平行四边形的性质
- 格式:doc
- 大小:768.50 KB
- 文档页数:14
平行四边形的性质1.平行四边形的概念有两组对边分别平行的四边形叫做平行四边形.作用:(1)给出了一种判定四边形是平行四边形的方法,如果所给四边形的两组对边分别平行,那么它一定是平行四边形.(2)给出了平行四边形的一个重要性质:两组对边分别平行.2.平行四边形的性质详解:(1)平行四边形是中心对称图形,对角线的交点是它的对称中心;(2)平行四边形的对边平行且相等;(3)平行四边形的对角相等,邻角互补;(4)平行四边形的对角线互相平分.3.平行四边形的面积平行四边形的面积等于它的底和该底上的高的积.如图1,拓展:同底(等底)同高(等高)的平行四边形面积相等.如图2,二、平行四边形的判定1.平行四边形的判定方式2.三角形中位线定理定义:连接三角形两边中点的线段叫做三角形中位线;定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
作用:(1)位置关系:可以证明两条直线平行;(2)数量关系:可以证明线段的相等或倍分.拓展:(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形;(2)要会区别三角形的中线与中位线.三、平行四边形小结:四、矩形1.矩形定义:有一个角是直角的平行四边形叫做矩形.拓展:矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件。
2.矩形的性质(1)具有平行四边形的所有性质;(2)对角线相等;(3)四个角都是直角;(4)是轴对称图形,它有两条对称轴.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半拓展:己学过的直角三角形的性质主要有:(1)两锐角互余;(2)两条直角边的平方和等于斜边的平方;(3)30°角所对的直角边等于斜边的一半;(4)斜边上的中线等于斜边的一半.4.矩形的判定方法(1)有一个角是直角的平行四边形;(2)有三个角是直角的四边形;(3)对角线相等的平行四边形;(4)对角线相等且互相平分的四边形.5.矩形的面积公式:矩形面积=长×宽五、菱形1.概念:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边都相等;(3)两条对角线互相垂直,并且每一组对角线平分一组对角;(4)既是中心对称图形又是轴对称图形,其对称轴为对角线所在的直线.拓展:由于菱形的对角线互相垂直平分,许多涉及菱形的问题都会在直角三角形中解决.3.判定:(1)定义;(2)四条边都相等的四边形;(3)对角线互相垂直平分的四边形;(4)对角线平分一组对角的平行四边形.4.面积:(1)平行四边形面积公式:底×高(2)两条对角线乘积的一半.若a、b分别表示两条对角线的长,则六、正方形1.概念:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.拓展:正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.2.性质:(1)边——四条边都相等,邻边垂直,对边平行;(2)角——四个角都是直角;(3)对角线——①相等;②相互垂直平分;③每一条对角线平分一组对角;两条对角线将它分成四个全等的等腰直角三角形.(4)是轴对称图形,有4条对称轴;又是中心对称图形,对称中心就是两条对角线的交点.拓展:(1)若正方形的边长为a,则对角线的长为;(2)正方形的一条对角线上的一点到另一条对角线的两个端点的距离相等.3.判定:(1)先证它是矩形,再证一组邻边相等;(2)先证它是菱形,再证一个角是直角.4.面积:(1)正方形的面积等于边长的平方;(2)正方形的面积等于两条对角线的乘积的一半.拓展:周长相等的四边形中,正方形的面积最大.例题分析:1.如图,ABCD中,AE=CF,AE与CF交于点O,连结BO.求证:∠AOB=∠COB.解:作BM⊥CF于M,BN⊥AE于N,连接BE、BF;根据和AE=CF,可证BN=BM,于是∠AOB=∠COB.2.如图:工人师傅要把一块三角形的钢板,通过切割焊接成一个与其面积相等的平行四边形.请你设计一种方案并在图中标出焊接线,然后证明你的结论.解:如图,分别取边AB、AC的中点D、E,沿线段DE切割开,将△ADE的边AE与边EC重合(点A与点C重合、点E与点E重合)后焊接,点D至点F处,则所得四边形DBCF为平行四边形.证明略.3.如图,ABCD为等腰梯形,AB∥CD,对角线AC,BD交于O,且∠AOB=60°,又E,F,G别离为DO,AO,BC的中点.求证:△EFG为等边三角形.证明:连接EC.∵ABCD为等腰梯形,∴AD=BC,且AC=BD.又∵DC=DC,∴△ADC≌△BCD,∠ACD=∠BDC,∴△ODC为等腰三角形.∵∠DOC=∠AOB=60°,∴△ODC为等边三角形.又∵E为OD中点,∴∠OEC=90°.在Rt△BEC中,G为斜边的中点,∴。
平行四边形的判定与性质判定方式平行四边形的判定可以根据其定义和性质进行确认。
下面是一些常用的判定方式:1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。
1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。
1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。
2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。
2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。
2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。
3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。
3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。
3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。
性质平行四边形具有以下性质:1.对边相等性质:平行四边形的对边长度相等。
1.对边相等性质:平行四边形的对边长度相等。
1.对边相等性质:平行四边形的对边长度相等。
2.同位角相等性质:平行四边形的同位角相等。
2.同位角相等性质:平行四边形的同位角相等。
2.同位角相等性质:平行四边形的同位角相等。
3.内角和性质:平行四边形的内角和为180度。
3.内角和性质:平行四边形的内角和为180度。
3.内角和性质:平行四边形的内角和为180度。
4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。
4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。
4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。
示例以下是一个平行四边形的示例图:A ----------- BD ----------- C在这个示例中,ABCD是一个平行四边形,因为AB和CD平行,AD和BC平行,并且同位角A和C相等,B和D相等。
平行四边形的特征平行四边形的定义和性质平行四边形的特征平行四边形是一种特殊的四边形,具有一些独特的定义和性质。
本文将详细探讨平行四边形的定义以及相关的性质,以便读者更好地理解和应用这一几何形状。
一、平行四边形的定义平行四边形是指具有两对相对平行的边的四边形。
换句话说,如果一个四边形的对边是平行的,那么它就是平行四边形。
二、平行四边形的性质1. 对边性质:平行四边形的对边相等。
这意味着,平行四边形的相邻边长度相等,且对角线相等。
例如,如果ABCD是一个平行四边形,那么AB = CD,AD = BC。
2. 对角线性质:平行四边形的对角线互相等分。
也就是说,平行四边形的对角线的中点连接在一起,且长度相等。
如果ABCD是一个平行四边形,那么AC = BD,并且中点M在AC和BD上。
3. 同位角性质:平行四边形的同位角(相邻的内角或相邻的外角)相等。
例如,如果ABCD是一个平行四边形,那么∠A = ∠C,∠B =∠D。
4. 内角性质:平行四边形的内角和为360度。
换句话说,ABCD的四个内角∠A、∠B、∠C、∠D之和等于360度。
5. 对角线垂直性:平行四边形的对角线互相垂直。
也就是说,平行四边形的对点线AC和BD垂直相交。
这是平行四边形独有的性质之一。
6. 等腰性质:具有一对对等长度的边的平行四边形是等腰平行四边形。
也就是说,如果ABCD是一个平行四边形,且AB = CD,那么就可以称之为等腰平行四边形。
通过上述性质,我们可以更深入地理解平行四边形的特征和性质。
在实际应用中,平行四边形经常出现在建筑、工程、设计以及数学等领域,因其稳定性和美学特点而备受青睐。
总结:平行四边形是一种具有两对平行边的四边形。
它具有对边相等、对角线互相等分、同位角相等、内角和为360度、对角线垂直、等腰等性质。
这些性质使得平行四边形在实际生活中具有重要的应用价值。
通过了解和应用平行四边形的定义和性质,我们能够更好地解决与其相关的问题。
平行四边形(Parallelogram)是一种特殊的四边形,具有一些独特的性质和特征。
在本文中,我们将探讨平行四边形的性质,以及它们在几何学中的重要性和应用。
定义和特征平行四边形是一个具有两对平行边的四边形。
具体而言,如果一对相对边是平行的,则该四边形被称为平行四边形。
平行四边形的特征如下:1.对边相等:平行四边形的对边长度相等。
也就是说,相对的两条边的长度相等。
2.对角线互相平分:平行四边形的对角线相互平分。
也就是说,将平行四边形的两条对角线画出来后,它们会相交于一个点,并且将对角线平分为两段相等的部分。
3.相邻角互补:平行四边形的相邻角互补。
也就是说,相邻的两个角的和为180度。
4.对角线长度关系:平行四边形的对角线长度之间存在一定的关系。
具体而言,平行四边形的对角线长度之和等于它们的两倍。
平行四边形的性质平行四边形具有以下重要的性质:1.对边相等平行四边形的对边长度相等。
这是平行四边形最基本的性质之一。
具体而言,如果ABCD是一个平行四边形,那么AB = CD,BC = AD。
2.对角线互相平分平行四边形的对角线相互平分。
也就是说,平行四边形的两条对角线AC和BD会相交于一个点O,并且AO = CO,BO = DO。
3.相邻角互补平行四边形的相邻角互补。
也就是说,相邻的两个角的和为180度。
如果ABCD是一个平行四边形,那么∠A + ∠B = 180度,∠B + ∠C = 180度,∠C + ∠D = 180度,∠D + ∠A = 180度。
4.对角线长度关系平行四边形的对角线长度之间存在一定的关系。
具体而言,平行四边形的对角线AC和BD的长度之和等于它们的两倍。
即AC + BD = 2(AB)。
平行四边形的应用平行四边形在几何学中有着广泛的应用,尤其在计算几何和工程设计中。
下面是一些常见的应用场景:1.计算几何平行四边形的性质可以被广泛地应用于计算几何中的问题。
例如,当需要计算平行四边形的周长、面积或者对角线长度时,可以利用平行四边形的性质,简化计算过程。
平行四边形的性质与判定方法平行四边形是几何学中重要的一类四边形,具有独特的性质和判定方法。
在本文中,我们将介绍平行四边形的性质和判定方法,并探讨其应用。
一、平行四边形的性质1. 对边相等性质:平行四边形的对边相等。
即平行四边形的对边AB与CD相等,对边AD与BC相等。
2. 对角线互相平分性质:平行四边形的对角线互相平分。
即对角线AC平分对角线BD,同时对角线BD平分对角线AC。
3. 内角和为180度:平行四边形的内角和为180度。
即∠A + ∠B + ∠C + ∠D = 180°。
4. 侧边对应角相等性质:平行四边形的侧边对应角相等。
即∠A = ∠C,∠B = ∠D。
5. 相邻内角互补性质:平行四边形的相邻内角互补。
即∠A + ∠B = 180°,∠B + ∠C = 180°。
6. 对角线长度关系:平行四边形的对角线长度关系。
即对角线AC 与对角线BD长度相等。
二、平行四边形的判定方法1. 对边相等法:若一个四边形的对边相等,则它是平行四边形。
例如,已知AB = CD,AD = BC,可以判定ABCD是平行四边形。
2. 一组对角线互相平分法:若一个四边形的对角线互相平分,则它是平行四边形。
例如,已知AC平分BD,BD平分AC,可以判定ABCD是平行四边形。
3. 内角和为180度法:若一个四边形的内角和为180度,则它是平行四边形。
例如,已知∠A + ∠B + ∠C + ∠D = 180°,可以判定ABCD是平行四边形。
4. 一组侧边对应角相等法:若一个四边形的侧边对应角相等,则它是平行四边形。
例如,已知∠A = ∠C,∠B = ∠D,可以判定ABCD 是平行四边形。
5. 一组相邻内角互补法:若一个四边形的相邻内角互补,则它是平行四边形。
例如,已知∠A + ∠B = 180°,∠B + ∠C = 180°,可以判定ABCD是平行四边形。
三、平行四边形的应用平行四边形的性质和判定方法在几何学中有广泛的应用。
平行四边形的性质与判定平行四边形是几何学中常见的一个概念,具有一些特殊的性质和判定条件。
本文将介绍平行四边形的性质,并通过实例展示如何判定一组线段或角度是否构成平行四边形。
一、平行四边形的定义平行四边形是指具有两对对边分别平行的四边形。
根据定义,我们可以得出平行四边形的性质和判定条件。
二、平行四边形的性质1. 相对边相等:平行四边形的对边长度相等。
即AB=CD,AD=BC。
2. 相对角相等:平行四边形的对角角度相等。
即∠A=∠C,∠B=∠D。
3. 对角线互相平分:平行四边形的对角线互相平分。
即AC平分BD,BD平分AC。
4. 对角线相等:平行四边形的对角线相等。
即AC=BD。
5. 内角和为360度:平行四边形的内角和等于360度。
三、判定平行四边形的条件要判定一组线段或角度构成平行四边形,需要满足以下条件之一。
1. 对边相等:如果四边形的对边长度相等,即AB=CD,AD=BC,则这个四边形是平行四边形。
2. 对角线互相平分:如果四边形的对角线互相平分,即AC平分BD,BD平分AC,则这个四边形是平行四边形。
3. 相对角相等:如果四边形的相对角度相等,即∠A=∠C,∠B=∠D,则这个四边形是平行四边形。
在实际问题中,我们可以通过测量边长、角度或线段平分关系来判定是否为平行四边形。
下面举例说明。
例题一:已知线段AB与线段CD互相平分,且∠A=∠C,∠B=∠D,判断ABCD是否为平行四边形。
解析:根据给定条件得知,线段AB与线段CD互相平分,且相对角度相等。
根据判定平行四边形的条件,我们可以得出这个四边形是平行四边形。
例题二:在平面直角坐标系中,顶点坐标分别为A(2, 3),B(7, 3),C(9, -2),D(4, -2)的四边形ABCD,判断是否为平行四边形。
解析:根据给定坐标可以计算出AB的斜率为0,CD的斜率也为0。
根据斜率的性质,我们可以得出AB与CD是平行的。
另外,根据对边长度可以计算出AB=CD,AD=BC。
平行四边形的性质
定义
平行四边形是指具有两组对边平行的四边形。
根据平行四边形的定义,我们可以得出以下性质:
性质一:对边平行
在平行四边形中,对边是平行的,即相对的两条边永远保持平行关系。
性质二:对角线互相平分
平行四边形的对角线互相平分,即将平行四边形的两个对角线分别连接,这两条对角线互相平分。
性质三:内角和为180度
平行四边形的内角和为180度,也就是说,平行四边形的四个内角之和等于180度。
性质四:相对角相等
在平行四边形中,相对的两个内角是相等的。
性质五:邻补角
在平行四边形中,邻补角互为补角。
这意味着,平行四边形的邻接内角之和等于180度。
性质六:对边一对垂直
平行四边形的相邻边是垂直的。
也就是说,如果一条边与另一条边垂直,则它们一定是平行四边形的相邻边。
总结:平行四边形具有对边平行、对角线互相平分、内角和为180度、相对角相等、邻补角、对边一对垂直等性质。
这些性质可以帮助我们在解题中快速判断和利用平行四边形的特点。
第九节平行四边形的性质【知识要点】1.平行四边形的有关概念(1)平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
(2)对边、对角、对角线的概念:平行四边形共有四条边,四个角,把不相邻的边称为对边,不相邻的角称为对角,因此平行四边形有两组对边,两组对角。
对角线:平行四边形不相邻的两个顶点连成的线段叫对角线。
平行四边形有两条对角线,它们交于四边形内一点。
2.相关性质边:平行四边形的对边平行且相等。
角:平行四边形中对角相等,邻角互补,内角和是360°。
对角线:平行四边形的对角线互相平分。
3.平行线间的距离(1)两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
(2)平行线之间的垂线段处处相等。
4. 平行四边形的面积公式:S=底×高【典型例题】例1 在平行四边形ABCD中(1)若∠A=40°,则∠B= ,∠C= ,∠D= 。
(2)若∠A-∠B=80°,则∠A= ,∠B= 。
(3)若∠A+∠C=220°,则∠A= ,∠B= 。
(4)若周长为44cm,AB-BC=2cm,则CD= ,AD= 。
灵活运用平行四边形性质进行边长、周长计算例2 如图,四边形ABCD为平行四形,∠A+∠C=80°,□ABCD的周长为40cm,且AB-BC=2cm,求□ABCD 各边长和各内角的度数。
例3 如图,四边形ABCD是平行四边形,∠DAB:∠ABC=1:3,AB=4,BD与AC相交于O,且BD⊥AB,求AD,BC和AC的长。
利用平行四边形中对角线与边长的关系求取值范围例4 如图,□ABCD 中,对角线AC 和BD 相交于O 点,若AC=8,BD=6,则边AB 长的取值范围为( ) A .1﹤AB ﹤7 B .2﹤AB ﹤14 C .6﹤AB ﹤8D .3﹤AB14灵活运用平行四边形的面积公式计算例5 小强家承包了一块苗圃用来养花。
平行四边形性质和判定
平行四边形性质:两组对边平行且相等;两组对角大小相等;相邻的两个角互补;对角线互相平分;对于平面上任何一点,都存在一条能将平行四边形平分为两个面积相等图形、并穿过该点的线;四边边长的平方和等于两条对角线的平方和。
平行四边形性质定理
在同一个二维平面内,由两组平行线段组成的闭合图形,称为平行四边形,其边与边、角与角、对角线之间存在着各种各样的关系,即是平行四边形性质定理。
平行四边形判定定理
(1)定义法:两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)两组对角分别相等的四边形是平行四边形;
(4)对角线互相平分的四边形是平行四边形;
(5)一组对边平行且相等的四边形是平行四边形。
平行四边形恒等式
平行四边形恒等式是描述平行四边形的几何特性的一个恒等式。
它等价于三角形的中线定理。
在一般的赋范内积空间(也就是定义了长度和角度的空间)中,也有类似的结果。
这个等式的最简单的情形是在普通的平面上:一个平行四边形的两条对角线长度的平方和,等于它四边长度的平方和。
平行四边形的特征与性质平行四边形是一种特殊的四边形,具有一些独特的特征和性质。
了解这些特征和性质有助于我们更好地理解和应用平行四边形的知识。
本文将介绍平行四边形的定义、特征以及与其他几何形状的关系。
一、平行四边形的定义平行四边形是指具有两对对边分别平行的四边形。
这意味着平行四边形的相邻边线是平行的,而且对角线之间也是平行的。
二、平行四边形的特征与性质1. 对边性质:平行四边形的对边长度相等。
这意味着它的两对对边分别相等。
2. 对角线性质:平行四边形的对角线互相平分。
也就是说,平行四边形的对角线相交于一点,并且把对角线分成相等的两段。
3. 内角性质:平行四边形的内角之和是180度。
由于相邻边是平行的,所以对应的内角互补,即相加等于180度。
4. 外角性质:平行四边形的外角等于其不相邻的内角。
也就是说,平行四边形的外角是其相邻内角的补角。
5. 高度性质:平行四边形的任意一条边都可以看做是它的底边,并且这条底边上的高度是固定的。
三、平行四边形与其他几何形状的关系1. 矩形:矩形是一种特殊的平行四边形,它的所有内角都是直角(90度)。
也就是说,矩形具备平行四边形的所有性质,并且还具有所有角度相等的特征。
2. 菱形:菱形是一种特殊的平行四边形,它的所有边长都相等。
虽然菱形的对边平行,但不一定是直角。
因此,菱形在某些性质上与矩形和普通平行四边形有所不同。
3. 正方形:正方形是一种特殊的矩形和菱形,它既具有所有内角都是直角的特点,也具有所有边长相等的特点。
因此,正方形不仅是一个平行四边形,同时也是一个矩形和菱形。
总结:平行四边形具有对边相等、对角线互相平分、内角之和为180度等特征与性质。
通过了解这些特征和性质,我们可以更好地理解和应用平行四边形的知识。
此外,平行四边形还与矩形、菱形和正方形等几何形状存在一定的关联。
通过比较和分析这些形状之间的关系,我们可以更全面地认识几何学中不同形状的特征和性质。
让我们深入学习平行四边形的特征与性质,为我们的几何学知识打下坚实的基础。
北师新版8年级下册第6章第一节平行四边形的性质(第一课时)一、教材分析(一)对教学内容的认识(1)课程标准要求:理解平行四边形的概念,探索并证明平行四边形的性质。
核心概念突出体现的是几何直观,应用能力和推理能力(2)教材分析:平行四边形是我们常见的一种图形,它具有十分和谐的对称美。
边和角的性质是它最基本的性质,是平行四边形其他性质证明过程的依据。
本课的知既是平行线和三角形知识的应用和深化,又是学习平行四边形判定知识的基础,也是研究是特殊的平行四边形的性质的起始,本课在本章中起着承上启下的作用,它在图形与几何的教学中有着举足轻重的地位。
教学重点确定为:理解并掌握平行四边形的概念及其性质.二、学情分析知识基础:学生在小学阶段已对平行四边形有了初步、直观的认识。
对于八年级的学生来说,已经学习了平行线、三角形全等等知识,对图形的三种基本的全等变换方式:轴对称、平移、旋转有了初步的了解,具有一定推理能力和说理能力,认知困难:对于几何的转化思想和严密的推论平行四边形的性质,从知识结构和知识能力上都有所欠缺。
经验基础:自然界和现实生活中具平行四边形特征的许多事物都为学生的认知提供了经验基础.综合以上分析,本节课的教学难点为:探究平行四边形的性质三、目标制定课标分析:《课程标准》中与本节课相关的描述有:理解平行四边形的概念,探索并证明平行四边形的性质。
现将本节课的课标从两个方面进行分解。
从认知角度进行分解:3四、评价设计针对本节课的三个学习目标,本节课的评价任务如下:评价任务一:学生能够认真观察图形,并能够进行积极地思考、总结.评价任务二:学生能够结合图形直观感知平行四边形的性质,并能够举例验证及尝试说理,并能够运用性质解决几何问题.评价任务三:学生能够积极主动地进行动手操作,得到正确的结论.评价任务四:学生能够认真观察、积极参与拼图活动,并能从活动中体验数学的乐趣,感受成功的快乐,认识和欣赏生活中的平行四边形.五、教法、学法依据以上分析确定本节课的教法:引导发现法和小组合作交流法。
学法:自主探究法和小组讨论法。
教学手段:多媒体辅助和小组合作等。
教学中,我充分运用多媒体资源及大量的实物教具和学具,在观察、思考、操作、归纳、应用等师生的共同活动中引导学生学习,使学生始终处于积极、主动、有趣的学习状态中,从而实现教与学的最优化,最终达成本节课的学习目标.六、课前准备多媒体课件、平行四边形图片、图钉、硬纸板、磁力片等.七、教学过程学习环节学习目标学习评价学习活动设计意图(一)创设情目标1目标2关注学生能否认真观看视频及思考,初步感知平行四边形.关注学生描述平行活动一:第一步:欣赏视频《平行四边形》.从而自然引出本节课的课题《平行四边形》.第二步:回顾平行四边形的定义,给出平行四边形的记法、读法。
基本术这样的设计回忆相关知识,展望后续将要研究的知识。
了解明确了本节课的学习活动的(二)探索引导,引发知识的生长点流,尝试进行说理.平行四边形有三种:肯定学生的其他情况:第二步:优化练习:学校买了四棵树,准备栽在花坛里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?形,这都是我们以后要学习的特殊平行四边形,为以后的研究埋下了伏笔。
感受数学活动中探索的乐趣,大胆猜想并验证自己的猜想。
及时落实巩固数学知识,体会通过基础问题研究自己有能力解决综合性问题的乐趣。
(三)优化练习,训练几何推理目标2目标3能否结合实例尝试用自己的语言来证明平行四边形的性质关注学生能否能够规范的证明。
展示部分学生的证明方法,并由学生进行讲评,并给出规范的证明方法第三步:证明:四边形ABCD是平行四边形.求证:AB=CD,BC=DA.∠B=∠D,∠A=∠C.证明:如图,连接AC.∵四边形ABCD是平行四边形∴AD // BC, AB //CD∴∠1=∠2,∠3=∠4∴△ABC和△CDA中∠2=∠1AC=CA∠3=∠4∴△ABC≌△CDA(ASA)纳、动手操作有机地统一起来,调动了学生各种感官的参与,使学生的理解从感性逐步上升到了理性,而且可以激发学生学习的主动性,培养他们的逻辑推理,最终引导学生在不知不觉中总结平行四边形的性质(四)整体建模,内化数学知识目标2目标关注小组内学生是否都能证明推理,说理是否规范。
第一步:例题:已知:如图,在ABCD中,E,F是对角线AC上的两点,且AE=CF.求证:BE=DF.证明:∵四边形ABCD是平行四边形∴ AB = CDAB // CD∴∠BAE=∠DCF又∵ AE=CF∴△BAE≌△DCF∴ BE=DF通过例题教学,突出本节重点,加深对平行四边形定义及性质的理解,培养学生分析、解决实际问题能力,目标2目标3关注学生能否正确解答第二步:练习:已知.在平行四边性ABCD中,(1) AB=5,BC=3,则它的周长是()。
让学生从已有的经验中,有意义地构建自己的知(2)已知∠A=38°,则∠B= ,∠C= ,CD= 。
识结构,获得富有成效的学习体验。
从而培养学生数学推理论证能力。
学习环节学习目标学习评价学习活动设计意图(五)练习小结测目标1关注学生能否积极进行尝试,寻找解决问题的方法.并在做题的过程中获得积极地情感体验.第一步:练习①如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A 5B 4C 3D 2②如图,▱ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,2),则点D的坐标是()③如图,在▱ABCD中,连结AC,∠ABC=∠训练学生运用平行四边形的性质,强化训练该性质其他知识间的横向联系。
更方便学生内化数学知识。
试,落实数学知识。
目标2目标3关注学生能否积极进行尝试,寻找解决问题的方法.CAD=45°,AB=2,则BC的长是()④4、如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()目标1目标2目标3关注学生能否积极进行思考、发表自己的见解及认真倾听其他同学的想法.第二步:小结①本节课我们研究了什么问题?这个问题是怎么提出的?又是怎么解决的?②通过本节课的学习你能总结出一些解决新问题和复杂问题的经验吗?③本节课我们学习了平行四边形的对边相等,对角相等的性质,在这个问题的基础上,你还知道平行四边形的哪些知识?通过这些问题,促进学生进一步理解研究数学的方式方法,内化数学知识结构。
从而体会数学的魅力。
关注学生完成情况当堂批阅反馈各小组成员之间能否互相配合最终能够灵活利用本节课所学知识进行设计. 第三步:测试对本节课的学习进行测试。
1、如图,四边形ABCD是平行四边形,∠B=58°CD=28,AD=32,则(如图),求1)∠D= , ∠C= ;2)边AB= ,BC= .2、如图:在平行四边形ABCD中, BD为对角线,AE⊥BD于E,CF⊥BD于F,求证:BE=DF及时了解本节课学生掌握情况AB CD八、教学反思1.《平行四边形的性质》是北师大八年级下册第六章第一节第一课时内容。
这节课承接第三章的旋转和中心对称的内容,课本的设计意图是利用拼摆得出平行四边形,来得出平行四边形的性质.2.由于探索方法方式多样性,我们并不拘泥于一种探究方式,支持学生的个性发展,但在教学过程中还是要渗透这种整体到部分的,利用中心对称去探索.3.从教学方式来看,针对不同类型的知识(概念、性质等)采用了动手操作、探究的方法;从教学进行的步骤看,新课教学的导入自然,教学各环节衔接恰当;从教学内容看,教学目标设置的合适,教学目标的基本达成;教材内容重点、难点的处理得当,学生在学习中学得轻松,愉快。
不足之处是个别学生动手能力有待提高,对于对称思想的应用也有待加强。