北师大版七年级数学下册第一章检测卷[1111]
- 格式:docx
- 大小:24.88 KB
- 文档页数:18
北师大版七年级数学下册《第一章整式的乘除》单元测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.3(52)a a b 的计算结果正确的是( )A .286a ab -B .2156a abC .2155a ab -D .156a ab -2.下列运算中,正确的是( ) A .()2233x x =B .()222224a b a ab b +=++ C .()5230a a a a ÷=≠ D .()211a a a +=+ 3.如图,大正方形与小正方形的面积差为72,则阴影部分的面积为( )A .22B .24C .30D .364.已知2326212,, a b c ===,则a ,b ,c 的关系为①1b a =+,①2c a =+,①2a c b +=,①23b c a +=+,其中正确的个数有( )A .1个B .2个C .3个D .4个5.某新型纤维的直径约为0.000028米,将该新型纤维的半径用科学记数法表示是( )A .42.810-⨯米B .52.810-⨯米C .41.410-⨯米D .51.410-⨯米6.下列计算正确的是( )A .326a a a ⋅=B .()235a a =C .()2222a a =D .532a a a ÷=7.2x (﹣3xy )2的计算结果是( )A .﹣18x 3y 2B .18x 3y 2C .18xy 2D .6x 3y 28.已知实数a ,b 满足221a ab b ++=,且22t ab a b =--,则t 的取值范围是( )A .3t ≥B . 13t ≤-C .133t -≤≤-D .133t -≤< 9.下列运算中,计算正确的是( )A .2a•3a=6aB .(2a 2)3=8a 6C .a 8÷a 4=a 2D .(a+b )2=a 2+b 210.下列计算正确的是( )A .224a a a +=B .()2326a a =C .()23533a a a -=-D .623422a a a ÷=二、填空题(共8小题,满分32分)11.微电子技术使半导体材料的精细加工尺寸大幅度缩小,某种电子元件的面积大约为0.00000065平方毫米,数据三、解答题(共6小题,每题8分,满分48分)19.【阅读理解】阅读下列内容,观察分析,回答问题:①.34733(333)(3333)3⨯=⨯⨯⨯⨯⨯⨯=;①.34755(555)(5555)5⨯=⨯⨯⨯⨯⨯⨯=;①.347()()a a a a a a a a a a ⨯=⨯⨯⨯⨯⨯⨯=.【概括总结】通过以上分析,填空:()()m n m n a a a a a a a a a a ⨯=⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯个个()()a a a a a =⨯⨯⨯⋅⋅⋅⨯=②①(m 、n 为正整数). (1)在上述分析过程中:①所在括号中填______,①所在括号中填______.【应用与拓展】计算:(2)541010⨯=_________;(3)37a a a ⋅⋅=_________;(4)如果x 是不等于1的正数,且3335n n x x x +⋅=,求n 的值.20.计算:(1)()26x -;(2)()22x y --;(3)()23p q -+;(4)()()222m n m n +⎡⎤⎣⎦-.21.如图,一个长方体的礼品盒,它的长、宽、高分别是x 、x 、x ﹣2.(1)写出礼品盒的表面积S 与x 之间的关系式;(2)当x =4时,求这个礼品盒的表面积.22.计算题:(1)()42337x x x x ⋅-÷;参考答案: 1.B2.C3.D4.D5.D6.D7.B8.C9.B10.C11.76.510-⨯12.1413.7.514.3-15.26a -16.±317.-118. 6 4 四 19.【概括总结】(1)①m n +; ①m n +【应用与拓展】(2)910;(3)11a ;(4)820.(1)21236x x -+(2)2244x xy y ++(3)2269p pq q +-(4)4224168m m n n -+21.(1)S =6x 2﹣8x ;(2)64 22.(1)0(2)4(3)x -5。
北师大版七年级数学下册第一章单元测试TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-七年级数学单元测试(测试内容整式的除法)一、单选题1.计算6 x2n y÷3 x n y的结果为( )A. 2x nB. 2x2yC. 3x nD. 3x22.下列各式计算正确的是( )A. 6x6÷2x2=3x2B. 8x8÷4 x2=2 x6C. a3÷a3=0D. 23a5 b÷32a5 b=13.若n为正整数,且x2n=5,则(2x3n)2÷4x4n的值为( )A. 52B. 5C. 10D. 1 54.计算12a5b6c4÷(-3a2b3c)÷2a3b3c3,其结果正确的是( )A. -2B. 0C. 1D. 25.计算-5a5b3c÷15a4b3结果是()A. 3aB. -3acC. 13ac D. -13ac6.计算:4a2b2c÷(-2ab2)等于( )A. -2a2bcB. 12a2cC. -2acD. -2abc 7.计算()322323a a a a a-+⋅-÷的结果为()A. 52a a- B. 512aa-C. 5a D. 6a8.如果在计算()322854a b a b ab-÷时把括号内的减号不小心抄成加号,那么正确结果和错误结果的差是().A.52ab B.52ab-C. 0D. 24a 9.如果()224343a b ab M a b-÷=-+,那么单项式M等于().A. aB. b-C. abD. ab-10.与单项式23a b-的积是32222623a b a b a b--的多项式是().A.223ab b-- B.223ab b-+ C.2213ab b--+ D.2213ab b-++二、填空题11.3a n+1÷2 a n=_________.12.12 a3b÷(-3a2b)=_________. 13.(-6 a4 b2c)÷(3a3 b)=_________. 14.(24 x8-21x6)÷(______________)=8 x3-7x.15.(____________)÷ x 3y 2=27 x 4y 3+7 x 3 y 2-9 x 2y .16.与单项式-3a 2b 的积是6a 3b 2-3a 2b 2+9a 2b 的多项式是_________. 17.地球到太阳的距离约为×108km ,光的速度约为×105km/s ,则太阳光从太阳射到地球的时间约为____s.18.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:-3xy (4y-2x-1)=-12xy 2+6x 2y+□,□的地方被墨水弄污了,你认为□处应填写_________.19.已知a 是-2的相反数,且|b +1|=0,则[-3a 2(ab 2+2a)+4a(-ab)2]÷(-4a)的值为_____.20.若-24a 3b 2c÷ma 2b=-3abc,则m 的值为_______.三、解答题21.计算: (1) 4238x yz ⎛⎫⎪⎝⎭÷ x 4y );(2) x 3 y m )2÷(2 x 2y n )2.22.计算:(1)2233162x y xy x y ⎛⎫--⎪⎝⎭÷(-3xy );(2)[6 a 2m+1·(-a 2)2-3 a 2m+2-9(a m+1)2]÷213m a +⎛⎫- ⎪⎝⎭.23.已知(-13xyz)2·m=13x 2n +1y n +3z 3÷3x 2n -1y n +1z ,求m.24.已知实数a 、b 、c 满足|a +1|+(b -c)2+(25c 2+10c +1)=0,求(abc)12÷(a 11b 8c 11)的值.参考答案1.A【解析】6x 2n y ÷3x n y=(6÷3)x 2n-n y 1-1=2x n ,故选A. 2.B【解析】÷2x 2=3x 4,则A 错误;÷4x 2=2x 6,则B 正确;÷a 3=1,则C 错误,D.23a 5b ÷32a 5b =49,则D 错误,故选B. 3.B【解析】解:原式=642445n n n x x x ÷==.故选B . 点睛:此题主要考查了同底数幂的除法运算以及积的乘方运算,正确掌握运算法则是解答本题的关键. 4.A【解析】解:原式=-4a 3b 3c 3÷2a 3b 3c 3=-2.故选A .5.D 【解析】5a 5b 3c÷15a 4b 3=(5÷15)(a 5÷a 4)(b 3÷b 3)c=13ac. 故选:D. 6.C【解析】解:原式=-2ac .故选C . 7.D【解析】根据幂的乘方、同底数幂相乘除,可知()322323a a a a a -+⋅-÷=655a a a +-=6a .故选:D. 8.B【解析】先根据()322854a b a b ab +÷计算出错误的结果为: 2524a ab +,再计算()322854a b a b ab -÷= 2524a ab -,最后再2255522442a ab a ab ab ⎛⎫⎛⎫+--=- ⎪ ⎪⎝⎭⎝⎭,故选B. 9.D【解析】根据”除式=被除式÷商”可得: ()()224343a b ab a b ab -÷-+=-,故选D.10.D【解析】根据”因数=积÷因数”可得:()()32222226233213a ba b a b a b ab b --÷-=-++,故选D.11.32a【解析】3a n+1÷2a n =(3÷2)×a n+1-1=32a ,故答案为32a . 12.-4a【解析】12a 3b ÷(-3a 2b )=-(12÷3)×a 3-2b 1-1=-4a ,故答案为-4a.13.-2abc【解析】(-6a 4b 2c )÷(3a 3b )=-(6÷3)×a 4-3b 2-1c =-2abc ,故答案为-2abc. 14.3x 5【解析】(24x 8-21x 6)÷(8x 3-7x )=3x 5,故答案为3x 5. 15.+ x 5 y 3【解析】(27x 4y 3+7x 3y 2-9x 2y )=+,故答案为+【解析】试题解析:根据题意,得 故答案为: 2 3.ab b -+- 17.500【解析】解:(×108)÷(×105)=500.故答案为:500. 18.3xy【解析】试题解析:根据题意,得()2234211263.xy y x xy x y xy ---=-++ 故答案为: 3.xy19.5【解析】[-3a 2(ab 2+2a)+4a(-ab)2]÷(-4a)=()323323644a b a a b a ⎡⎤--+÷-⎣⎦=()()32364a b a a -÷-=222342a b a -+ ∵a 是-2的相反数,且|b +1|=0, ∴a=2,b=-1,∴原式=413442⨯⨯-+=-1+6=5. 点睛:本题主要考查了整式的混合运算、相反数及绝对值的性质,正确的利用运算法则化简是解决本题的关键. 20.8 【解析】解:m =()()()322243a b c abc a b -÷-÷=()()228a b a b ÷=8.故答案为:8.21.(1) z 2;(2) x 2 y 2m-2n . 【解析】试题分析:(1)把系数与同底数幂分别除,所得的商作为积的因式,只在被除式中含有的字母,连同它的指数作为商的一个因式;(2)先用积的乘方法则的幂的乘方法则计算,再做除法. 试题解析:(1) 4238x yz ⎛⎫⎪⎝⎭÷=4411230.3758x y z --⎛⎫÷⨯ ⎪⎝⎭=z 2; (2)2÷(2x 2y n )2=425x 6y 2m÷4x 4y 2n =425×14·x 6-4y 2m-2n =.22.(1)-2x + 13y +2216x y ;(2)-18a m+3+36 a m . 【解析】试题分析:(1)把多项式中的每一项都除以单项式,再把所得的商相加,注意符号的运算;(2)先算乘方,合并中括号内的同类项,再用多项式除以单项式的法则计算. 试题解析:(1) 2233162x y xy x y ⎛⎫-- ⎪⎝⎭÷(-3xy )=()()()2233163332x y xy xy xy x y xy ÷--÷--÷-=-2x + 13y +2216x y ;(2)[6a 2m+1·(-a 2)2-3a 2m+2-9(a m+1)2]÷213m a +⎛⎫- ⎪⎝⎭=(6a 2m+1·a 4-3a 2m+2-9a 2m+2)÷213m a +⎛⎫- ⎪⎝⎭=6a 2m+5÷213m a +⎛⎫- ⎪⎝⎭-12a 2m+2÷213m a +⎛⎫- ⎪⎝⎭.=-18a m+3+36a m . 23.m=1.【解析】试题分析:先算积的乘方和单项式除以单项式,然后比较即可得出结论.试题解析:解:2222221199x y z m x y z ⋅=,∴m =1. 24.13125【解析】试题分析:由非负数的性质可知已知等式每项等于0,求解后,代入计算即可.试题解析:解:由题意可知:a +1=0,bc =0,25c 2+10c +1=0,解得:a =-1,b =c =15-,(abc )12÷(a 11b 8c 11)=ab 4c =(-1)×(15-)4×(15-)=13125.点睛:本题考查了非负数的性质和单项式除以单项式,几个非负数的和为0,则每一个非负数都等于0.。
第一章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.计算x3·x3的结果是( )A.2x3B.2x6C.x6D.x92.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.00122,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.00122用科学记数法表示应为( ) A.1.22×10-5B.122×10-3C.1.22×10-3D.1.22×10-23.下列计算中,能用平方差公式计算的是( )A.(x+3)(x-2) B.(-1-3x)(1+3x)C.(a2+b)(a2-b) D.(3x+2)(2x-3)4.下列各式计算正确的是( )A.a+2a2=3a3B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2b D.(2ab)2÷ab=2ab(ab≠0)5.若(y+3)(y-2)=y2+my+n,则m,n的值分别为( )A.m=5,n=6 B.m=1,n=-6C .m =1,n =6D .m =5,n =-66.计算(8a 2b 3-2a 3b 2+ab )÷ab 的结果是( )A .8ab 2-2a 2b +1B .8ab 2-2a 2bC .8a 2b 2-2a 2b +1D .8a 2b -2a 2b +17.设(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab8.若M =(a +3)(a -4),N =(a +2)(2a -5),其中a 为有理数,则M 、N 的大小关系是( )A .M >NB .M <NC .M =ND .无法确定9.若a =20180,b =2016×2018-20172,c =⎝ ⎛⎭⎪⎪⎫-232016×⎝ ⎛⎭⎪⎪⎫322017,则下列a ,b ,c 的大小关系正确的是( )A .a <b <cB .a <c <bC .b <a <cD .c <b <a10.已知x 2+4y 2=13,xy =3,求x +2y 的值.这个问题我们可以用边长分别为x 与y 的两种正方形组成一个图形来解决,其中x >y ,能较为简单地解决这个问题的图形是()二、填空题(每小题3分,共24分)11.计算:a 3÷a =________.12.若长方形的面积是3a 2+2ab +3a ,长为3a ,则它的宽为__________.13.若x n =2,y n =3,则(xy )n =________.14.化简a 4b 3÷(ab )3的结果为________.15.若2x +1=16,则x =________.16.用一张包装纸包一本长、宽、厚如图所示的书(单位:cm).若将封面和封底每一边都包进去3cm ,则需长方形的包装纸____________cm 2.17.已知(x +y )2=1,(x -y )2=49,则x 2+y 2的值为________.18.观察下列运算并填空.1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112;3×4×5×6+1=360+1=361=192;4×5×6×7+1=840+1=841=292;7×8×9×10+1=5040+1=5041=712;……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2.三、解答题(共66分)19.(8分)计算:(1)23×22-⎝ ⎛⎭⎪⎪⎫120-⎝ ⎛⎭⎪⎪⎫12-3;(2)-12+(π-3.14)0-⎝ ⎛⎭⎪⎪⎫-13-2+(-2)3.20.(12分)化简:(1)(2x -5)(3x +2);(2)(2a +3b )(2a -3b )-(a -3b )2;(3)⎝ ⎛⎭⎪⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy );(4)(a +b -c )(a +b +c ).21.(10分)先化简,再求值:(1)(1+a)(1-a)+(a-2)2,其中a=1 2;(2)[x2+y2-(x+y)2+2x(x-y)]÷4x,其中x-2y=2.22.(8分)若m p=15,m2q=7,m r=-75,求m3p+4q-2r的值.23.(8分)对于任意有理数a、b、c、d,我们规定符号(a,b)(c,d)=ad -bc.例如:(1,3)(2,4)=1×4-2×3=-2.(1)(-2,3)(4,5)=________;(2)求(3a+1,a-2)(a+2,a-3)的值,其中a2-4a+1=0.24.(10分)王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?25.(10分)阅读:已知a+b=-4,ab=3,求a2+b2的值.解:∵a+b=-4,ab=3,∴a2+b2=(a+b)2-2ab=(-4)2-2×3=10.请你根据上述解题思路解答下面问题:(1)已知a-b=-3,ab=-2,求(a+b)(a2-b2)的值;(2)已知a-c-b=-10,(a-b)c=-12,求(a-b)2+c2的值.参考答案与解析1.C 2.C 3.C 4.C 5.B6.A 7.A 8.B 9.C10.B 解析:(x +2y )2=x 2+4xy +4y 2,故符合的图形为B.11.a 2 12.a +23b +1 13.6 14.a 15.3 16.(2a 2+19a -10) 17.2518.(n 2+5n +5) 解析:观察几个算式可知结果都是完全平方式,且5=1×4+1,11=2×5+1,19=3×6+1,……由此可知,最后一个式子为完全平方式,且底数为(n +1)(n +4)+1=n 2+5n +5.19.解:(1)原式=8×4-1-8=23.(4分)(2)原式=-1+1-9-8=-17.(8分)20.解:(1)原式=6x 2+4x -15x -10=6x 2-11x -10.(3分)(2)原式=4a 2-9b 2-a 2+6ab -9b 2=3a 2+6ab -18b 2.(6分)(3)原式=-56x 2y 2-43xy +1.(9分) (4)原式=(a +b )2-c 2=a 2+b 2-c 2+2ab .(12分)21.解:(1)原式=1-a 2+a 2-4a +4=-4a +5.(3分)当a =12时,原式=-4×12+5=3.(5分) (2)原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷4x =(2x 2-4xy )÷4x =12x -y .(8分)∵x -2y =2,∴12x -y =1,∴原式=1.(10分)22.解:m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2.(4分)∵m p =15,m 2q =7,m r =-75,∴m 3p +4q -2r =⎝ ⎛⎭⎪⎪⎫153×72÷⎝ ⎛⎭⎪⎪⎫-752=15.(8分) 23.解:(1)-22(2分)(2)(3a +1,a -2)(a +2,a -3)=(3a +1)(a -3)-(a -2)(a +2)=3a 2-9a +a -3-(a 2-4)=3a 2-9a +a -3-a 2+4=2a 2-8a +1.(5分)∵a 2-4a +1=0,∴2a 2-8a =-2,∴(3a +1,a -2)(a +2,a -3)=-2+1=-1.(8分)24.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),(4分)即木地板需要4ab 平方米,地砖需要11ab 平方米.(5分)(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.(10分)25.解:(1)∵a -b =-3,ab =-2,∴(a +b )(a 2-b 2)=(a +b )2(a -b )=[(a -b )2+4ab ](a -b )=[(-3)2+4×(-2)]×(-3)=-3.(5分)(2)∵a -c -b =-10,(a -b )c =-12,∴(a -b )2+c 2=[(a -b )-c ]2+2(a -b )c =(-10)2+2×(-12)=76.(10分)。
北师大版七年级下册数学第一章单元测试题一.选择题(共10小题)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x52.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y24.下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2 D.(a﹣3)2=a2﹣95.下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x66.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1077.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.308.计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0 B.2 C.﹣2 D.﹣2a49.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm210.2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是()A.8 B.6 C.4 D.2二.填空题(共10小题)11.若a m=2,a n=8,则a m+n=______.12.计算:(﹣5a4)•(﹣8ab2)=______.13.若2•4m•8m=216,则m=______.14.计算:﹣(﹣)﹣83×0.1252=______.15.已知10m=3,10n=2,则102m﹣n的值为______.16.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为______.17.观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=______.18.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是______.19.如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=______.20.计算:=______.三.解答题(共10小题)21.已知a x=5,a x+y=30,求a x+a y的值.22.已知2x+5y=3,求4x•32y的值.23.计算:12×(﹣)+8×2﹣2﹣(﹣1)2.24.先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.25.已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.26.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.27.计算:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.28.(2016春•滁州期末)如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.29.已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n的值.30.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).北师大版七年级下册数学第一章单元测试题参考答案与试题解析一.选择题(共10小题)1.(2016•呼伦贝尔)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.(2016•哈尔滨)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(2016•娄底)下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、5a﹣2a=3a,故此选项错误;C、(a3)4=a12,正确;D、(x+y)2=x2+y2+2xy,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及合并同类项、幂的乘方运算、完全平方公式等知识,正确把握相关定义是解题关键.4.(2016•荆门)下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2 D.(a﹣3)2=a2﹣9【分析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,差的平方等余平方和减积的二倍,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、积的乘方等于乘方的积,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、差的平方等余平方和减积的二倍,故D错误;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(2016•东营)下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【分析】A:根据合并同类项的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据完全平方公式判断即可.D:根据同底数幂的除法法则判断即可.【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了完全平方公式的应用,以及合并同类项的方法,要熟练掌握.6.(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.7.(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2016春•揭西县期末)计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0 B.2 C.﹣2 D.﹣2a4【分析】原式利用平方差公式计算,去括号合并即可得到结果.【解答】解:原式=(x2﹣1)(x2+1)﹣(x4+1)=x4﹣1﹣x4﹣1=﹣2,故选C【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.(2016春•山亭区期末)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm2【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【解答】解:矩形的面积为:(a+4)2﹣(a+1)2=(a2+8a+16)﹣(a2+2a+1)=a2+8a+16﹣a2﹣2a﹣1=6a+15.故选C.【点评】此题考查了图形的剪拼,关键是根据题意列出式子,运用完全平方公式进行计算,要熟记公式.10.(2016春•相城区期中)(2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是()A.8 B.6 C.4 D.2【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字.【解答】解:原式=(2﹣1)•(2+1)•(22+1)•(24+1)…(216+1)+1=(22﹣1)•(22+1)•(24+1)…(216+1)+1=(24﹣1)•(24+1)…(216+1)+1=232﹣1+1=232,∵21=2,22=4,23=8,24=16,25=32,…,∴其结果个位数以2,4,8,6循环,∵32÷4=8,∴原式计算结果的个位数字为6,故选:B.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二.填空题(共10小题)11.(2016•大庆)若a m=2,a n=8,则a m+n=16.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m•a n=16,故答案为:16【点评】此题考查了同底数幂的乘法,熟练掌握乘法法则是解本题的关键.12.(2016•临夏州)计算:(﹣5a4)•(﹣8ab2)=40a5b2.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.13.(2016•白云区校级二模)若2•4m•8m=216,则m=3.【分析】直接利用幂的乘方运算法则得出2•22m•23m=216,再利用同底数幂的乘法运算法则即可得出关于m的等式,求出m的值即可.【解答】解:∵2•4m•8m=216,∴2•22m•23m=216,∴1+5m=16,解得:m=3.故答案为:3.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用运算法则是解题关键.14.(2016•黄冈模拟)计算:﹣(﹣)﹣83×0.1252=﹣7.【分析】直接利用积的乘方运算法则结合有理数的乘法运算法则化简求出答案.【解答】解:﹣(﹣)﹣83×0.1252=﹣(8×0.125)2×8=﹣8=﹣7.故答案为:﹣7.【点评】此题主要考查了积的乘方运算和有理数的乘法运算,正确应用积的乘方运算法则是解题关键.15.(2016•阜宁县二模)已知10m=3,10n=2,则102m﹣n的值为.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:102m=32=9,102m﹣n=102m÷10n=,故答案为:.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.16.(2016•河北模拟)已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为0.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a,b,c的值,即可求出原式的值.【解答】解:已知等式整理得:x2+2x﹣3=ax2+bx+c,∴a=1,b=2,c=﹣3,则原式=9﹣6﹣3=0.故答案为:0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.17.(2016•百色)观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017.【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【解答】解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017【点评】此题考查了平方差公式,以及多项式乘以多项式,弄清题中的规律是解本题的关键.18.(2016•乐亭县二模)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(a﹣b)2.【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.19.(2016春•沛县期末)如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=3.【分析】利用平方差公式,对x2﹣y2分解因式,然后,再把x+y=﹣1,x﹣y=﹣3代入,即可解答.【解答】解:根据平方差公式得,x2﹣y2=(x+y)(x﹣y),把x+y=﹣1,x﹣y=﹣3代入得,原式=(﹣1)×(﹣3),=3;故答案为3.【点评】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a﹣b)=a2﹣b2.20.(2016春•高密市期末)计算:=2015.【分析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式===2015,故答案为:2015【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.三.解答题(共10小题)21.(2016春•长春校级期末)已知a x=5,a x+y=30,求a x+a y的值.【分析】首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出a y的值是多少;然后把a x、a y的值相加,求出a x+a y的值是多少即可.【解答】解:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.22.(2016春•江都区校级期中)已知2x+5y=3,求4x•32y的值.【分析】根据同底数幂相乘和幂的乘方的逆运算计算.【解答】解:∵2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.【点评】本题考查了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘的性质,整体代入求解也比较关键.23.(2016•阜阳校级二模)计算:12×(﹣)+8×2﹣2﹣(﹣1)2.【分析】先算乘方,再算乘法,最后算加减即可.【解答】解:原式=12×(﹣)+8×﹣1=﹣4+2﹣1=﹣3.【点评】本题考查的是负整数指数幂,熟知有理数混合运算的法则是解答此题的关键.24.(2016•湘西州)先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣b2﹣ab+b2=a2﹣ab,当a=﹣2,b=1时,原式=4+2=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.25.(2015春•吉州区期末)已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.【分析】将所求式子利用幂运算的性质转化,再整体代入即可得到结果.【解答】解:(1)2x+y=2x•2y=3×5=15;(2)23x=(2x)3=33=27;(3)22x+y﹣1=(2x)2•2y÷2=32×5÷2=.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,利用幂运算的性质将所求式子变形是解题的关键.26.(2015春•张家港市期末)(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.【分析】(1)根据积的乘方和幂的乘方法则的逆运算,即可解答;(2)根据同底数幂乘法、除法公式的逆运用,即可解答.【解答】解:(1)(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=16×9=144;(2)32a﹣4b+1=(3a)2÷(32b)2×3=36÷4×3=27.【点评】本题考查的是幂的乘方和积的乘方、同底数幂的乘除法,掌握它们的运算法则及其逆运算是解题的关键.27.(2016春•宿州校级期末)计算:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用乘方的意义计算,即可得到结果.(2)原式第一项利用单项式乘单项式法则计算,第二项利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23=1+4﹣1﹣8=12;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.=﹣2x2y4+9x2y4=7x2y4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.(2016春•滁州期末)如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.【分析】(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(a+b)(a﹣b)=a2﹣b2;(3)从左到右依次利用平方差公式即可求解.【解答】解:(1),S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.【点评】本题考查了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.29.(2016春•北京校级月考)已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n 的值.【分析】把式子展开,合并同类项后找到x2项和x项的系数,令其为0,可求出m和n的值.【解答】解:(x2+mx+n)(x+1)=x3+(m+1)x2+(n+m)x+n.又∵结果中不含x2的项和x项,∴m+1=0且n+m=0解得m=﹣1,n=1.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.30.(2016春•吉安期中)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是B;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【分析】(1)观察图1与图2,根据两图形阴影部分面积相等验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②原式利用平方差公式变形,约分即可得到结果.【解答】解:(1)根据图形得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y)=12,x+2y=4,∴x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.。
北师大版七年级下册数学第一章综合测试一、选择题(共10小题)1.下列计算中,正确的是()A .235a a a +=B .2552a a =-(())C .32365a b a b =()D .236a a a = 2.化简32x -()的结果是()A .6x -B .5x -C .6x D .5x 3.计算2223a a -÷)(的结果是()A .29a -B .46a C .23a D .29a 4.下列变形正确的是()A .2131313m m m -+=-()()B .24416n n n ---+=--()()C .222244x y x xy y -+=-+()D .22232343a b c a b c a b c ++-+=-+()()()5.若315x =,35y =,则3x y -等于()A .5B .3C .15D .106.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是()A .87.610⨯克B .77.610-⨯克C .87.610-⨯克D .97.610-⨯克7.若2322x x p mx nx ++=+-()(),则下列结论正确的是()A .6m =B .1n =C .2p =-D .3mnp =8.计算:20112010201021.513⨯⨯-()()()的结果为()A .23B .23-C .32D .32-9.已知3181a =,4127b =,619c =,则下列关系中正确的是()A .b c a>>B .a c b>>C .a b c>>D .a b c <<10.如图所示,有三种卡片,其中边长为a 的正方形1张,边长为a 、b 的矩形卡片4张,边长为b 的正方形4张用这9张卡片刚好能拼成一个正方形,则这个正方形的面积为()A .2244a ab b ++B .22484a ab b ++C .2244a ab b ++D .222a ab b ++二、填空题(共10小题)11.计算:332--=()________.12.当113a -=()时,a 的取值范围是________.13.计算:2233m n m n -+--=()()________.14.若数m ,n 满足2|2|20180m n -+-=(),则10m n -+=________.15.若24x kx ++是完全平方式,则k 的值是________.16.计算:432682x x x -÷-=)()(________.17.已知13a a +=,则221a a+的值是________.18.若32751222m n m a b a b a b -=-())(;则m =________,n =________.19.已知4x a =,7y a =,则x y a +=________.20.小红:如图是由边长分别为a ,b 的两个正方形拼成的图形;小明:阴影部分的面积等于图中两个正方形的面积和减去3个不同的直角三角形的面积.请根据小明和小红的对话,用含有a ,b 的式子表示如图所示的阴影部分的面积________.三、解答题(共7小题)21.计算:(1)2423xy xy - ().(2)322223533y y y y -+÷().22.计算:2x y x y x y +-+-()()()23.已知32n x =,23n y =,求332232n n nx y x y +-((()))的值.24.先化简,再求值:2[22522]3x y x y x x y x y y +--+++÷-()()()()(),其中1x =,2y =.25.如图所示的大正方形是由两个小正方形和两个长方形组成.(1)通过两种不同的方法计算大正方形的面积,可以得到一个数学等式;(2)利用(1)中得到的结论,解决下面的问题:若2a b +=,3ab =-,求:①22a b +;②44a b +.26.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:911317⨯-⨯=________,1214620⨯-⨯=________,不难发现,结果都是________.(1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.27.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是________.(请选择正确的一个)A .22a b a b a b -=+-()()B .2222()a ab b a b -+=-C .2a ab a a b +=+()(2)若2216x y -=,8x y +=,求x y -的值;(3)计算:222111111234---()() (22)111120182019--()().第一章综合测试答案解析一、1.【答案】B【解析】解:A 、2a 与3a 不是同类项,所以不能合并,故本选项不合题意;B 、2552a a =-(()),正确;C 、32396a b a b =(),故本选项不合题意;D 、235a a a = ,故本选项不合题意.故选:B.2.【答案】C【解析】解:原式6x =,故选:C.3.【答案】D【解析】解:222422399a a a a a -÷=÷=().故选:D.4.【答案】C【解析】先根据平方差公式和完全平方公式求出每个式子的值,再判断即可.解:A 、2131319m m m -+=-()(),故本选项不符合题意;B 、24416n n n ---+=-()(),故本选项不符合题意;C 、222244x y x xy y -+=-+(),故本选项符合题意;D 、22232323a b c a b c a c b ++-+=+-()()()(),故本选项不符合题意;故选:C.5.【答案】B【解析】根据同底数幂的除法,底数不变,指数相减,可得答案.解:3331553x y x y -=÷=÷=,故选:B.6.【答案】C【解析】对于绝对值小于1的数,用科学记数法表示为10n a ⨯形式,其中110a ≤<,n 是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等,根据以上内容写出即可.解:80.0000000767.610-=⨯克克,故选:C.7.【答案】D【解析】直接利用多项式乘以多项式化简得出答案.解:2322x x p mx nx ++=+-()(),2233222x p x p mx nx ∴+++=+-(),故3m =,32p n +=,22p =-,解得:1p =-,1n =-,故3mnp =.故选:D.8.【答案】A【解析】分别根据积的乘方以及1-的偶数次幂等于1解答即可.解:2011201020102010201020102010222232221.51 1.51133332333⨯⨯-=⨯⨯⨯=⨯⨯=⨯=(()()()()(.故选:A.9.【答案】C【解析】直接利用幂的乘方运算法则将原式变形进而得出答案.解:31124813a == ,41123273b ==,6112293c ==,a b c ∴>>.故选:C.10.【答案】A【解析】由边长为a 的正方形1张,边长为a 、b 的矩形卡片4张,边长为b 的正方形4张,可得拼成的正方形面积为2244a ab b ++,根据完全平方式可求正方形边长.解:由题意,得2244a ab b ++,故选:A.二、11.【答案】827-【解析】原式利用负整数指数幂法则计算即可得到结果.解:原式827=-12.【答案】13a ≠【解析】直接利用零指数幂的定义分析得出答案.解:当0113a -=()时,a 的取值范围是:13a ≠.13.【答案】2249m n -【解析】根据平方差公式,可得答案.解:原式2223m n =--()2223m n =-()2249m n =-14.【答案】32【解析】直接利用绝对值以及偶次方的性质得出m ,n 的值,进而得出答案.解:2|2|20180m n -+-= (),2m ∴=,2018n =,则1013122m n -+=+=.15.【答案】4±【解析】这里首末两项是x 和2的平方,那么中间项为加上或减去x 和2的乘积的2倍也就是kx ,由此对应求得k 的数值即可.解:24x kx ++ 是一个多项式的完全平方,22kx x ∴=±⨯ ,4k ∴=±.16.【答案】234x x-+【解析】根据多项式除以单项式,用多项式的每一项除以单项式,把所得的商相加,可得答案.【解答】解;原式42326282x x x x =÷--÷-()()234x x =-+.17.【答案】7【解析】把已知条件两边平方,然后整理即可求解.完全平方公式:2222a b a ab b ±=±+().解:13a a += ,22129a a ∴++=,221927a a∴+=-=.18.【答案】12【解析】直接利用积的乘方运算法则以及单项式乘以单项式运算法则计算得出答案.解:32751222m n m a b a b a b -=- )()(,3322751824m n m a b a b a b ∴-=-))((,32327522m n m a b a b ++∴-=-,325m ∴+=,解得:1m =,327m n +=,解得:2n =.19.【答案】28【解析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加可得x y x y a a a += ,进而可得答案.解:4728x y x y a a a +==⨯= 20.【答案】212a 【解析】由面积的和差关系可列代数式,化简可求解.解:222211112222a b a b a b b b a a =+--⨯+-⨯-=阴影部分的面积()()三、21.【答案】解:(1)原式266x y =-;(2)原式239152y y =-+;【解析】(1)根据整式的运算法则即可求出答案;(2)根据整式的运算法则即可求出答案.22.【答案】解:原式22222x xy y x y =++-+222y xy =+.【解析】根据完全平方公式以及平方差公式化简即可.23.【答案】解:把32n x =,23n y =代入上式,得原式3223611=+-=.【解析】根据幂的乘方与积的乘方运算法则计算即可.24.【答案】解:原式222224510443x y x xy x xy y y =---+++÷-)((),2363y xy y =-÷-()(),2y x =-+,当1x =,2y =时,原式220=-+=.【解析】原式中括号中利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,再利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.25.【答案】解:(1)由图可得,正方形的面积2a b =+(),正方形的面积222a ab b =++,2222a b a ab b ∴+=++().故答案为:2222a b a ab b +=++().(2)①2222222310a b a b ab +=+-=-⨯-=()();②442222222210231001882a b a b a b +=+-=-⨯-=-=(()).26.【答案】(1)484848(2)设四个数围起来的中间的数为x ,则四个数依次为7x -,1x -,1x +,7x +,则1177x x x x -+--+ ()()()()22149x x =---()()22149x x =--+48=【解析】解:(1)91131748⨯-⨯=,121462048⨯-⨯=,不难发现,结果都是:48;故答案为:48,48,48;27.【答案】(1)A(2)2216x y x y x y -=+-= ()(),8x y +=,2x y ∴-=;(3)222111111234---()() (2211)1120182019--(111111112233=-+-+()()()(……111120192019-+()()1324322334=⨯⨯⨯⨯ (20182020)20192019⨯⨯1202022019=⨯10102019=【解析】解:(1)根据图形得:图1中22a b =-阴影部分面积,图2中a b a b =+-长方形面积()(),∴上述操作能验证的等式是22a b a b a b -=+-()(),故答案为:A 。
北师大版七年级下册数学第一章测试题————————————————————————————————作者:————————————————————————————————日期:北师大版七年级下册数学第一章测试题一.选择题(共10小题)1.计算(﹣x2y)2的结果是()A.x4y2B.﹣x4y2C.x2y2D.﹣x2y22.下列计算正确的是()A.(﹣x3)2=x5B.(﹣3x2)2=6x4C.(﹣x)﹣2= D.x8÷x4=x23.计算(2x+1)(x﹣1)﹣(x2+x﹣2)的结果,与下列哪一个式子相同?()A.x2﹣2x+1 B.x2﹣2x﹣3 C.x2+x﹣3 D.x2﹣34.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.305.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.166.已知a﹣b=3,则代数式a2﹣b2﹣6b的值为()A.3 B.6 C.9 D.127.已知正数x满足x2+=62,则x+的值是()A.31 B.16 C.8 D.48.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29.设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab10.己知(x﹣y)2=49,xy=2,则x2+y2的值为()A.53 B.45 C.47 D.51二.选择题(共10小题)11.计算:(﹣5a4)•(﹣8ab2)=______.12.若2•4m•8m=216,则m=______.13.若x+3y=0,则2x•8y=______.14.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为______.15.已知(a+b)2=7,(a﹣b)2=4,则ab的值为______.16.若(m﹣2)2=3,则m2﹣4m+6的值为______.17.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3﹣3a2b+3ab2﹣b3(a+b)4=a4﹣4a3b+6a2b2﹣4ab3+b4(a+b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5…请你猜想(a﹣b)10的展开式第三项的系数是______.18.若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.19.若a x=2,a y=3,则a3x﹣2y=______.20.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):请依据上述规律,写出(x﹣)2016展开式中含x2014项的系数是______.三.选择题(共8小题)21.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.22.(1)计算:(﹣2)2+2×(﹣3)+20160.(2)化简:(m+1)2﹣(m﹣2)(m+2).23.已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值.24.先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.25.已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.26.已知x﹣=3,求x2+和x4+的值.27.如图(1),将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图(2)形状拼成一个正方形.(1)图(2)中的空白部分的边长是多少?(用含a,b的式子表示)(2)观察图(2),用等式表示出(2a﹣b)2,ab和(2a+b)2的数量关系;(3)若2a+b=7,ab=3,求图(2)中的空白正方形的面积.28.已知a+b=5,ab=6.求下列各式的值:(1)a2+b2(2)(a﹣b)2.29.已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时.(1)求多项式A.(2)若2x2+3x+l=0,求多项式A的值.30.已知(x﹣y)2=9,x2+y2=5,求[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y的值.北师大版七年级下册数学第一章测试题参考答案与试题解析一.选择题(共10小题)1.(2016•盐城)计算(﹣x2y)2的结果是()A.x4y2B.﹣x4y2C.x2y2D.﹣x2y2【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:(﹣x2y)2=x4y2.故选:A.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.2.(2016•来宾)下列计算正确的是()A.(﹣x3)2=x5B.(﹣3x2)2=6x4C.(﹣x)﹣2= D.x8÷x4=x2【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;负整数指数幂:a﹣p=(a≠0,p为正整数);同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、(﹣x3)2=x6,故A错误;B、(﹣3x2)2=9x4,故B错误;C、(﹣x)﹣2=,故C正确;D、x8÷x4=x4,故D错误.故选:C.【点评】本题考查积的乘方、负整数指数幂、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.(2016•台湾)计算(2x+1)(x﹣1)﹣(x2+x﹣2)的结果,与下列哪一个式子相同?()A.x2﹣2x+1 B.x2﹣2x﹣3 C.x2+x﹣3 D.x2﹣3【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可作出判断.【解答】解:(2x+1)(x﹣1)﹣(x2+x﹣2)=(2x2﹣2x+x﹣1)﹣(x2+x﹣2)=2x2﹣x﹣1﹣x2﹣x+2=x2﹣2x+1,故选A【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.5.(2016•仙居县一模)已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.16【分析】先把(x﹣2015)2+(x﹣2017)2=34变形为(x﹣2016+1)2+(x﹣2016﹣1)2=34,把(x﹣2016)看作一个整体,根据完全平方公式展开,得到关于(x﹣2016)2的方程,解方程即可求解.【解答】解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016﹣1)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.【点评】考查了完全平方公式,本题关键是把(x﹣2015)2+(x﹣2017)2=34变形为(x﹣2016+1)2+(x﹣2016﹣1)2=34,注意整体思想的应用.6.(2016•重庆校级二模)已知a﹣b=3,则代数式a2﹣b2﹣6b的值为()A.3 B.6 C.9 D.12【分析】由a﹣b=3,得到a=b+3,代入原式计算即可得到结果.【解答】解:由a﹣b=3,得到a=b+3,则原式=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9,故选C【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(2016•长沙模拟)已知正数x满足x2+=62,则x+的值是()A.31 B.16 C.8 D.4【分析】因为x是正数,根据x+=,即可计算.【解答】解:∵x是正数,∴x+====8.故选C.【点评】本题考查完全平方公式,解题的关键是应用公式x+=(x>0)进行计算,属于中考常考题型.8.(2016•泰山区一模)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选C.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键,难度一般.9.(2016春•岱岳区期末)设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab【分析】已知等式两边利用完全平方公式展开,移项合并即可确定出A.【解答】解:∵(5a+3b)2=(5a﹣3b)2+A∴A=(5a+3b)2﹣(5a﹣3b)2=(5a+3b+5a﹣3b)(5a+3b﹣5a+3b)=60ab.故选B【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.10.(2016春•宝应县期末)己知(x﹣y)2=49,xy=2,则x2+y2的值为()A.53 B.45 C.47 D.51【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵(x﹣y)2=49,xy=12,∴x2+y2=(x﹣y)2+2xy=49+4=53.故选:A.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二.选择题(共10小题)11.(2016•临夏州)计算:(﹣5a4)•(﹣8ab2)=40a5b2.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.12.(2016•白云区校级二模)若2•4m•8m=216,则m=3.【分析】直接利用幂的乘方运算法则得出2•22m•23m=216,再利用同底数幂的乘法运算法则即可得出关于m的等式,求出m的值即可.【解答】解:∵2•4m•8m=216,∴2•22m•23m=216,∴1+5m=16,解得:m=3.故答案为:3.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用运算法则是解题关键.13.(2016•泰州一模)若x+3y=0,则2x•8y=1.【分析】先将8变形为23的形式,然后再依据幂的乘方公式可知8y=23y,接下来再依据同底数幂的乘法计算,最后将x+3y=0代入计算即可.【解答】解:2x•8y=2x•23y=2x+3y=20=1.故答案为1.【点评】本题主要考查的是同底数幂的乘法、幂的乘方、零指数幂的性质,熟练掌握相关知识是解题的关键.14.(2016•河北模拟)已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为0.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a,b,c的值,即可求出原式的值.【解答】解:已知等式整理得:x2+2x﹣3=ax2+bx+c,∴a=1,b=2,c=﹣3,则原式=9﹣6﹣3=0.故答案为:0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.15.(2016•富顺县校级模拟)已知(a+b)2=7,(a﹣b)2=4,则ab的值为.【分析】分别展开两个式子,然后相减,即可求出ab的值.【解答】解:(a+b)2=a2+2ab+b2=7,(a﹣b)2=a2﹣2ab+b2=4,则(a+b)2﹣(a﹣b)2=4ab=3,ab=.故答案为:.【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.16.(2016•曲靖模拟)若(m﹣2)2=3,则m2﹣4m+6的值为5.【分析】原式配方变形后,将已知等式代入计算即可求出值.【解答】解:∵(m﹣2)2=3,∴原式=m2﹣4m+4+2=(m﹣2)2+2=3+2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.17.(2016•东明县二模)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3﹣3a2b+3ab2﹣b3(a+b)4=a4﹣4a3b+6a2b2﹣4ab3+b4(a+b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5…请你猜想(a﹣b)10的展开式第三项的系数是45.【分析】根据各式与展开式系数规律,确定出所求展开式第三项系数即可.【解答】解:根据题意得:第五个式子系数为1,6,15,20,15,6,1,第六个式子系数为1,7,21,35,35,21,7,1,第七个式子系数为1,8,28,56,70,56,28,8,1,第八个式子系数为1,9,36,84,126,126,84,36,9,1,第九个式子系数为1,10,45,120,210,252,210,120,45,10,1,则(a﹣b)10的展开式第三项的系数是45,故答案为:45.【点评】此题考查了完全平方公式,弄清题中的规律是解本题的关键.18.(2016•富顺县校级模拟)若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=13或﹣11.【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵4a2﹣(k﹣1)a+9是一个关于a的完全平方式,∴k﹣1=±12,解得:k=13或﹣11,故答案为:13或﹣11【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.19.(2016春•泰兴市期末)若a x=2,a y=3,则a3x﹣2y=.【分析】根据同底数幂的除法及幂的乘法与积的乘方法则,进行计算即可.【解答】解:a3x﹣2y=(a x)3÷(a y)2=8÷9=.故答案为:.【点评】本题考查了同底数幂的除法法则:底数不变,指数相减,属于基础题,掌握运算法则是关键.20.(2016•广安)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):请依据上述规律,写出(x﹣)2016展开式中含x2014项的系数是﹣4032.【分析】首先确定x2014是展开式中第几项,根据杨辉三角即可解决问题.【解答】解:(x﹣)2016展开式中含x2014项的系数,根据杨辉三角,就是展开式中第二项的系数,即﹣2016×2=﹣4032.故答案为﹣4032.【点评】本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.三.选择题(共8小题)21.(2016•常州)先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.【分析】根据多项式乘以多项式先化简,再代入求值,即可解答.【解答】解:(x﹣1)(x﹣2)﹣(x+1)2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x=时,原式=﹣5×+1=﹣.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.22.(2016•温州二模)(1)计算:(﹣2)2+2×(﹣3)+20160.(2)化简:(m+1)2﹣(m﹣2)(m+2).【分析】(1)原式先计算乘方运算,再计算乘法及零指数幂运算即可得到结果;(2)原式利用完全平方公式,平方差公式计算即可得到结果.【解答】解:(1)原式=4﹣6+1=﹣1;(2)原式=m2+2m+1﹣m2+4=2m+5.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.23.(2016•福州校级二模)已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值.【分析】先对所求式子进行化简,然后将2x2﹣3x=2代入即可解答本题.【解答】解:3(2+x)(2﹣x)﹣(x﹣3)2=12﹣3x2﹣x2+6x﹣9=﹣4x2+6x+3=﹣2(2x2﹣3x)+3,∵2x2﹣3x=2,∴原式=﹣2×2+3=﹣1.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.24.(2016•长春二模)先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2﹣b2﹣4a2+a2b=a2b﹣b2,当a=﹣,b=2时,原式=﹣4=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.25.(2016春•西藏校级期末)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.【分析】把已知两个式子展开,再相加或相减即可求出答案.【解答】解:∵(a+b)2=25,(a﹣b)2=9,∴a2+2ab+b2=25①,a2﹣2ab+b2=9②,∴①+②得:2a2+2b2=34,∴a2+b2=17,①﹣②得:4ab=16,∴ab=4.【点评】本题考查了完全平方公式的应用,注意:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.26.(2016春•澧县期末)已知x﹣=3,求x2+和x4+的值.【分析】把该式子两边平方后可以求得x2+的值,再次平方即可得到x4+的值.【解答】解:∵x﹣=3,(x﹣)2=x2+﹣2∴x2+=(x﹣)2+2=32+2=11.x4+=(x2+)2﹣2=112﹣2=119.【点评】本题考查了完全平方公式,利用x和互为倒数乘积是1与完全平方公式来进行解题.27.(2016春•莱芜期末)如图(1),将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图(2)形状拼成一个正方形.(1)图(2)中的空白部分的边长是多少?(用含a,b的式子表示)(2)观察图(2),用等式表示出(2a﹣b)2,ab和(2a+b)2的数量关系;(3)若2a+b=7,ab=3,求图(2)中的空白正方形的面积.【分析】(1)先计算空白正方形的面积,再求边长;(2)利用等量关系式S空白=S大正方形﹣4个S长方形代入即可;(3)直接代入(2)中的式子.【解答】解:(1)∵图(2)中的空白部分的面积=(2a+b)2﹣4a×2b=4a2+4ab+b2﹣8ab=(2a ﹣b)2,∴图(2)中的空白部分的边长是:2a﹣b;(2)∵S空白=S大正方形﹣4个S长方形,∴(2a﹣b)2=(2a+b)2﹣4×2a×b,则(2a﹣b)2=(2a+b)2﹣8ab;(3)当2a+b=7,ab=3时,S=(2a+b)2﹣8ab=72﹣8×3=25;则图(2)中的空白正方形的面积为25.【点评】本题考查了完全平方公式的几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要是根据图形特点,利用面积的和差来计算.28.(2016春•灌云县期中)已知a+b=5,ab=6.求下列各式的值:(1)a2+b2(2)(a﹣b)2.【分析】(1)根据a2+b2=(a+b)2﹣2ab,即可解答.(2)根据(a﹣b)2=(a+b)2﹣4ab,即可解答.【解答】解:(1){a2+b2=(a+b)2﹣2ab=52﹣2×6a2+b2=(a+b)2﹣2ab=52﹣2×6=25﹣12=13.(2)(a﹣b)2=(a+b)2﹣4ab=52﹣4×6=25﹣24=1.【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式.四.解答题(共2小题)29.(2016•花都区一模)已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时.(1)求多项式A.(2)若2x2+3x+l=0,求多项式A的值.【分析】(1)原式整理后,化简即可确定出A;(2)已知等式变形后代入计算即可求出A的值.【解答】解:(1)A﹣(x﹣2)2=x(x+7),整理得:A=(x﹣2)2+x(x+7)=x2﹣4x+4+x2+7x=2x2+3x+4;(2)∵2x2+3x+1=0,∴2x2+3x=﹣1,∴A=﹣1+4=3,则多项式A的值为3.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.30.(2016•枣阳市模拟)已知(x﹣y)2=9,x2+y2=5,求[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y的值.【分析】直接利用整式的混合运算法则化简,进而将已知结合完全平方公式求出答案.【解答】解:原式=(x3y2﹣x2y﹣x2y+x3y2)÷x2y=2xy﹣2,由(x﹣y)2=9,得x2﹣2xy+y2=9,∵x2+y2=5,∴﹣2xy=4,∴xy=﹣2,∴原式=﹣4﹣2=﹣6.【点评】此题主要考查了整式的混合运算,正确应用乘法公式是解题关键.。
第一章整式的乘除一、选择题(本大题共7小题,每小题3分,共21分)1.计算a 3·a 2的结果是()A .a B .a 5C .a 6D .a 92.下列运算正确的是A.632a a ·a =B.523a a a =+ C.842)(a a = D.a a a =-233.下列运算:①a ²·a ³=a 6,②(a ³)²=a 6,③a 5÷a 5=a ,④(ab )³=a ³b ³,其中结果正确的个数为()A .1B .2C .3D .44下列计算结果为3x 的是()A.62x x ÷B.4x x -C.2x x + D.2x x 5下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是()A.①B.②C.③D.④6.对于任意有理数a ,b ,现用“☆”定义一种运算:a ☆b=a 2-b 2,根据这个定义,代数式(x+y )☆y 可以化简为()A .xy+y 2B .xy-y 2C .x 2+2xy D .x 27.如图2①,在边长为a 的正方形中剪去一个边长为b (b<a )的小正方形,把剩下部分沿虚线剪开,再拼成一个梯形(如图2②),利用这两个图形中阴影部分的面积,可以验证的等式是()图2A.a2+b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.a2-b2=(a+b)(a-b)二、填空题(本大题共7小题,每小题4分,共28分)8.计算:(π-3.14)0-2=.9.计算:(3a-2b)(2b+3a)=.10.在电子显微镜下测得一个圆球体细胞的直径是5×10-5cm,2×103个这样的细胞排成的细胞链的长是cm.11.若a为正整数,且x2a=6,则(2x5a)2÷4x6a的值为.12.计算:3x2y-xy2+12xy÷-12xy=.13.若a2+b2=5,ab=2,则(a+b)2=.14.如图3,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为.图3三、解答题(本大题共6小题,共51分)15.(8分)计算:(1)x·x4+x2(x3-1)-2x3(x+1)2;(2)[(x-3y)(x+3y)+(3y-x)2]÷(-2x).16.(8分)运用乘法公式简便计算: (1)9982;(2)197×203.17.(7分)先化简,再求值:(x-y2)-(x-y)(x+y)+(x+y)2,其中x=3,y=-13.18.(8分)如图4①所示,边长为a的正方形中有一个边长为b的小正方形,图4②是由图①中阴影部分拼成的一个长方形.(1)设图①中阴影部分的面积为S1,图②中阴影部分的面积为S2,请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)×(22+1)×(24+1)×(28+1)+1.图419.(10分)某银行去年新增加居民存款10亿元人民币.(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?(2)一台激光点钞机的点钞速度约是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?图520.(10分)某学校分为初中部和小学部,初中部的学生人数比小学部多.做广播体操时,初中部排成的是一个规范的长方形方阵,每排(3a-b)人,站有(3a+2b)排;小学部排成的方阵,排数和每排人数都是2(a+b).(1)试求该学校初中部比小学部多多少名学生;(2)当a=10,b=2时,试求该学校一共有多少名学生.参考答案BC B D C C.D8.-39.9a2-4b210.0.111.3612.-6x+2y-113.914.1315.解:(1)原式=x5+x5-x2-2x3(x2+2x+1)=x5+x5-x2-2x5-4x4-2x3=-4x4-2x3-x2.(2)原式=(x2-9y2+9y2-6xy+x2)÷(-2x)=(2x2-6xy)÷(-2x)=-x+3y.16.解:(1)9982=(1000-2)2=1000000-4000+4=996004.(2)197×203=(200-3)×(200+3)=2002-32=40000-9=39991.17.解:原式=x-y2-x2+y2+x2+2xy+y2=x+2xy+y2.当x=3,y=-13时,原式=3-2+19=109.18.解:(1)S1=a2-b2,S2=(a+b)(a-b).(2)(a+b)(a-b)=a2-b2.(3)原式=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)+1=(22-1)×(22+1)×(24+1)×(28+1)+1=(24-1)×(24+1)×(28+1)+1=(28-1)×(28+1)+1=(216-1)+1=216.19.解:(1)10亿=1000000000=109,所以10亿元的总张数为109÷100=107(张), 107÷100×0.9=9×104(厘米)=900(米).答:大约有900米高.(2)107÷(5×8×104)=(1÷40)×(107÷104)=0.025×103=25(天).答:点钞机大约要点25天.20.解:(1)因为该学校初中部学生人数为(3a-b)(3a+2b)=9a2+6ab-3ab-2b2=9a2+3ab-2b2,小学部学生人数为2(a+b)·2(a+b)=4(a+b)2=4(a2+2ab+b2)=4a2+8ab+4b2,所以该学校初中部比小学部多的学生数为(9a2+3ab-2b2)-(4a2+8ab+4b2)=5a2-5ab-6b2.答:该学校初中部比小学部多(5a2-5ab-6b2)名学生.(2)该学校初中部和小学部一共的学生数为(9a2+3ab-2b2)+(4a2+8ab+4b2)=13a2+11ab+2b2.当a=10,b=2时,原式=13×102+11×10×2+2×22=1528.答:该学校一共有1528名学生.。
第一章知识梳理A卷知识点1同底数幕的乘法一、选择题1. 计算a2• a5的结果是()A.a10B.a 8C.a 7D.a 3答案:C2. 计算2X 24X 23的结果是( )7 8 12 13A.2B.2C.2D.2答案:B3. 计算x • (-x )2的结果是()A.x3B.-x 3C.x 2D.0答案:A4. (内蒙古呼伦贝尔)化简(-x ) 3(-x ) 2的结果正确的是( )A.-x 6B.x 6C.x 5D.-x 5答案:D5. 计算-b • b3• b4的结果是()7 7 8A.-bB.bC.bD.-b答案:D二、填空题6. (黑龙江大庆)若a m=2, a n=8,则a m+= ______答案:167. 计算:(1) a5• a3• a2= _;(2)(-b ) 2・(-b) 3• (-b) 5=—;m n-2(3)x • x • x = .答案:(1) a10(2) b10(3) x m+n-18. 若a2n-1• a2n+1=a12,贝U n=.答案:39. 一个长方体的长、宽、高分别为a2, a, a3,则这个长方体的体积是_一答案:a6三、解答题10. 计算.(1)104X 105X 106;(2)(丄)3X( 1) 4X 丄;2 2 2(3)b2n• b2n• b2.答案:解:(1)原式=io4+5+6=io15.(2)原式=(-)3叫(-)8.2 2(3)原式=b2n+2n+2=b4n+2.11. 规定:a*b=10a x 10b,例如3*4=103x 104=107.(1)试求2*5和3*17的值;(2)猜想:a*b与b*a的运算结果是否相等?说明理由.答案:解:(1) 2*5=102X 105=107.3*17=103X 1017=1020.(2)相等,理由如下:因为a*b=10a X 10b=10a+b, b*a=10b X 10a=10a+b, 所以a*b=b*a.12.1 kg镭完全蜕变后,放出的热量相当于3.75 X 105 kg煤放出的热量,据估计, 地壳中含有1X 1010 kg的镭,问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量.c A A c答案:解:3.75 X 10 X 1X 10 =3.75 X 10 kg.答:这些镭完全蜕变后放出的热量相当于 3.75 X 1015 kg煤放出的热量.知识点2幕的乘方13. 计算(a2) 3的结果是( )A. 3a2B.2a 3C.a 5D.a 6答案:D14. 计算(103) 2的结果是()A.103B.105C.106D.109答案:C18. ________________ 若 a 12=x 2= (a 3) 丫,贝U x= , y= . 答案:a 6419. 若 x 3n =3,则 x 6n =. 答案:920. 若(a 3) m =a 4 • a m ,则 m=. 答案:2 21.有一个棱长10 cm 的正方体,在某种物质的作用下,棱长以每秒扩大为原来 的102倍的速度膨胀,则3秒后该正方体的体积是 cm 3.答案:1021 22.计算.(1) (y 4)22326634+ (y ) • y ; (2) -x • (-x ) +2 (x ).(1)原式=y 8+y 8=2y 8.(2)原式=-x 12+2X 12=X 12.23. 比较大小:2100与375,并说明理由. 答案:解:2100< 375.理由:2100= (24) 25=1625, 375= (33) 25=2725, 因为 27>16,所以 1625<2尸,所以 2100< 375.知识点3积的乘方一、选择题24. 计算(2x 3) 2的结果是()15.计算(X 。
第一章综合测试一、选择题(每小题3分,共30分) 1.计算32a a 正确的是( ) A .aB .5aC .6aD .3a2.下列运算正确的是( ) A .224a a a +=B .532a a a −=C .2222a a a =D .5210a a =()3.若2440x x −=+,则232611x x x −−−+()()()的值为( )A .6−B .6C .18D .304.下列计算中,错误的有( )①2232326a b a b a a b b a b −+=−+=()()(-);②231313x x x x x +−=+⨯=−()()(-);③224236x y x y =();④22121x x x =+++().A .1个B .2个C .3个D .4个5.运用平方差公式计算2121x y x y +−−+()(),下列变形正确的是( ) A .21[]2x y −+()B .[][221]1x y x y +−−−()()C .[][212]1x y x y +−()-()+D .21[]2x y ++() 6.已知4a b m ab +==−,,计算22a b −−()()的结果是( )A .6B .28m −C .2mD .2m − 7.若323x y +=,则279x y 的值为( )A .9B .27C .6D .0 8.若3y x =,则22235a x xy ax −÷()(-)的值是( ) A .12B .12−C .42D .42−9.下列各式中计算正确的是( )A .222a b a b −=−()B .222224a b a ab b ++=+() C .224121a a a =+++()D .2222m n m mn n −−=++()10.设22 5353a b a b A +=−+()(),则代数式A 是( )A .30abB .60abC .15abD .12ab二、填空题(每小题4分,共24分) 11.计算:282m m =________.12.已知m n mn +=,则11m n −−=()()________. 13.计算:53a a ÷=________.14.已知3268x ya b a b =()(),则x =________,y =________. 15.232[23a b c a b c b −+++−=−()()(________)][23]b a c +−().16.把20cm 长的一根铁丝分成两段,将每一段都围成一个正方形,如果这两个正方形的面积之差是25cm ,则这两段铁丝分别长________. 三、解答题(共46分) 17.(20分)计算:(1)32232122a b a b ab ÷−−()();(2)202103|11|332π−−−⨯−−+−()()();(3)221131x x x −−−+()()();(4)2244a b a b a b a b +−++()()()();(5)299.18.(7分)数学老师给同学们出了一道题:当12020x =−时,求2222[22]323x x x x x x ++−−+−÷++()()()()()()的值.题目出完后,小敏说老师给的条件12020x =−是多余的,你认为小敏说的正确吗?为什么?19.(8分)在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算: ①把这个数加上2后平方; ②然后再减去4;③再除以原来所想的那个数,得到一个商.最后把你所得到的商告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?20.(11分)西红柿丰收了,为了运输方便,小红的爸爸打算把一个长为a 、宽为35a 的长方形铁板做成一个有底无盖的盒子.如图所示,在长方形铁板的四个角上各裁去一个边长为b 的小正方形325b a (<),然后沿虚线折起即可.现在要将盒子的外部表面贴上彩色花纸,爸爸问小红至少需要多少彩色花纸,小红认为至少需要彩色花纸的面积实际就是盒子外部表面的面积,可以用以下两种方法求得:①直接法:盒子外部表面的面积=四个侧面的面积+底面的面积332222255[]a b b a b b a b a b =−+−−+−()()()(); ②间接法:23==45a ab −−盒子外部表面的面积原长方形的面积四个小正方形的面积.请计算一下这两种方法的结果是否一样.第一章综合测试答案解析一、 1.【答案】B【解析】32325a a a a +==. 2.【答案】D【解析】选项A ,2222a a a +=;选项B ,5a 与3a −不是同类项,不能合并;选项C ,224a a a =.故选D. 3.【答案】B【解析】2222223261134461312126631218x x x x x x x x x x x −−+−−−−−+−=+=+−=−+()()()()()2346x x +=−−().因为2440x x −=+,所以244x x +=,所以原式23463466x x =−−=−⨯=+−()(). 4.【答案】C【解析】①22326a b a b a ab b −+−+=()();②23123x x x x +−=−+()();③224239x y x y =();④正确. 5.【答案】B 6.【答案】D【解析】原式24ab a b =−+()+,将4a b m ab +==−,代入,可得原式4242m m −−+=−. 7.【答案】B【解析】当323x y +=时,32323279333327x y x y x y ====+,故选B. 8.【答案】B【解析】2222222535353ya x xy ax a x xy a x x÷=÷−=−−−()()()(),因为3y x =,所以原式31512=−=−.故选B. 9.【答案】D【解析】选项A ,应为2222a b a ab b −−=+(),故选项A 错误;选项B ,应为222244a b a ab b ++=+(),故选项B 错误;选项C ,应为2242121a a a ++=+(),故选项C 错误;选项D ,2222m n m mn n −−=++(),故选项正确.故选D. 10.【答案】B【解析】225353a b a b A +=−+()(),2222535325309A a b a b a ab b +∴=+−−−=+()()222530960a ab b ab +=−().故选B.二、11.【答案】102m【解析】282810222m m m m +==. 12.【答案】1【解析】因为m n mn +=,所以1111m n mn m n −−=−+=()()()+. 13.【答案】2a【解析】55233a a a a −÷==. 14.【答案】2 4【解析】因为323268x yx y a b a b a b ==()(),所以3628x y ==,,所以24x y ==,.15.【答案】3a c −【解析】2323232[3[]]a b c a b c b a c b a c −+++−=−−+−()()()().故答案是3a c −. 16.【答案】12cm 8cm 、【解析】设其中较长一段的长为cm x ,则另一段长为20cm x −(),根据题意得2220454x x −=−()(),即55225x−=,解得12x =,则2020128x −=−=.所以两段铁丝分别长12cm 8cm 、. 三、17.【答案】解:(1)3223232232212841224a b a b ab a b a b a b a b −−÷=÷=−−()()().(2)2021033133118311||2810π⨯=+⨯=+−+−−−−−−−=−-()()()()()()+.(3)2222221131441331441331x x x x x x x x x x x x x −−−=−−−−=−+−−+++()()(+)+()222x x =−+.(4)2244a b a b a b a b +−++()()()() 222244a b a b a b −++=()()() 4444a b a b =−+()()88a b =−(5)229910011000020019801=−=−+=().18.【答案】解:小敏说的正确.理由:2222[22]323x x x x x x ++−−+−÷++()()()()()()22233224397x x x x x x =++−−−=++−−+=()()().因为化简后的结果是一个常数7,与x 的取值无关,所以小敏说的正确.19.【答案】解:设这个数是x ,则最后所得的商为22[]244444x x x x x x ++−÷=+−÷=+()().如果把这个商告诉主持人,主持人只需减去4就知道你原来想的那个数是多少.20.【答案】解:①直接法:33222225[5]a b b a b b a b a b +=−+−−−盒子外部表面的面积()()()()22222222223366363222242442445555555ab b ab b a ab ab b ab b ab b a ab ab b a b =−−+−+=−−−−=−−+++−()②间接法:222334455a ab a b =−=−盒子外部表面的面积.比较直接法与间接法的结果,可见计算结果是一样的.。
第一章知识梳理A卷知识点1同底数幂的乘法一、选择题1.计算a2·a5的结果是()A.a10B.a8C.a7D.a3答案:C2.计算2×24×23的结果是()A.27B.28C.212D.213答案:B3.计算x·(-x)2的结果是()A.x3B.-x3C.x2D.0答案:A4.(内蒙古呼伦贝尔)化简(-x)3(-x)2的结果正确的是()A.-x6B.x6C.x5D.-x5答案:D5.计算-b·b3·b4的结果是()A.-b7B.b7C.b8D.-b8答案:D二、填空题6.(黑龙江大庆)若a m=2,a n=8,则a m+n=答案:167.计算:(1)a5·a3·a2= ;(2)(-b)2·(-b)3·(-b)5= ;(3)x m·x·x n-2= .答案:(1)a10(2)b10(3)x m+n-18.若a2n-1·a2n+1=a12,则n= .答案:39.一个长方体的长、宽、高分别为a2,a,a3,则这个长方体的体积是 . 答案:a6三、解答题10.计算.(1)104×105×106;(2)(12)3×(12)4×12;(3)b2n·b2n·b2.答案:解:(1)原式=104+5+6=1015.(2)原式=(12)3+4+1=(12)8.(3)原式=b2n+2n+2=b4n+2.11.规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求2*5和3*17的值;(2)猜想:a*b与b*a的运算结果是否相等?说明理由.答案:解:(1)2*5=102×105=107.3*17=103×1017=1020.(2)相等,理由如下:因为a*b=10a×10b=10a+b,b*a=10b×10a=10a+b,所以a*b=b*a.12.1 kg镭完全蜕变后,放出的热量相当于3.75×105 kg煤放出的热量,据估计,地壳中含有1×1010kg的镭,问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量.答案:解:3.75×105×1×1010=3.75×1015 kg.答:这些镭完全蜕变后放出的热量相当于3.75×1015 kg煤放出的热量.知识点2幂的乘方13.计算(a2)3的结果是()A.3a2B.2a3C.a5D.a6答案:D14.计算(103)2的结果是()A.103B.105C.106D.109答案:C15.计算(x m)3的结果是()A.x3+mB.x mC.x3D.x3m答案:D16.计算(a5)2·a3的结果是()A.a10B.a11C.a12D.a13答案:D17.计算:-(x2)3= .答案:-x618.若a12=x2=(a3)y,则x= ,y= .答案:a6419.若x3n=3,则x6n= .答案:920.若(a3)m=a4·a m,则m= .答案:221.有一个棱长10 cm的正方体,在某种物质的作用下,棱长以每秒扩大为原来的102倍的速度膨胀,则3秒后该正方体的体积是 cm3.答案:102122.计算.(1)(y4)2+(y2)3·y2;(2)-x6·(-x)6+2(x3)4.答案:解:(1)原式=y8+y8=2y8.(2)原式=-x12+2x12=x12.23.比较大小:2100与375,并说明理由.答案:解:2100<375.理由:2100=(24)25=1625,375=(33)25=2725,因为27>16,所以1625<2725,所以2100<375.知识点3积的乘方一、选择题24.计算(2x3)2的结果是()A.4x6B.2x6C.4x5D.2x5答案:A25.(四川攀枝花)计算(ab2)3的结果,正确的是()A.a3b6B.a3b5C.ab6D.ab5答案:A26.(四川成都)计算(-x3y)2的结果是()A.-x5yB.x6yC.-x3y2D.x6y2答案:D二、填空题27.计算:(1)(ab)3= ;(2)(-2a2)3= ;(3)(-4a3b)2= .答案:(1)a3b3(2)-8a6(3)16a6b2三、解答题28.计算.(1)a5·(-a)3+(-2a2)4;(2)[(-x2)3·(-x3)2]3;(3)(-2ab3c2)4.答案:解:(1)原式=-a8+16a8=15a8.(2)原式=(-x6·x6)3=-x36.(3)原式=16a4b12c8.知识点4同底数幂的除法一、填空题29.计算a6÷a3的结果是()A.a9B.a3C.a2D.a-3答案:B30.(12-)0的值是()A.1B.-1C.0D.1 2 -答案:A31.计算3-2的结果是()A.19B.19C.9D.-9 答案:A32.计算x ÷x 3的结果( ) A.21x B.41xC.x 2D.x 4 答案:A二、填空题33.计算:(1)x 6÷(-x )4= ;(2)(-2)6÷(-2)2= ;(3)(ab )5÷(ab )2= .答案:(1)x 2(2)16(3)a 3b 334.2.6×10-7用小数表示为 .答案:0.000 000 2635.若m-n=2,则10m ÷10n = .答案:10036.(山东威海)蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m ,将0.000 073用科学记数法表示为 .答案:7.3×10-537.若a=-0.32,b=-32,c=(-13)2,d=(-13)0,则a ,b ,c ,d 的大小关系为 . 答案:d >c >a >b三、解答题38.计算.(1)82m+3÷8m ;(2)2-2×43+(-13)0-(-2)4; (3)(-a 2)3÷(-a 3)2;(4)(m 2)n ·(m n )3÷m n-2;(5)(2m 2n -1)2÷3m 3n -5.答案:解:(1)原式=8m+3.(2)原式=16+1-16=1.(3)原式=-a 6÷a 6=-1.(4)原式=m 5n ÷m n-2=m 4n+2.(5)原式=4m4n-2÷3m3n-5=43mn3.知识点5整式的乘法一、选择题39.计算2a3·a2的结果是()A.2aB.2a5C.2a6D.2a9答案:B40.计算3x2·(-2x)3的结果是()A.-18x5B.-24x5C.-24x6D.-18x6答案:B41.计算(-2a2b)(3a3b2)的结果是()A.-6a5b3B.-6a3b5C.6a5b3D.6a3b5答案:A42.若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-6答案:B43.计算(-2x+1)(-3x2)的结果为()A.6x3+1B.6x3-3C.6x3-3x2D.6x3+3x2答案:C44.下列计算结果正确的是()A.(6ab2-4a2b)·3ab=18ab2-12a2bB.(-x)(2x+x2-1)=-x3-2x2+1C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2+3x2yD.(34a3-12b)·2ab=32a4b-ab2答案:D45.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,其中正确的是()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④答案:D二、填空题46.计算:(1)(-5a4)(-8ab2)= ;(2)12x2y·(2x+4y)= ;(3)(4x n+2y3)(-38x n-1y)= ;(4)(-12xyz)·23x2y2·(-35yz3)= .答案:(1)40a5b2(2)x3y+2x2y2(3)-32x2n+1y4(4)15x3y4z4三、解答题47.计算.(1)(x+3)(x-5)-x·(x-2);(2)(4a-b)(-2b)2;(3)(-53ab3c)·310ab3c·(-8abc)2;(4)-6ab·(2a2b-13ab2);(5)(x+5)(2x-3)-2x·(x2-2x+3);(6)(2x-4)(-3x2+12x+1).答案:解:(1)原式=x2-2x-15-x2+2x=-15. (2)原式=(4a-b)·4b2=16ab2-4b3.(3)原式=-32a4b8c4.(4)原式=-12a3b2+2a2b3.(5)原式=2x2+7x-15-2x3+4x2-6x=-2x3+6x2+x-15.(6)原式=-6x3+x2+2x+12x2-2x-4=-6x3+13x2-4.知识点6平方差公式一、选择题48.计算(2x+1)(2x-1)的结果是()A.4x2-1B.2x2-1C.4x-1D.4x2+1 答案:A49.下列式子能用平方差公式计算的是()A.(2a+b)(2b-a)B.(12+1)(-12-1)C.(3x-y)(-3x+y)D.(-m-n)(-m+n)答案:D50.计算(3m-2n)(-3m-2n)的结果是()A.9m2-4n2B.9m2+4n2C.-9m2-4n2D.-9m2+4n2答案:D二、填空题51.计算:(2a+b)(2a-b)= .答案:4a2-b252.已知m+n=3,m-n=2,那么m2-n2= .答案:653.(-3x2+2y2)()=9x4-4y4.答案:-3x2-2y254.如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a,b的等式为 .答案:a2-b2=(a+b)(a-b)三、解答题55.简便计算.(1)103×97;(2)899×901+1.答案:解:(1)原式=(100+3)(100-3)=9 991.(2)原式=(900-1)(900+1)+1=810 000.56.计算.(1)(3x-2)(-3x-2);(2)(2x-3y)(3y+2x)-(4y-3x)(3x+4y);(3)(x+1)(x2+1)(x-1).答案:解:(1)原式=-9x2+4.(2)原式=4x2-9y2-16y2+9x2=13x2-25y2.(3)原式=(x+1)(x-1)(x2+1)=(x2-1)(x2+1)=x4-1.知识点7完全平方公式一、选择题57.(湖北武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9B.x2-6x+9C.x2+6x+9D.x2+3x+9答案:C58.计算:(x-5)2=()A.x2-25B.x2+25C.x2-5x+25D.x2-10x+25答案:D59.下列各式中计算正确的是()A.(a-b)2=a2-b2B.(a+2b)2=a2+2ab+4b2C.(a2+1)2=a4+2a+1D.(-m-n)2=m2+2mn+n2答案:D60.如图1,是一个长为2a、宽为2b(a>b)的长方形,用剪刀沿图中虚线剪开,把它分成四个完全一样的小长方形,然后按图2拼成一个新的正方形,则中间空白部分的面积是()A.abB.(a+b)2C.(a-b)2D.a2-b2答案:C二、填空题61.已知a+b=3,ab=1,则a2+b2= .答案:762.若(m-2)2=3,则m2-4m+6的值为 .答案:563.一个正方形的面积是a2+2a+1(a>0),则其边长为 .答案:a+164.已知(a-b)2=9,(a+b)2=25,则a2+b2= .答案:17三、解答题65.简便计算.(1)982;(2)1 0032.答案:解:(1)原式=(100-2)2=1002-400+4=9 604.(2)原式=(1 000+3)2=1 0002+6 000+9=1 006 009.66.计算.(1)(2x-3y)2;(2)(a+1)2-a2;(3)(x+5)2-(x-2)(x-3);(4)(a+2b-3c)(a-2b+3c).答案:解:(1)原式=4x2-12xy+9y2.(2)原式=a2+2a+1-a2=2a+1.(3)原式=x2+10x+25-x2+5x-6=15x+19.(4)原式=[a+(2b-3c)][a-(2b-3c)]=a2-(2b-3c)2=a2-4b2+12bc-9c2.知识点8整式的除法一、选择题67.计算8a3÷(-2a)的结果是()A.4aB.-4aC.4a2D.-4a2答案:D68.计算(-2a3)2÷a2的结果是()A.-4a4B.4a4C.-4a8D.4a8答案:B69.计算(12x3-8x2+16x)÷(-4x)的结果是()A.-3x2+2x-4B.-3x2-2x+4C.-3x2+2x+4D.3x2-2x+4答案:A70.长方形的面积为4a2-6ab+2a,若它的一边长为2a,则它的周长为()A.4a-3bB.8a-6bC.4a-3b+1D.8a-6b+2答案:D二、填空题71.计算:(1)4a3b2÷2ab= ;(2)(8a3bc-2a2b2-12ab)÷(-12ab)= .答案:(1)2a2b(2)-16a2c+4ab+172.已知7x3y2与一个多项式之积是28x4y2+7x4y3-21x3y2,则这个多项式是 . 答案:4x+xy-373.月球距离地球约3.84×105km,一架飞机的速度为8×102km/h,若坐飞机飞行这么远的距离需 h.答案:480三、解答题74.计算.(1)5x2y÷(-12xy)·3xy2;(2)(12x3-6x2+9x)÷(-3x);(3)[x(x2-2x+3)-3x]÷12x2.答案:解:(1)原式=-30x2y2.(2)原式=-4x2+2x-3. (3)原式=2x-475.化简求值.(1)(-xy)3÷(x-2)3,其中x=-4,y=14;(2)[(x+2y)2-(x+y)(3x-y)-5y2]÷2x,其中x=-2,y=12.答案:解:(1)原式=-x3y3÷x-6=-x9y3,当x=-4,y=14时,原式=4 096.(2)原式=(x2+4xy+4y2-3x2-2xy+y2-5y2)÷2x=-x+y,当x=-2,y=12时,原式=52.。
北师大版七年级数学下册第一章检测卷[1111]1、在代数式x x 3252-,y x 22π,x 1,5-,a ,0中,单项式的个数是()A 1B 2C 3D 42、多项式221352a ab --的次数是()A2 B3 C5 D 03、多项式5x 2-3xy+y 2与一个多项式的和是3xy-x 2,则这个多项式是()A 6x 2-6xy+y 2B -6x 2+6xy-y 2C 4x 2+y 2D -6x 2+y 24、下列运算正确的是()A a 2·(a 3)2= a 8B 3332a a a =?C 3362a a a +=D 238()a a =5、下列多项式相乘不能用平方差公式的是( )A ()()22--x xB ()()33++-x xC ()()y x y x +-22D ()??-+3131x x6、利用公式计算正确的是().A (2x -3)2=4x 2 +12x -9B (4x +1)2=16x 2+8x +1C (a +b )(a -b )=a 2+b 2D (2m +3)(2m -3)=4m 2-3 7、计算(135-)2008×(532-)2007所得结果为( )A 1B -1C 135- D 20088、两个连续奇数的平方差是()A 6的倍数B 8的倍数C 12的倍数D 6的倍数9、已知x +y =7,xy =-8,下列各式计算结果不正确的是()A (x +y )2=49B x 2+y 2=65C (x -y )2=81D x 2- y 2=6310、已知a=255,b=344,c=433则a 、b 、c 、的大小关系为()A b>c>aB a>b>cC c>a>bD a<b<c< p="">11、若 4a 2-2ka+9是一个完全平方的展开形式,试求k 的值()A 12 B±6 C 6 D ±1212、用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x ,y 表示矩形的长和宽(x >y ),则下列关系式中不正确的是()A x +y =12B x -y =2C xy =35D x 2+y 2=144 二、填空题(24分)13、请你写出一个单项式,使它的系数为-1,次数为3 ________________14、小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为4a 2-12ab + ,你觉得这一项应是 15、已知a +a 1=3,则a 2+21a=16、若a m =2,a n =3,则a 2m-3n 的值是17、若x-2y=4,则22(2)y x -+4y-2x+1的值是___________. 三、解答题 19、计算(20分)(1))(5)21(22222ab b a a b ab a -++-(2))18()3610854(22xy xy xy y x ÷-- (3))3)(3()1(2-+-+x x x (4)-12x3y 4÷(-3x 2y 3)·(-31xy ). 1、下列计算正确的是()A 、22=-a aB 、326m m m =÷C 、2008200820082xxx=+ D 、632t t t =?2、下列语句中错误的是()A 、数字 0 也是单项式B 、单项式 a 的系数与次数都是 1C 、32ab -的系数是 32- D 、2221y x 是二次单项式 3、代数式 2008 ,π1,xy 2 ,x 1 ,y 21- ,)(20081b a + 中是单项式的个数有() A 、2个B 、3个 C 、4个D 、5个 4、一个整式减去22b a -等于22b a +则这个整式为()A 、22b B 、22a C 、22b - D 、22a - 5、下列计算正确的是:()A 、2a 2+2a 3=2a 5B 、2a -1=12aC 、(5a 3)2=25a 5D 、(-a 2)2÷a=a 3 6、下列计算错误的是:()①、(2x+y )2=4x 2+y 2 ②、(3b-a)2=9b 2-a 2 ③、(-3b-a)(a-3b)=a 2-9b 2④、(-x-y )2=x 2-2xy+y 2 ⑤、(x-12 )2=x 2-2x+14A 、1个B 、2个C 、3个D 、4个 7、黎老师做了个长方形教具,其中一边长为b a +2,另一边为b a -,则该长方形周长为( )A 、b a +6B 、a 6C 、a 3D 、b a -108、下列多项式中是完全平方式的是( )A 、142++x xB 、1222+-y x C 、2222y xy y x ++ D 、41292+-a a9、饶老师给出:1=+b a ,222=+b a ,你能计算出 ab 的值为()A 、1-B 、3C 、23-D 、21-10、已知552=a ,443=b ,334=c ,则a 、b 、c 、的大小关系为:()A 、c b a >> B 、b c a >> C 、c a b >> D 、a c b >> 二、填空题。
(3分×10=30分) 11、单项式 23ba π-的系数是,次数是次。
12、代数式 x x a x a 5154323+- 是______项式,次数是_____次。
13、化简:=---+)4()36(2222xy y x xy y x ________________。
14、若 c bx ax x x ++=-+2)4)(3( ,则=a _______、=b _______、=c _______。
15、计算:65105104= ;16、 ()_______)3(102=----π。
17、已知2×8m =42m 求m= 。
18、已知2x 2-3x-1=0,求6x 2-9x-5=19、若10m n +=,24mn =,则22m n +=。
20、2005200640.25?= 。
三、计算题。
(4分×7=28分))12)(2(2++x x22、)(5)21(22222ab b a a b ab a -++- 2322232)2(21c b a bc a -? 24、)18()3610854(22xy xy xy y x ÷--25()()()1122+--+x x x26、))()((22y x y x y x -+-27、()()()24212121+++1.下列运算正确的是()A.954a a a =+ B. 33333a a a a =?? C.954632a a a =? D. ()743a a =-=?--20122012532135.2()A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=()A. 30ab B. 60ab C. 15ab D. 12ab 4.已知,3,5=-=+xy y x 则=+22y xA. 25. B 25- C 19 D 、19- 5.已知,5,3==b ax x 则=-ba x 23()A 、2527 B 、109C 、53 D 、52 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为() A 、–3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a2+b 2的值等于( A 、84 B 、78 C 、12 D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是()A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为()A 、Q P >B 、Q P =C 、Q P < D 、不能确定二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
12.已知51=+x x ,那么221xx +=_______。
13方程()()()()41812523=-+--+x x x x 的解是_______。
14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______。
15.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.16.若622=-n m ,且3=-n m ,则=+n m .三、解答题(共8题,共66分) 17计算:(本题9分)一、()()02201214.3211π--??-+-- 二、()()()()233232222x y x xy yx ÷-+-?(3)()()222223366m m n m n m -÷--18、(本题9分)(1)先化简,再求值:()()()()221112++++-+--a b a b a b a ,其中21=a ,2-=b 。
1、整式、整式的加减 1.在下列代数式:xy x abc ab 3,,0,32,4,3---中,单项式有【】(A )3个(B )4个(C )5个(D )6个2.单项式7243xy -的次数是【】(A )8次(B )3次(C )4次(D )5次 3.在下列代数式:1,212,3,1,21,2122+-+++++x x b ab b a ab ππ中,多项式有【】(A )2个(B )3个(C )4个(D )5个4.下列多项式次数为3的是【】(A )-5x 2+6x -1 (B )πx 2+x -1(C )a 2b +ab +b 2 (D )x 2y 2-2xy -1 5.下列说法中正确的是【】(A )代数式一定是单项式(B )单项式一定是代数式(C )单项式x 的次数是0 (D )单项式-π2x 2y 2的次数是6。
6.下列语句正确的是【】(A )x 2+1是二次单项式(B )-m 2的次数是2,系数是1 (C )21x是二次单项式(D )32abc 是三次单项式7. 化简2a 2-3ab +2b 2-(2a 2+ab -3b 2 ) 2x -(5a -7x -2a )8.减去-2x 后,等于4x 2-3x -5的代数式是什么?9.一个多项式加上3x 2y -3xy 2得x 3-3x 2 y ,这个多项式是多少?2、同底数幂的乘法 1.111010m n +-?=________,456(6)-?-=_____ _.2. 25()()x y x y ++=_________________.3. 31010010100100100100001010+??-??=___________. 4. 若1216x +=,则x=________.5. 若34ma a a=,则m=________;若416a x x x =,则a=__________;若2345yxx x x x x=,则y=______;若25()x a a a -=,则x=_______.6. 若2,5m n a a ==,则m na+=________.7. 下面计算正确的是( )A .326b b b =;B .336x x x +=; C .426a a a +=; D .56mm m = 8. 81×27可记为( ) A.39; B.73; C.63; D.12 3 10. 计算19992000(2)(2)-+-等于( ) A.39992-; B.-2; C.19992-;D.199923、幂的乘方与积的乘方 1. 计算221()3ab c -23()n a a ?5237()()p q p q +?+23222(3)()a a a +?221()()n n x y xy -?2.1001001()(3)3- =_________ ,若2,3nnx y ==,则()n xy =_______,3.若a 为有理数,则32()a 的值为( ) A.有理数 B.正数 C.零或负数 D.正数或零4.若33()0ab <,则a 与b 的关系是( )A.异号B.同号C.都不为零D.关系不确定 5.计算82332()()[()]p p p -?-?-的结果是()6.44x y= ( ) 4、同底数幂的除法 1.计算52()()x x -÷-=_______,10234x x x x ÷÷÷=______.2.水的质量0.000204kg,用科学记数法表示为__________.3.若0(2)x -有意义,则x_________.4.计算02(3)(0.2)π--+-2324[()()]()m n m n m n -?-÷-5.若5x-3y-2=0,则531010xy ÷=_________.6.如果3,9mna a ==,则32m na-=________.7.下列运算结果正确的是( )①2x 3-x 2=x ②x 3·(x 5)2=x 13 ③(-x)6÷(-x)3=x 3 ④(0.1)-2×10-?1=10A.①②B.②④C.②③D.②③④8.已知a ≠0,下列等式不正确的是( ) A.(-7a)0 =1 B.(a 2+12)0=1 C.(│a │-1)0=1 D.01()1a=2.将一个长为x ,宽为y 的长方形的长增加1,宽减少1,得到的新长方形的面积是 .6、整式的除法 1223293m m m m a b a b +-÷8a 2b 2c ÷_________=2a 2bc.(7x 3-6x 2+3x)÷3x232324[(2)(0.5)][(25)()]xy x y z xy xy ?÷-3.__________________·235444234826x y x y x y x y =--.5.__________÷73(210)510?=-?.6.如果x 2+x-6除以(x-2)(x+a)的商为1,那么a=________.7、平方差公式1.利用公式计算(x+6)(6-x)11()()22x x -+--(a+b+c)(a-b-c)18201999403×3972.下列式中能用平方差公式计算的有( ) ①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1)A.1个B.2个C.3个D.4个 3.下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-,③235(1)(1)(1)m m m --=-,④232482aba b ++??=.A.①②B.②③C.②④D.③④4.乘法等式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.单项式、?多项式都可以 8、完全平方公式计算(1)()21x + (2)221??-b a(3)210151??? ??--y x (4)2 21??? ?+-cd(5))12)(12(-+++y x y x (6))2)((4)2(2y x y x y x +---(7)4992(8)9982(9)若x 2+mx +4是一个完全平方公式,则m 的值为()</b<c<>。