机械能守恒定律及其应用及实验【讲】解析版
- 格式:docx
- 大小:1.27 MB
- 文档页数:26
机械能守恒定律及其应用及实验【讲】解析版机械能守恒定律及其应用及实验解析版机械能守恒定律是力学中的重要定律之一。
它指出,在没有外力做功的封闭系统中,机械能始终保持不变。
机械能包括动能和势能两部分,它们在运动过程中相互转化,但总量保持不变。
本文将对机械能守恒定律进行详细解析,并介绍其应用和相关实验。
一、机械能守恒定律的原理机械能守恒定律是基于能量守恒定律的扩展,能量守恒定律指出,在一个封闭系统中,能量的总量始终保持不变。
而机械能守恒定律特指机械能的守恒。
机械能包括动能和势能。
动能是物体由于运动而具有的能量,可以表示为K=1/2mv²,其中m为物体的质量,v为其速度。
势能是物体由于位置而具有的能量,可以表示为U=mgh,其中m为物体的质量,g 为重力加速度,h为物体的高度。
机械能守恒定律可以表示为K₁+U₁=K₂+U₂,即系统在时间段1和时间段2内的动能和势能之和保持不变。
这意味着,如果在一个封闭系统中没有外力做功,机械能始终保持不变。
二、机械能守恒定律的应用1. 自由落体运动自由落体运动是机械能守恒定律的一个重要应用。
当物体在重力作用下自由下落时,机械能守恒。
在不考虑空气阻力的情况下,物体只具有动能和势能。
当物体从高处自由下落到低处时,势能减少,而动能增加,它们的总和保持不变。
2. 弹簧振动弹簧振动也是机械能守恒定律的一个典型应用。
弹簧振动是指质点在弹簧的作用下来回振动。
在没有考虑阻尼和空气阻力的情况下,机械能守恒。
当质点在振动过程中从一个极点到另一个极点时,势能和动能相互转化,但它们的总和保持不变。
3. 动能与势能的转化机械能守恒定律还可以应用于各种物体运动的分析中。
例如,当一个物体沿斜面滚动时,可以通过机械能守恒定律,将物体的动能和势能进行转化,计算物体在不同位置和速度下的能量变化。
三、机械能守恒定律的实验为了验证机械能守恒定律,可以进行一系列的实验。
以下是其中的两个实验例子:1. 弹球实验实验装置:带有刻度的竖直细管,小球实验步骤:- 将小球放在细管的顶端,并释放。
2020-2021学年新教材粤教版物理必修第二册教师用书:第4章第5节机械能守恒定律含解析第五节机械能守恒定律学习目标:1.[物理观念]能够分析动能和势能之间的相互转化问题。
2。
[科学思维]会根据机械能守恒的条件判断机械能是否守恒。
3.[科学思维]能运用机械能守恒定律解决有关问题,并领会运用机械能守恒定律解决问题的优越性。
一、动能与势能的相互转化1.机械能动能、势能(包括重力势能和弹性势能)统称为机械能,在一定条件下,物体的动能与势能可以发生相互转化。
2.动能与重力势能间的转化只有重力做功时,若重力做正功,则重力势能转化为动能,若重力做负功,则动能转化为重力势能,转化过程中,动能与重力势能之和保持不变。
3.动能与弹性势能间的转化被压缩的弹簧把物体弹出去,射箭时绷紧的弦把箭弹出去,这些过程都是弹力做正功,弹性势能转化为动能。
二、机械能守恒定律的理论验证1.机械能守恒定律的内容在只有重力或弹力做功的系统内,动能和势能发生相互转化,而系统的机械能总量保持不变。
2.表达式(1)E p1+E k1=E p2+E k2。
(2)mgh1+错误!mv错误!=mgh2+错误!mv错误!。
1.思考判断(正确的打“√”,错误的打“×”)(1)物体自由下落时,重力做正功,物体的动能和重力势能都增加。
(×)(2)射箭时将弹性势能转化为动能. (√)(3)通过重力或弹力做功,机械能可以转化为非机械能. (×)(4)物体自由下落过程中经过A、B两位置,如图所示,此过程中物体的机械能一定守恒。
(√)2.(多选)一物体在做自由落体运动过程中,重力做了2 J的功,则()A.该物体重力势能减少2 JB.该物体重力势能增加2 JC.该物体动能减少2 JD.该物体动能增加2 JAD[在自由下落过程中,重力做了2 J的功,重力势能减少2J。
通过重力做功,重力势能转化为动能,则物体动能增加了2 J,故A、D正确,B、C错误.]3.(多选)从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,下列判断正确的是()A.落地时的速度相同B.落地时的动能相同C.从抛出到落回地面,竖直上抛时重力做功最多D.落地时机械能相同BD[三种抛法,重力做功相同,故落地时动能相同,但速度方向不同,故速度不同;抛出时三个球机械能相等,故落地时机械能相等。
解密06 机械能守恒定律考点热度★★★★☆内容索引1.机械能守恒的条件及判断方法2.常见功能转化关系及能量守恒定律3.机械能守恒分析多过程、多物体问题机械能守恒定律主要考查的角度有:(1)机械能守恒的条件(2)机械能守恒定律与平抛运动、圆周运动的综合(3)功能关系和机械能守恒分析多过程、多物体问题考点一机械能守恒的理解与判断机械能是否守恒的三种判断方法例一[多选]如图所示,质量为M的物块A放置在光滑水平桌面上,右侧连接一固定于墙面的水平轻绳,左侧通过一倾斜轻绳跨过光滑定滑轮与一竖直轻弹簧相连。
现将质量为m的钩码B挂于弹簧下端,当弹簧处于原长时,将B由静止释放,当B下降到最低点时(未着地),A对水平桌面的压力刚好为零。
轻绳不可伸长,弹簧始终在弹性限度内,物块A始终处于静止状态。
以下判断正确的是()A. M <2mB. 2m <M <3mC. 在B 从释放位置运动到最低点的过程中,所受合力对B 先做正功后做负功D. 在B 从释放位置运动到速度最大的过程中,B 克服弹簧弹力做的功等于B 机械能的减少量【答案】ACD【解析】AB .由题意可知B 物体可以在开始位置到最低点之间做简谐振动,故在最低点时有弹簧弹力T =2mg ;对A 分析,设绳子与桌面间夹角为θ,则依题意有2sin mg Mg θ故有2M m <,故A 正确,B 错误;C .由题意可知B 从释放位置到最低点过程中,开始弹簧弹力小于重力,物体加速,合力做正功;后来弹簧弹力大于重力,物体减速,合力做负功,故C 正确;D .对于B ,在从释放到速度最大过程中,B 机械能的减少量等于弹簧弹力所做的负功,即等于B 克服弹簧弹力所做的功,故D 正确变式一(2021·河南洛阳模拟)(多选)如图所示,有质量为2m 、m 的小滑块P 、Q ,P 套在固定竖直杆上,Q 放在水平地面上。
P 、Q 间通过铰链用长为L 的刚性轻杆连接,一轻弹簧左端与Q 相连,右端固定在竖直杆上,弹簧水平,α=30°时,弹簧处于原长。
实验六 验证机械能守恒定律(解析版)1.实验原理 (1)在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能保持不变,若物体某时刻瞬时速度为v ,下落高度为h ,则重力势能的减少量为mgh ,动能的增加量为mv 2,看它们在实验误差允许12的范围内是否相等,若相等则验证了机械能守恒定律。
(2)计算点n 速度的方法:测出点n 与相邻前后点间的距离x n 和x n+1,如图所示,由公式v n =或v n =x n +x n +12T算出。
ℎn +1-ℎn -12T2.实验器材 铁架台(含铁夹),打点计时器,学生电源,纸带,复写纸,导线,毫米刻度尺,重物(带纸带夹)。
3.实验步骤 (1)安装置:将检查、调整好的打点计时器竖直固定在铁架台上,接好电路。
(2)打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔用手提着纸带使重物静止在靠近打点计时器的地方,先接通电源,后松开纸带,让重物带着纸带自由下落,更换纸带重复做3~5次实验。
(3)选纸带:分两种情况说明①用m =mgh n 验证时,应选点迹清晰,且1、2两点间距离小于或接近2 mm 的纸带。
若1、2两点间的12v n 2距离大于2 mm,这是由先释放纸带,后接通电源造成的,这样,第1个点就不是运动的起始点了,这样的纸带不能选。
②用m -m =mg Δh 验证时,由于重力势能的相对性,处理纸带时,选择适当的点为基准点,这样纸带上12v B 212v A 2打出的第1、2两点间的距离是否为2 mm 就无关紧要了,只要后面的点迹清晰就可选用。
4.数据分析 方法一:利用起始点和第n 点计算。
代入gh n 和,如果在实验误差允许的情况下,gh n =,则验证了机械能守恒定律。
12v n 212v n 2方法二:任取两点计算。
(1)任取两点A 、B ,测出h AB ,算出gh AB ; (2)算出-的值;12v B 212v A 2(3)在实验误差允许的情况下,若gh AB =-,则验证了机械能守恒定律。
第八章 机械能守恒定律第四节 机械能守恒定律[核心素养·明目标]核心素养学习目标物理观念围绕功能关系的基本线索,建立“通过做功的多少,定量的研究能量及其相互转化”的观念,进而理解机械能守恒定律。
科学思维 初步学会从能量守恒的角度来解释物理现象,分析物理问题。
科学探究 体会自然界中“守恒”思想和利用“守恒”思想解决问题的方法。
科学态度与责任通过机械能守恒的学习,使学生树立科学观点,理解和利用自然规律,解决实际问题。
1.机械能(1)定义:物体的动能与重力势能(弹性势能)之和称为机械能。
(2)表达式:E =E p +E k ,其中E 表示机械能。
2.机械能守恒定律(1)内容:在只有重力或弹力这类力做功的情况下,物体系统的动能与势能相互转化,但机械能的总量保持不变。
(2)表达式:12mv 22+mgh 2=12mv 21+mgh 1或E k2+E p2=E k1+E p1。
3.机械能的理解(1)机械能⎩⎪⎨⎪⎧动能:E k=12mv 2势能⎩⎪⎨⎪⎧重力势能:E p=mgh 弹性势能(2)机械能的性质①状态量:做机械运动的物体在某一位置时,具有确定的机械能。
②相对性:其大小与参考系、零势能面的选取有关。
③系统性:是物体、地球和弹性系统所共有的。
(3)动能和势能可以相互转化。
4.守恒条件的理解只有重力或弹力做功的物体系统,可从三个方面理解: (1)受力:物体系统只受重力或弹力作用。
(2)做功:物体系统存在其他力作用,但其他力不做功,只有重力或弹力做功。
(3)转化:相互作用的物体组成的系统只有动能和势能的相互转化,无其他形式能量的转化。
注意:“只有重力或弹力做功”并非“只受重力或弹力作用”,也不是合力的功等于零,更不是某个物体所受的合力等于零。
知识点二 机械能守恒定律的应用 1.公式的证明如图,质量为m 的小球从光滑曲面上滑下。
当它到达高度为h 1的位置A 时,速度的大小为v 1,滑到高度为h 2的位置B 时,速度的大小为v 2。
8.5实验:验证机械能守恒定律【学习目标】1.理解实验的设计思路,明确实验中需要测量的物理量。
2.知道实验中选取测量点的有关要求,会根据实验中打出的纸带测定物体下落的距离,掌握测量物体运动的瞬时速度的方法。
3.能正确进行实验操作,能够根据实验数据的分析中得出实验结论。
4.能定性地分析产生实验误差的原因,并会采取相应的措施减小实验误差【知识要点】一、实验原理1.做自由落体运动的物体,设质量为m,下落高度为h时的速度为v,则减少的重力势能为mgh,增加的动能为mv2/2。
若两个量在误差范围内相等,就验证了机械能守恒定律。
2.测定第n点的瞬时速度的方法是:物体做匀变速直线运动的纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度。
3.如图所示为实验中得到的纸带,各段距离的测量数据在图中标出,设相邻计数点间的时间为T,则纸带上n点的瞬时速度的计算表达式为:二、实验器材铁架台(带铁夹)、电火花计时器、重物(带夹子)、纸带、复写纸、导线、毫米刻度尺、低压交流电源(4 V~6 V).三、实验步骤1.按照实验装置图,先将打点计时器竖直的固定在铁架台上,用导线把打点计时器与学生电源连接好。
2.把纸带的一端在重锤上用夹子固定好,另一端穿过打点计时器两个限位孔,用手竖直提起纸带,使重锤停靠在打点计时器附近。
3.先接通电源打点,后释放纸带,让重物自由落下,纸带上打下一系列点。
4.换上新纸带,重复实验几次。
得到3-5条打好点的纸带。
5.在打好的纸带中挑选第一、二两点间距接近2mm ,且点迹清晰的一条纸带。
在起始点标上0,并在纸带上清晰的点开始连续选取几个计数点标为1、2、3、4,并用刻度尺测量出各点到0点的距离为对应下落的高度h 1、h 2、h 3、h 4。
如图所示。
四、数据处理1.计算各点对应的瞬时速度:根据公式v n =h n +1-h n -12T ,计算出1、2、3、……、n 点的瞬时速度v 1、v 2、v 3、……、v n .2.机械能守恒验证:方法一:利用起始点和第n 点.从起始点到第n 个计数点,重力势能减少量为mgh n ,动能增加量为12m v 2n ,计算gh n 和12v 2n ,如果在实验误差允许范围内gh n =12v 2n ,则机械能守恒定律得到验证.方法二:任取两点A 、B .从A 点到B 点,重力势能减少量为mgh A -mgh B ,动能增加量为12m v 2B -12m v 2A ,计算gh AB和12v 2B -12v 2A ,如果在实验误差允许范围内gh AB =12v 2B -12v 2A ,则机械能守恒定律得到验证.方法三:图像法.计算各计数点12v 2,以12v 2为纵轴,以各计数点到第一个点的距离h 为横轴,根据实验数据绘出12v 2-h图线(如图).若在误差允许范围内图像是一条过原点且斜率为g 的直线,则验证了机械能守恒定律.五、注意事项1.选用质量和密度较大的重物,减小阻力对实验的影响。
实验六 验证机械能守恒定律【实验要求】一、实验目的 验证机械能守恒定律. 二、实验原理通过实验,求出做自由落体运动物体的重力势能的减少量和相应过程动能的增加量,若二者相等,说明机械能守恒,从而验证机械能守恒定律.三、实验器材打点计时器、电源、纸带、复写纸、重物、刻度尺、铁架台(带铁夹)、导线两根. 四、实验步骤1.安装置:按实验原理图将检查、调整好的打点计时器竖直固定在铁架台上,接好电路.2.打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔用手提着纸带使重物静止在靠近打点计时器的地方.先接通电源,后松开纸带,让重物带着纸带自由下落.更换纸带重复做3次~5次实验.3.选纸带:(1)用mgh =12m v 2来验证,应选点迹清晰,且1、2两点间距离接近2 mm 的纸带.(2)用12m v 2B -12m v 2A =mg Δh 验证时,只要A 、B 之间的点迹清晰即可选用. 五、实验结论在误差允许的范围内,自由落体运动过程机械能守恒【方法规律】一、验证方案方案一:利用起始点和第n 点计算.代入gh n 和12v 2n ,如果在实验误差允许的范围内,gh n =12v 2n ,则验证了机械能守恒定律.方案二:任取两点计算1.任取两点A 、B 测出h AB ,算出gh AB . 2.算出12v 2B -12v 2A 的值. 3.如果在实验误差允许的范围内,gh AB =12v 2B -12v 2A,则验证了机械能守恒定律.方案三:图象法.从纸带上选取多个点,测量从第一点到其余各点的下落高度h ,并计算各点速度的平方v 2,然后以12v 2为纵轴,以h 为横轴,绘出12v 2-h 图线,若是一条过原点且斜率为g 的直线,则验证了机械能守恒定律.二、误差分析1.测量误差:减小测量误差的方法,一是测下落距离时都从0点量起,一次将各打点对应下落高度测量完,二是多测几次取平均值.2.系统误差:由于重物和纸带下落过程中要克服阻力做功,故动能的增加量ΔE k =12m v 2n必定稍小于重力势能的减少量ΔE p =mgh n ,改进办法是调整安装的器材,尽可能地减小阻力.三、注意事项1.打点计时器要竖直:安装打点计时器时要竖直架稳,使其两限位孔在同一竖直平面内,以减少摩擦阻力.2.重物应选用质量大、体积小、密度大的材料.3.测长度,算速度:某时刻的瞬时速度的计算应用v n =d n +1-d n -12T,不能用v n =2gd n 或v n =gt来计算.【考点剖析】考点一对实验原理和误差分析的考查例1、某同学安装如图甲的实验装置验证机械能守恒定律.(1)此实验中,应当是让重物做________运动,________(填“需要”或“不需要”)测出重物的质量.(2)打点计时器所用交流电的频率为50 Hz,该同学选取如图乙所示的一段纸带,对BD段进行研究.求得B点对应的速度v B=________m/s(保留两位有效数字),若再求得D点对应的速度为v D,测出重物下落的高度为h BD,则还应计算________与________大小是否相等(填字母表达式).(3)但该同学在上述实验过程中存在明显的问题.安装实验装置时存在的问题是_____________________________________________________________________;研究纸带时存在的问题是____________________________________________________________________,实验误差可能较大.【解析】(1)由实验原理知,应让重物在松开手后做自由落体运动;根据机械能守恒,mgΔh=12m(v22-v21),整理后,得gΔh=12(v22-v21),所以,不需要测量质量.(2)B点速度等于AC段的平均速度,v B=AC2T=0.19 m/s;根据实验原理知,还应计算12(v2D-v2B)与gh BD,看两者大小是否相等.(3)重物距离桌面太近,会落到桌面上;B、D间时间间隔太短,实验误差较大.【答案】(1)自由落体不需要(2)0.1912(v2D-v2B)gh BD(3)重物会落在桌面上(或“纸带打点过短”等与此类似的答案)B、D两点间时间间隔过短考点二 对实验数据处理的考查例2、用如图甲所示的实验装置验证m 1、m 2组成的系统机械能守恒.m 2从高处由静止开始下落,m 1上拖着的纸带打出一系列的点,对纸带上的点迹进行测量,即可验证机械能守恒定律.如图乙给出的是实验中获取的一条纸带:0是打下的第一个点,每相邻两计数点间还有4个点(图中未标出),计数点间的距离如图所示.已知m 1=50 g 、m 2=150 g ,则:(结果均保留两位有效数字)甲乙(1)在纸带上打下计数点5时的速度v =________m/s ;(2)在打下第“0”到打下第“5”点的过程中系统动能的增量ΔE k =________J ,系统势能的减少量ΔE p =________J ;(取当地的重力加速度g =10 m/s 2)(3)若某同学作出12v 2-h 图象如图丙所示,则当地的重力加速度g =________m/s 2.丙【解析】 (1)v 5=(21.60+26.40)×10-20.1×2m/s =2.4 m/s.(2)ΔE k =12(m 1+m 2)v 2-0≈0.58 JΔE p =m 2gh -m 1gh =0.60 J.(3)由(m2-m1)gh=12(m1+m2)v2知v22=(m2-m1)ghm1+m2即图象的斜率k=(m2-m1)gm1+m2=5.821.20解得g=9.7 m/s2.【答案】(1)2.4(2)0.580.60(3)9.7例3、某同学利用透明直尺和光电计时器来验证机械能守恒定律,实验的简易示意图如下,当有不透光的物体从光电门间通过时,光电计时器就可以显示物体的挡光时间.所用的光电门传感器可测得最短时间为0.01 ms.将挡光效果好、宽度为d=3.8×10-3m的黑色磁带贴在透明直尺上,从一定高度由静止释放,并使其竖直通过光电门.某同学测得各段黑色磁带通过光电门的时间Δt i,与图中所示的高度差Δh i,并将部分数据进行了处理,结果如下表所示.(取g=9.8 m/s2,注:表格中M为直尺质量)d(1)从表格中数据可知,直尺上磁带通过光电门的瞬时速度是利用v i =dΔt i求出的,请你简要分析该同学这样做的理由是:_______________________________________________________________.(2)请将表格中数据填写完整.(3)通过实验得出的结论是:__________________________________________________________. (4)根据该实验请你判断下列ΔE k -Δh 图象中正确的是________.【解析】 (2)v =d t =3.8×10-30.90×10-3m/s =4.22 m/s ,Mg Δh =9.8×0.41M =4.02M .(3)从表中数据可知,在误差范围内,动能的增加量与重力势能的减少量相等. (4)由ΔE k =Mg Δh ,则动能的变化与高度成正比,C 正确. 【答案】 (1)极短时间内平均速度近似等于瞬时速度 (2)4.22 4.02M(3)在误差范围内重力势能减少量等于动能的增加量 (4)C【模拟演练】1.关于“验证机械能守恒定律”的实验中,以下说法正确的是( )A .实验中摩擦是不可避免的,因此纸带越短越好,因为纸带越短,克服摩擦力做的功就越少,误差就越小B .实验时需称出重物的质量C .纸带上第1、2两点间距若不接近2 mm ,则无论怎样处理实验数据,实验误差都一定较大D .处理打点的纸带时,可以直接利用打点计时器打出的实际点迹,而不必采用“计数点”的方法【解析】选D.A 选项中,纸带过短,长度测量的相对误差较大,故A 错误;由12m v 2=mgh 知,只需验证12v 2=gh 即可,不必测重物质量,故B 错误;对C 选项中的纸带,可选点迹清晰、距离合适的任意两点M 、N ,通过计算ΔE k =12m v 2N -12m v M 2与mghMN 比较,实验误差不一定大,故C 错误;由于自由落体加速度较大,因此除去1、2两点距离可能很小,其他相邻两点间的距离均大于或远大于2 mm ,用毫米刻度尺测量完全可以,不必采用“计数点”法,故D 正确.【答案】D2.利用如图所示装置进行验证机械能守恒定律的实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v 和下落高度h .某班同学利用实验得到的纸带,设计了以下四种测量方案,正确的是( )A .用刻度尺测出物体下落的高度h ,并测出下落时间t ,通过v =gt 计算出瞬时速度vB .用刻度尺测出物体下落的高度h ,并通过v =2gh 计算出瞬时速度vC .根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v ,并通过h =v 22g计算出高度hD .用刻度尺测出物体下落的高度h ,根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度v【解析】选D.在验证机械能守恒定律的实验中不能将物体下落的加速度看做g ,只能把它当做未知的定值,所以正确方案只有D 项.【答案】D3.用如图甲所示的装置“验证机械能守恒定律”.(1)下列物理量需要测量的是________,通过计算得到的是________(填写代号). A .重锤质量 B .重力加速度 C .重锤下落的高度D .与下落高度对应的重锤的瞬时速度(2)设重锤质量为m 、打点计时器的打点周期为T 、重力加速度为g .图乙是实验得到的一条纸带,A 、B 、C 、D 、E 为相邻的连续点.根据测得的x 1、x 2、x 3、x 4写出重锤由B 点到D 点势能减少量的表达式________,动能增量的表达式________.由于重锤下落时要克服阻力做功,所以该实验的动能增量总是________(选填“大于”、“等于”或“小于”)重力势能的减少量.【答案】(1)C D (2)mg (x 3-x 1)mx 4(x 4-2x 2)8T 2小于4.在“验证机械能守恒定律”的实验中,使质量m =200 g 的重物自由下落,打点计时器在纸带上打出一系列的点,选取一条符合实验要求的纸带如图所示.O 为纸带下落的起始点,A 、B 、C 为纸带上选取的三个连续的点.已知打点计时器每隔T =0.02 s 打一个点,当地的重力加速度为g =9.8 m/s 2,那么(1)计算B 点的瞬时速度时,甲同学采用v 2B =2gx OB ,乙同学采用v B =x AC2T ,其中________(选填“甲”或“乙”)同学所选择的方法更符合实验的要求.(2)在计算重力势能时,关于重力加速度g 的数值,丙同学用当地的实际重力加速度代入,丁同学通过对纸带上的数据进行分析计算,用纸带下落的加速度代入,其中________(选填“丙”或“丁”)同学的做法是正确的.(3)某同学想根据纸带上的测量数据进一步计算重物和纸带下落过程中所受到的阻力,他先算出纸带下落的加速度,进而算出阻力f =________N .(保留一位有效数字)【解析】由该实验的原理可知,实验中的速度不能用自由落体运动规律来计算,因此乙同学的方法更符合实验要求.由于要验证机械能守恒定律,因此要代入当地的重力加速度,而不是纸带的加速度,所以丙同学的做法正确;由牛顿运动定律结合纸带中得到的实际加速度可以计算出阻力.【答案】(1)乙 (2)丙 (3)0.065.在用打点计时器验证机械能守恒定律的实验中,使质量为m =1.00 kg 的重物自由下落,打点计时器在纸带上打出一系列的点,选取一条符合实验要求的纸带如图所示.O 为第一个点,A 、B 、C 为从合适位置开始选取连续点中的三个点.已知打点计时器每隔0.02 s 打一个点,当地的重力加速度为g =9.80 m/s 2,那么:(1)根据图上所得的数据,应取图中O 点到________点来验证机械能守恒定律;(2)从O 点到(1)问中所取的点,重物重力势能的减少量ΔE p =________J ,动能增加量ΔE k =________J(结果取三位有效数字);(3)若测出纸带上所有各点到O 点之间的距离,根据纸带算出各点的速度v 及物体下落的高度h ,则以v 22为纵轴,以h 为横轴画出的图象是如图中的________.【解析】(1)由题中所给数据,只可求出B 点的速度,故选取OB 段来验证机械能守恒定律. (2)ΔE p =mg ·OB =1.00×9.80×0.192 0 J =1.88 JΔE k =12m v 2B =12×1.00×⎣⎢⎡⎦⎥⎤(23.23-15.55)×10-22×0.022J =1.84 J. (3)由mgh =12m v 2得:v 22∝h ,故A 正确.【答案】(1)B (2)1.88 1.84 (3)A6.某研究性学习小组利用气垫导轨验证机械能守恒定律,实验装置如图甲所示.在气垫导轨上相隔一定距离的两处安装两个光电传感器A 、B ,滑块P 上固定一遮光条,若光线被遮光条遮挡,光电传感器会输出高电压,两光电传感器采集数据后与计算机相连.滑块在细线的牵引下向左加速运动,遮光条经过光电传感器A 、B 时,通过计算机可以得到如图乙所示的电压U 随时间t 变化的图象.(1)实验前,接通气源,将滑块(不挂钩码)置于气垫导轨上,轻推滑块,当图乙中的Δt 1________Δt 2(填“>”、“=”或“<”)时,说明气垫导轨已经水平.(2)用游标卡尺测遮光条宽度d ,测量结果如图丙所示,则d =________mm.(3)滑块P 用细线跨过气垫导轨左端的定滑轮与钩码Q 相连,钩码Q 的质量为m .将滑块P 由图甲所示位置释放,通过计算机得到的图象如图乙所示,若Δt 1、Δt 2和d 已知,要验证滑块和钩码组成的系统机械能是否守恒,还应测出________和________(写出物理量的名称及符号).(4)若上述物理量间满足关系式________________________________________________________ ____________________________,则表明在上述过程中,滑块和钩码组成的系统机械能守恒.【解析】(1)导轨水平时,滑块做匀速运动,Δt 1=Δt 2. (2)d =5 mm +0×0.1 mm =5.0 mm.(4)滑块通过光电门的速度为v 1=d Δt 1,v 2=d Δt 2,M 、m 组成的系统机械能守恒,则mgL =12(M +m )⎝⎛⎭⎫d Δt 22-12(M +m )⎝⎛⎭⎫d Δt 12. 【答案】(1)= (2)5.0 (3)滑块质量M 两光电门间距L11 (4)mgL =12(M +m )⎝⎛⎭⎫d Δt 22-12(M +m )⎝⎛⎭⎫d Δt 12。
专题6.2 机械能守恒定律及其应用及实验【讲】目录一讲核心素养 (1)二讲必备知识 (2)【知识点一】机械能守恒定律的判断 (2)【知识点二】单物体机械能守恒问题 (4)【知识点三】实验:验证机械能守恒定律 (8)三.讲关键能力 (13)【能力点一】.多物体机械能守恒问题 (13)【能力点二】.含“弹簧类”机械能守恒问题 (17)【能力点三】.实验创新 (20)四.讲模型思想---用机械能守恒定律解决非质点问题 (25)一讲核心素养1.物理观念:重力势能、机械能。
(1)理解功和功率。
了解生产生活中常见机械的功率大小及其意义。
(2)理解动能和动能定理。
能用动能定理解释生产生活中的现象。
2.科学思维:机械能守恒定律。
(1)理解重力势能,知道重力势能的变化与重力做功的关系。
定性了解弹性势能。
(2)知道机械能的含义会判断研究对象在某一过程机械能是否守恒.(3).能应用机械能守恒定律解决具体问题.3.科学态度与责任:(1)理解机械能守恒定律,体会守恒观念对认识物理规律的重要性。
(2).能用机械能守恒定律分析生产生活中的有关问题。
4.科学探究:实验:验证机械能守恒定律(1).熟悉“验证机械能守恒定律”的基本实验原理及注意事项.(2).会验证创新实验的机械能守恒.二讲必备知识【知识点一】机械能守恒定律的判断1.利用机械能的定义判断:分析动能和势能的和是否变化.2.利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.利用能量转化来判断:若物体或系统只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体或系统机械能守恒.【例1】(2021·福建邵武七中期中)(多选)如图,轻弹簧竖立在地面上,正上方有一钢球,从A处自由下落,落到B处时开始与弹簧接触,此时向下压缩弹簧.小球运动到C处时,弹簧对小球的弹力与小球的重力平衡.小球运动到D处时,到达最低点.不计空气阻力,以下描述正确的有()A.小球由A向B运动的过程中,处于完全失重状态,小球的机械能减少B.小球由B向C运动的过程中,处于失重状态,小球的机械能减少C.小球由B向C运动的过程中,处于超重状态,小球的动能增加D.小球由C向D运动的过程中,处于超重状态,小球的机械能减少【答案】 BD【解析】 小球由A 向B 运动的过程中,做自由落体运动,加速度等于竖直向下的重力加速度g ,处于完全失重状态,此过程中只有重力做功,小球的机械能守恒,A 错误;小球由B 向C 运动的过程中,重力大于弹簧的弹力,加速度向下,小球处于失重状态,小球和弹簧组成的系统机械能守恒,弹簧的弹性势能增加,小球的机械能减少,由于小球向下加速运动,小球的动能还是增大的,B 正确,C 错误;小球由C 向D 运动的过程中,弹簧的弹力大于小球的重力,加速度方向向上,处于超重状态,弹簧继续被压缩,弹性势能继续增大,小球的机械能继续减小,D 正确.【素养升华】本题考察的学科素养主要是物理观念及科学思维。
要求考生掌握受力分析及做功知道机械能守恒定律的条件。
【变式训练1】(2021·河北唐山市高三二模)如图所示,小球从高处下落到竖直放置的轻弹簧上,弹簧一直保持竖直,空气阻力不计,那么小球从接触弹簧开始到将弹簧压缩到最短的过程中,下列说法中正确的是( )A .小球的动能一直减小B .小球的机械能守恒C .克服弹力做功大于重力做功D .最大弹性势能等于小球减少的动能 【答案】 C【解析】 小球开始下落时,只受重力作用做加速运动,当与弹簧接触时,受到弹簧弹力作用,开始时弹簧压缩量小,因此重力大于弹力,速度增大,随着弹簧压缩量的增加,弹力增大,当重力等于弹力时,速度最大,然后弹簧继续被压缩,弹力大于重力,小球开始减速运动,所以整个过程中小球先加速后减速运动,根据E k =12mv 2,动能先增大然后减小,故A 错误;在向下运动的过程中,小球受到的弹力对它做了负功,小球的机械能不守恒,故B 错误;在向下运动过程中,重力势能减小,最终小球的速度为零,动能减小,弹簧的压缩量增大,弹性势能增大,根据能量守恒,最大弹性势能等于小球减少的动能和减小的重力势能之和,即克服弹力做功大于重力做功,故D 错误,C 正确.【变式训练2】(2021·浙江金华十校4月模拟)下列对各图的说法正确的是( )A.图甲中汽车匀速下坡的过程中机械能守恒B.图乙中卫星绕地球匀速圆周运动时所受合力为零,动能不变C.图丙中弓被拉开过程弹性势能减少了D.图丁中撑竿跳高运动员在上升过程中机械能增大【答案】D【解析】图甲中汽车匀速下坡的过程中动能不变,重力势能减小,机械能减小,故A错误;图乙中卫星绕地球匀速圆周运动时所受合力提供向心力则不为0,匀速圆周运动速度大小不变,则动能不变,故B错误;图丙中弓被拉开过程橡皮筋形变增大,弹性势能增大,故C错误;图丁中撑竿跳高运动员在上升过程中竿对运动员做正功,其机械能增大,故D正确。
【知识点二】单物体机械能守恒问题1.机械能守恒的三种表达式2.解题的一般步骤 (1)选取研究对象;(2)进行受力分析,明确各力的做功情况,判断机械能是否守恒; (3)选取参考平面,确定初、末状态的机械能或确定动能和势能的改变量; (4)根据机械能守恒定律列出方程;(5)解方程求出结果,并对结果进行必要的讨论和说明.【例1】(2021·北京市昌平区二模练习)如图所示,半径R =0.5 m 的光滑半圆轨道固定在竖直平面内,半圆轨道与光滑水平地面相切于圆轨道最低端点A 。
质量m =1 kg 的小球以初速度v 0=5 m/s 从A 点冲上竖直圆轨道,沿轨道运动到B 点飞出,最后落在水平地面上的C 点,g 取10 m/s 2,不计空气阻力。
(1)求小球运动到轨道末端B 点时的速度v B ; (2)求A 、C 两点间的距离x ;(3)若小球以不同的初速度冲上竖直圆轨道,并沿轨道运动到B 点飞出,落在水平地面上。
求小球落点与A 点间的最小距离x min 。
【答案】 (1) 5 m/s (2)1 m (3)1 m【解析】 (1)选水平地面为零势能参考面,由机械能守恒定律得12mv 2A =12mv 2B +mg ·2R 解得v B = 5 m/s 。
(2)由平抛规律得2R =12gt 2,x =v B t ,解得x =1 m 。
(3)设小球运动到B 点半圆轨道对小球的压力为F N 圆周运动向心力F N +mg =mv 2BR得当F N =0时,小球运动到轨道末端B 点时的速度最小v B min = 5 m/s 由(2)的计算可知,最小距离x min =x =1 m 。
【素养升华】本题考察的学科素养主要是物理观念及科学思维。
【技巧方法】【变式训练1】(多选)(2021·广东南海中学月考)如图所示,在地面上以速度v 0抛出质量为m 的物体,抛出后物体落到比地面低h 的海平面上,若以地面为参考平面且不计空气阻力,则下列说法中正确的是( )A .物体落到海平面时的重力势能为mghB .物体从抛出到落到海平面的过程重力对物体做功为mghC .物体在海平面上的动能为12mv 02+mghD .物体在海平面上的机械能为12mv 02【答案】 BCD【解析】 物体运动过程中,机械能守恒,所以任意一点的机械能相等,都等于抛出时的机械能,物体在地面上的重力势能为零,动能为12mv 02,故整个过程中的机械能为12mv 02,所以物体在海平面上的机械能为12mv 02,在海平面上的重力势能为-mgh ,根据机械能守恒定律可得-mgh +12mv 2=12mv 02,所以物体在海平面上的动能为12mv 02+mgh ,从抛出到落到海平面,重力做功为mgh ,所以B 、C 、D 正确.【变式训练2】(2020·宁夏石嘴山三中月考)如图所示,P 是水平面上的固定圆弧轨道,从高台边B 点以速度v 0水平飞出质量为m 的小球,恰能从左端A 点沿圆弧切线方向进入。
O 是圆弧的圆心,θ是OA 与竖直方向的夹角。
已知m =0.5 kg ,v 0=3 m/s ,θ=53°,圆弧轨道半径R =0.5 m ,g 取10 m/s 2,不计空气阻力和所有摩擦,求:(1)A 、B 两点的高度差;(2)小球能否到达最高点C ?如能到达,小球对C 点的压力大小为多少? 【答案】 见解析【解析】(1)小球从B 到A 做平抛运动,到达A 点时,速度与水平方向的夹角为θ,则有v A =v 0cos θ=5 m/s根据机械能守恒定律,有mgh =12mv 2A -12mv 2解得A 、B 两点的高度差h =0.8 m 。
(2)假设小球能到达C 点,由机械能守恒定律得 12mv 2C +mgR (1+cos θ)=12mv 2A 代入数据解得v C =3 m/s 小球通过C 点的最小速度为v , 则mg =m v 2R ,v =gR = 5 m/s因为v C >v ,所以小球能到达最高点C在C 点,由牛顿第二定律得mg +F =m v 2CR代入数据解得F =4 N由牛顿第三定律知,小球对C 点的压力大小为4 N 。
【知识点三】实验:验证机械能守恒定律一.实验基本要求 1.实验目的验证机械能守恒定律。
2.实验原理(如图所示)通过实验,求出做自由落体运动物体的重力势能的减少量和对应过程动能的增加量,在实验误差允许范围内,若二者相等,说明机械能守恒,从而验证机械能守恒定律。
3.实验器材打点计时器、交流电源、纸带、复写纸、重物、刻度尺、铁架台(带铁夹)、导线。
4.实验步骤(1)安装器材:将打点计时器固定在铁架台上,用导线将打点计时器与电源相连。
(2)打纸带用手竖直提起纸带,使重物停靠在打点计时器下方附近,先接通电源,再松开纸带,让重物自由下落,打点计时器就在纸带上打出一系列的点,取下纸带,换上新的纸带重打几条(3~5条)纸带。
(3)选纸带:分两种情况说明①若选第1点O 到下落到某一点的过程,即用mgh =12mv 2来验证,应选点迹清晰,且第1、2两点间距离接近2mm 的纸带(电源频率为50 Hz)。
①用12mv 2B -12mv 2A =mgh AB 验证时,由于重力势能的相对性,处理纸带时选择适当的点为基准点即可。
5.实验结论在误差允许的范围内,自由落体运动过程机械能守恒。
二.基本实验方法 1.误差分析(1)测量误差:减小测量误差的方法,一是测下落距离时都从O 点量起,一次将各打点对应下落高度测量完,二是多测几次取平均值。
(2)系统误差:由于重物和纸带下落过程中要克服阻力做功,故动能的增加量ΔE k =12mv 2n 必定稍小于重力势能的减少量ΔE p =mgh n ,改进办法是调整安装的器材,尽可能地减小阻力。