对称矩阵的定义与性质实对称矩阵的定义性质1实对称矩阵的特征值都是实数。
这是因为实对称矩阵的特征多项式系数都是实数,因此其根(即特征值)也必须是实数。
性质2实对称矩阵的不同特征值对应的特征向量正交。
这是由实对称矩阵的定义和特征向量的性质共同决定的。
性质3实对称矩阵一定可以相似对角化,即存在可逆矩阵 $P$,使得 $P^{-1}AP$ 为对角矩阵。
这是因为实对称矩阵的不同特征值对应的特征向量正交,且可以单位化,因此这些单位化的特征向量构成的矩阵 $P$ 就是所求的可逆矩阵。
例子1二维单位矩阵 $I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 是一个实对称矩阵,因为$I_2^T=I_2$。
它的特征值是1,对应的特征向量是 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$。
要点一要点二例子2二维矩阵 $A=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 也是一个实对称矩阵,因为 $A^T=A$。
它的特征值是1和-1,对应的特征向量分别是 $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 和$\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -1\end{pmatrix}$。
这些特征向量正交,且可以单位化,验证了实对称矩阵的性质2和性质3。
02实对称矩阵的对角化定义性质对角化的定义与性质方法一方法二实对称矩阵对角化的方法性质实对称矩阵对角化后得到的对角矩阵D中,对角线上的元素即为原矩阵的特征值,且这些特征值都是实数。