专题06 动能定理应用模型
- 格式:docx
- 大小:137.61 KB
- 文档页数:10
专题06 功和功率 动能定理目录题型一 功和功率的理解和计算 ..................................................................................................... 1 题型二 机车启动问题 ..................................................................................................................... 4 题型三 动能定理及其应用 ........................................................................................................... 12 题型四 功能中的图像问题 .. (22)题型一 功和功率的理解和计算【题型解码】1.要注意区分是恒力做功,还是变力做功,求恒力的功常用定义式.2.变力的功根据特点可将变力的功转化为恒力的功(如大小不变、方向变化的阻力),或用图象法、平均值法(如弹簧弹力的功),或用W =Pt 求解(如功率恒定的力),或用动能定理等求解.【典例分析1】(2023上·福建三明·高三校联考期中)如图所示,同一高度处有4个质量相同且可视为质点的小球,现使小球A 做自由落体运动,小球B 做平抛运动,小球C 做竖直上抛运动,小球D 做竖直下抛运动,且小球B 、C 、D 抛出时的初速度大小相同,不计空气阻力。
小球从释放或抛出到落地的过程中( )A .重力对4个小球做的功相同B .重力对4个小球做功的平均功率相等C .落地前瞬间,重力对4个小球的瞬时功率大小关系为A B CD P P P P =<= D .重力对4个小球做功的平均功率大小关系为A B C D P P P P =>= 【答案】AC【详解】A .4个质量相同的小球从同一高度抛出到落地的过程中,重力做功为G W mgh =故重力对4个小球做的功相同,故A 正确;BD .小球A 做自由落体运动,小球B 做平抛运动,小球C 做竖直上抛运动,小球D 做竖直下抛运动,小球从同一高度抛出到落地,运动时间关系为D A B C t t t t <=<重力对4个小球做功的平均功率为GW P t=可得重力对4个小球做功的平均功率大小关系为D A B C P P P P >=>故BD 错误;C .落地前瞬间,4个小球竖直方向有2A 2v gh =,2B 2v gh = 22C 02v v gh -=,22D 02v v gh -=4个小球竖直方向的速度关系为A B C D v v v v =<=落地前瞬间,重力对4个小球的瞬时功率y P mgv =落地前瞬间,重力对4个小球的瞬时功率大小关系为A B C D P P P P =<=故C 正确。
动能定理及应用知识框图动能定理是力学中的基本定律之一,它描述了一个物体的动能与其所受作用力之间的关系。
根据动能定理,物体的动能的变化等于作用力对物体所做的功。
换句话说,动能定理表示了物体的动能的增加是由外力对物体做功所引起的。
动能定理可以用以下公式表示:\Delta KE = W其中,\Delta KE表示动能的变化量,W表示作用力对物体所做的功。
动能定理可以应用在很多实际问题中,下面举几个例子来说明其应用:1. 自行车运动:当我们骑自行车时,我们对踏板施加力,使自行车前进。
根据动能定理,我们对自行车施加的力所做的功等于自行车的动能的变化量。
如果我们用F表示对踏板施加的力,d表示骑自行车的距离,m表示自行车的质量,v_f表示自行车的最终速度,v_i表示自行车的初始速度,那么根据动能定理,我们可以得到以下等式:\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = Fd2. 自由落体:当一个物体自由下落时,重力对物体做功,这个过程中物体的动能会增加。
根据动能定理,物体的动能的增加等于重力对物体做的功。
设物体的质量为m,下落的高度为h,重力加速度为g,则根据动能定理可以得到以下等式:mgh = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^23. 弹簧振子的运动:当一个弹簧振子在振动过程中,弹簧对物体施加力,使得物体产生加速度,从而改变其速度和动能。
根据动能定理,我们可以得到以下等式:\frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2 = \frac{1}{2}m(v_f^2 - v_i^2)其中,k是弹簧的劲度系数,x_f和x_i分别是弹簧振子的最大位移和初始位移。
通过动能定理,我们可以研究物体在作用力下的运动过程,计算物体的动能的变化量以及作用力对物体所做的功。
这些都有助于我们理解和解决各种实际问题,例如工程中的动力系统设计,运动物体的能量转换等。
第2讲动能定理及其应用课程标准素养目标1.理解动能和动能定理.2.能用动能定理解释生产生活中的现象.物理观念:了解动能的概念和动能定理的内容.科学思维:会用动能定理分析曲线运动、多过程运动问题.返回导航考点一动能、动能定理的理解【必备知识•自主落实】1.动能动能是标量(1)定义:物体由于运动而具有的能.(2)公式:E k=^mv2v是瞬时速度(3)单位:焦耳,1J=1N m=l kg m2/s2.(气)动能]的变化:物体末动能与初动能之差,即AEk=答案返回导航2.动能定理“力”指的是物体受到的合力(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.合力所做的总功1719(2)表达式:W=(3)物理意义:合外力的功是物体动能变化的量度.答案返回导航【关键能力.思维进阶]1.甲、乙两物体的质量分别用m甲、m乙表示,甲、乙两物体的速度大小分别用v甲、v乙表示,则下列说法正确的是()A.如果m乙=2m甲,v甲=2v乙,则甲、乙两物体的动能相等B.如果m甲=2m乙,v乙=2v甲,则甲、乙两物体的动能相等C.如果m乙=2m甲,v乙=2v甲,则甲、乙两物体的动能相等D.如果111甲=111乙,v¥=v^,两物体的速度方向相反,此时两物体的动能相等答案:D解析:由动能的表达式氏=fl"”?可知,A、B、C错误;动能是标量,只与物体的质量和速度的大小有关,与速度方向无关,D正确.解析■答案返回导航2.(多选)如图所示,电梯质量为M,在它的水平底板上放置一质量为m 的物体.电梯在钢索的拉力作用下做竖直向上的加速运动,当电梯的速度由V|增大到V2时,上升高度为H.则在这个过程中,下列说法正确的是(重力加速度为g)()A.对物体,动能定理的表达式为W=:mv专-:mv,,其中W为支持力做的功B.对物体,动能定理的表达式为W合=0,其中W合为合力做的功C.对物体,动能定理的表达式为W—mgH=:mv芸一?mv,,其中W为支持力做的功|D.对电梯,其所受合力做功为!Mv专一I—―I答案:CD解析■答案胃返回导航思维提升有能与动能变化的区别(1)动能与动能的变化是两个不同的概念,动能是状态量,动能的变化是过程量.(2)动能没苔负值,而动能变化量有正负之分.JE,>0表示物体的动能增加,/E r VO表示物体的动能减少.返回导航2.对动能定理的理解做功的过程就是能量转化的过程,动能定理表达式中的意义是一种因果关系在数值上相等的符号.因果关系一合力做功是物体动能变化的原因数量关系一合力做的功与动能变化可以等量代换单位关系一国际单位都是焦耳返回导航返回导航考点二动能定理的基本应用【关键能力•思维进阶】应用动能定理的注意事项(1)方法的选择:动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)过程的选择:物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段应用动能定理,也可以对全过程应用动能定理.如果对整个过程应用动能定理,往往能使问题简化.(3)规律的应用:动能定理表达式是一个标量式,不能在某个方向上应用动能定理.返回导航考向1应用动能定理求变力的功例1承德的转盘滑雪机为我国自主原创、世界首例的专利产品.一名运 动员的某次训练过程中,转盘滑雪机绕垂直于盘面的固定转轴以角速度3 = 0.5,以〃s 顺时针匀速转动,质量为60 kg 的运动员在盘面上离转轴10 m 半 径上滑行,滑行方向与转盘转动方向相反,在最低点的速度大小为10 m/s, 滑行半周到最高点的速度大小为8 m/s,该过程中,运动员所做的功为6 500 J,巳知盘面与水平面夹角为18° , g 取10 mis 1, sin 18° =0.31, cos 18° =0.95,则该过程中运动员克服阻力做的功为( )A. 4 240 J C. 3 860JB. 3740 JD. 2 300 J 答案:c解析■答案返回导航考向2应用动能定理求解直线运动问题例2如图所示,一斜面体ABC 固定在水平地面上,斜面AD 段粗糙、DC 段光 滑,在斜面底端C 点固定一轻弹簧,弹簧原长等于CD 段长度.一质量m = 0.1 蚀的小物块(可视为质点)从斜面顶端A 以初速度v 0=2力/s 沿斜面下滑,当弹簧 第一次被压缩至最短时,其长度恰好为原长的一半,物块沿斜面下滑后又沿 斜面向上返回,第一次恰能返回到最高点A.己知弹簧的原长L o = O.2 m,物块 与斜面AD 段间的动摩擦因数p=g 斜面倾角0=30° ,重力加速度g=10 tn/s 2,6弹簧始终处于弹性旭度范围内.下列说法中正确的是()A. A 、D 间的足巨鬲X n )=0.2 m%B. 物块第一次运动到D 点时的速度大小为匝m/sC. 弹簧第一次被压缩到最短时的弹性势能为0.3 Jn D. 物块在斜面AD 段能滑行的总路程为1.6 mCB 答案:D 解析■答案返回导航考向3应用动能定理求解曲线运动问题例3[2023-湖北卷]如图为某游戏装置原理示意图.水平桌面上固定一半圆形竖直挡板,其半径为2R、内表面光滑,挡板的两端A、B在桌面边缘,B与半径为R的固定光滑圆弧轨道COE在同一竖直平面内,过C点的轨道半径与竖直方向的夹角为60°.小物块以某一水平初速度由A点切入挡板内侧,从B点飞出桌面后,在C点沿圆弧切线方向进入轨道CDE内侧,并恰好能到达轨道的最高点D.小物块与桌面之间的动摩擦因数为重力加速度大小21T为g,忽略空气阻力,小物块可视为质点.求:a A(1)小物块到达D点的速度大小;(2)B和D两点的高度差;(寻f(3)小物块在A点的初速度大小.芯夕次答案返回导航思维提升求解多过程问题抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况;“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.返回导航考向4动能定理在往复运动问题中的应用1.往复运动问题:在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.2.解题策略:此类问题多涉及滑动摩擦力或其他阻力做功,其做功的特点是与路程有关,运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出,由于动能定理只涉及物体的初、末状态,所以用动能定理分析这类问题可使解题过程简化.返回导航例4(多选)[2024-山东模拟预测]如图,左侧光滑曲面轨道与右侧倾角a= 37°的斜面在底部平滑连接且均固定在水平地面上,质量为m的小滑块从斜面上离斜面底边高为H处由静止释放,滑到斜面底端然后滑上左侧曲面轨道,再从曲面轨道滑上斜面,滑块第一次沿斜面上滑的最大高度为&H,多次往复运动.不计空气阻力,重力加速度为g,sin37°=0.6.返回导航下列说法正确的是()A.滑块第一次下滑过程,克服摩擦力做的功为土mgHB.滑块第1次下滑的时间与第1次上滑的时间之比为:4C.滑块与斜面间的动摩擦因数为寿D.滑块从静止释放到第n次上滑到斜面最高点的过程中,系统产生的热量为(l—*)mgH答案:BCD解析■答案返回导航返回导航考点三动能定理与图像结合问题【关键能力•思维进阶】考向1E r x(W-x)图像问题例5(多选)一滑块从某固定粗糙斜面底端在沿斜面向上的恒力作用下由静止开始沿斜面向上运动,某时刻撤去恒力,上升过程中滑块的动能和重力势能随位移变化的图像如图所示,图中E和、So为已知量,滑块与斜面间的动摩擦因数为0.5,重力加速度为g,下列说法正确的是()A.恒力的大小为譬酮三B.斜面倾角的正饥值为0.75C.滑块下滑到斜面底端时的速度大小为玄笋D.滑块的质量可表示为竺剪\gs。
《动能定理的应用》讲义一、什么是动能定理动能定理是物理学中一个非常重要的定理,它描述了力对物体做功与物体动能变化之间的关系。
动能,简单来说,就是物体由于运动而具有的能量。
一个物体的动能大小等于其质量与速度平方乘积的一半,即$E_k =\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
而动能定理指出:合外力对物体所做的功等于物体动能的变化量。
用公式表示就是$W =\Delta E_k$,其中$W$是合外力做的功,$\Delta E_k$是动能的变化量。
二、动能定理的推导为了更好地理解动能定理,我们来简单推导一下。
假设一个质量为$m$的物体,在恒力$F$的作用下,沿着直线从位置$x_1$运动到位置$x_2$,力的方向与位移方向相同,加速度为$a$。
根据牛顿第二定律$F = ma$,又因为匀变速直线运动的位移公式$x = v_0t +\frac{1}{2}at^2$,速度公式$v = v_0 + at$。
我们对位移公式进行变形可得:$t =\frac{v v_0}{a}$,将其代入位移公式可得:$x =\frac{v^2 v_0^2}{2a}$。
力$F$做的功$W = Fx = ma \times \frac{v^2 v_0^2}{2a} =\frac{1}{2}mv^2 \frac{1}{2}mv_0^2$。
这正好就是物体末动能与初动能的差值,也就是动能的变化量$\Delta E_k$。
三、动能定理的应用场景1、求物体的速度当已知物体所受的合力做功以及物体的初动能时,可以通过动能定理求出物体的末速度。
例如,一个质量为$2kg$的物体,在水平方向受到一个大小为$10N$的恒力作用,力的方向与运动方向相同,物体在力的作用下移动了$5m$,初始速度为$2m/s$。
则合力做功$W = Fs = 10×5 = 50J$,根据动能定理$W =\Delta E_k =\frac{1}{2}mv^2 \frac{1}{2}mv_0^2$,可得$50 =\frac{1}{2}×2×v^2 \frac{1}{2}×2×2^2$,解得$v = 6m/s$。
专题12 动能定理1、动能定理(1)动能定理的内容及表达式:合外力对物体所做的功等于物体动能的变化.12K K K E E E W -=∆=(2)物理意义动能定理给出了力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的多少由做功的多来量度. 2.对动能定理的理解(1).动能定理的公式是标量式,E k 是状态量,也是相对量,与速度的方向无关.,v 为物体相对于同一参照系的瞬时速度.一般选地面为参考系.(2).动能定理的研究对象是单一物体,或可看成单一物体的物体系.(3).动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,既可以是单过程问题,也可以是多过程问题,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.(4).若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑. 4、动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、x 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路图5-3-6(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系. (4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解. 【一】应用动能定理处理恒力做功问题 (1)两个分析:运动过程分析和受力分析 (2)明确有那些力做功【例题】人从地面上,以一定的初速度v 0将一个质量为m 的物体竖直向上抛出,上升的最大高度为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( A )A. 2021mv B. fh mgh - C. fh mgh mv -+2021 D.fh mgh + 【变式1】一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。
高中物理系列模型之算法模型5. 动能定理应用模型模型界定动能定理是力学中的一个十分重要的规律,它揭示了做功与动能之间的关系,给出了过程量功与状态量动能之间的标量运算式。
他是解决动力学问题的重要方法,使用中要优于牛顿运动定律。
本模型从动能定理内容和意义的理解、应用动能定理分析、解决实际问题的基本思路和方法等方面加以分析归纳。
模型破解1动能定理:合外力对物体做的功等于物体动能的变化.21222121mv mv E W K -=∆=合 动能定理的物理意义在于他指出了外力对物体所做的总功与物体的动能变化之间的关系,即外力对物体做的总功对应着物体动能的变化,变化的大小由做功的多少来量度2.对动能定理的理解(i )W 合是所有外力对物体做的总功,求所有外力做的总功有两种方法:第一种方法是:先求出物体所受各力的合力F 合,再根据W 总=F 合lcosα计算总功,但应注意α应是合力与位移l 的夹角.这种方法一般用于各力都是恒力且作用时间相同的情况下.第二种方法是:分别求出每一个力做的功:W 1=F 1l 1cosα1,W 2=F 2l 2cosα2,W 3=F 3l 3cosα3,…再把各个外力的功求代数和即:W 总=W 1+W 2+W 3+…这种方法一般用于各力分别作用或作用时间不同时的情况下.(ii )动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功.力可以是各种性质的力,既可以同时作用,也可以分段作用.(iii )因为动能定理中功和能均与参考系的选取有关,所以动能定理也与参考系的选取有关.中学物理中一般取地球为参考系.(iv )动能定理公式两边的每一项都是标量,动能定理是一个标量方程,故动能定理没有分量形式. (v )若物体运动包含几个不同的过程,应用动能定理时,可以分段应用,也可以全过程应用.(vi )动能定理是计算物体位移或速率的简捷公式,当题目中涉及位移时可优先考虑动能定理.动能定理通常不解决涉及时间的问题,但动力机械起动过程除外.(vii)做功的过程是能量转化的过程,动能定理表达式中的“=”的意义是一种因果关系在数值上相等的符号,它并不意味着“功就是动能增量”,也不意味着“功转变成了动能”,而是意味着“功引起物体动能的变化”.(viii)若E k2>E k1,即W总>0,合力对物体做正功,物体的动能增加;若E k2<E k1,即W总<0,合力对物体做负功,物体的动能减少.(ix)一个物体的动能变化ΔE k与合外力对物体所做功W合具有等量代换关系:W合=ΔE k.这种等量代换关系提供了一种计算变力做功的简便方法.3. 应用动能定理解题的基本思路(i)选取研究对象,明确并分析运动过程.(ii)分析受力及各力做功的情况,求出总功;受哪些力各力是否做功做正功还是负功做多少功确定求总功思路求出总功.(iii)明确过程始、末状态的动能E k1及E k2.(4)列方程W合=E k2-E k1,必要时注意分析题目潜在的条件,列辅助方程进行求解.例1.如图甲所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图像如图乙所示,则()A.t1时刻小球动能最大时刻小球动能最大2~t3这段时间内,小球的动能先增加后减少2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能2例2. 如图所示,一条轨道固定在竖直平面内,粗糙的ab段水平,bcde段光滑,cde段是以O为圆心、R 为半径的一小段圆弧。
高中物理系列模型之算法模型5.动能定理应用模型模型界定动能定理是力学中的一个十分重要的规律,它揭示了做功与动能之间的关系,给出了过程量功与状态量动能之间的标量运算式。
他是解决动力学问题的重要方法,使用中要优于牛顿运动定律。
本模型从动能定理内容和意义的理解、应用动能定理分析、解决实际问题的基本思路和方法等方面加以分析归纳。
模型破解1动能定理:合外力对物体做的功等于物体动能的变化.W = A E = 2 mvi — 2 mv2动能定理的物理意义在于他指出了外力对物体所做的总功与物体的动能变化之间的关系,即外力对物体做的总功对应着物体动能的变化,变化的大小由做功的多少来量度2.对动能定理的理解(i)W合是所有外力对物体做的总功,求所有外力做的总功有两种方法:第一种方法是:先求出物体所受各力的合力F A,再根据W^FJcosa计算总功,但应注意a应是合力与合总、合位移l的夹角.这种方法一般用于各力都是恒力且作用时间相同的情况下.第一种方法是.分别求出每一个力做的功.W -F l C0Sa , W -F l C0Sa , W -F l C0Sa , 再把各个外力的——z l T yj I Z AAC. : 刀‘j 刁、e 顷口」*■%/:vv —i i cosa,丫y —i i cosa,vy —i. cosa,... Tr J I z I yJ \4 J_L _L _L A.J J J J功求代数和即:W总-W]+W2+W3+...这种方法一般用于各力分别作用或作用时间不同时的情况下.(ii)动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做助可以是各种性质的力,既可以同时作用,也可以分段作用.(iii)因为动能定理中功和能均与参考系的选取有关,所以动能定理也与参考系的选取有关.中学物理中一般取地球为参考系.(iv)动能定理公式两边的每一项都是标量,动能定理是一个标量方程,故动能定理没有分量形式(v)若物体运动包含几个不同的过程,应用动能定理时,可以分段应用,也可以全过程应用.(vi)动能定理是计算物体位移或速率的简捷公式,当题目中涉及位移时可优先考虑动能定理•动能定理通常不解决涉及时间的问题,但动力机械起动过程除外.(vii)做功的过程是能量转化的过程,动能定理表达式中的“=”的意义是一种因果关系在数值上相等的符号,它并不意味着“功就是动能增量”,也不意味着“功转变成了动能”,而是意味着“功引起物体动能的变化”(viii)若E k2>E k1,即W总>0,合力对物体做正功,物体的动能增加;若E k2<E k1,即W总<0,合力对物体做负功,物体的动能减少.(ix) 一个物体的动能变化AE k与合外力对物体所做功W合具有等量代换关系:W ^=AE k.这种等量代换关系提供了一种计算变力做功的简便方法.3.应用动能定理解题的基本思路(i)选取研究对象,明确并分析运动过程.(ii)分析受力及各力做功的情况,求出总功;受哪些力各力是否做功做正功还是负功做多少功确定求总功思路求出总功.(iii)明确过程始、末状态的动能E k1及E k2(4)列方程W合=E k2-E k1,必要时注意分析题目潜在的条件,列辅助方程进行求解.例1.如图甲所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图像如图乙所示,则()A.J时刻小球动能最大时刻小球动能最大B t2c七2〜13这段时间内,小球的动能先增加后减少D七2〜13这段时间内,小球增加的动能等于弹簧减少的弹性势能例2.如图所示,一条轨道固定在竖直平面内,粗糙的ab段水平,bcde段光滑,cde段是以O为圆心、R 为半径的一小段圆弧。
可视为质点的物块A和B紧靠在一起,静止于b处,A的质量是B的3倍。
两物体在足够大的内力作用下突然分离,分别向左、右始终沿轨道运动。
B到b点时速度沿水平方向,此时轨道对A与ab段的动摩擦因数为p,重力加速度g,求:(1)物块B在d点的速度大小;(2)物块A滑行的距离.4 .系统动能定理高中阶段中动能定理的表述为:作用在物体上合外力的功等于物体动能的改变量,即W合=K E K - ~2mv 2- 2mv1这是针对单体或可看作单个物体的物体系而言的.所谓能看成单个物体的物体系,简单来说就是物体系内各物体之间的相对位置不变,从而物体系的各内力做功之和为零,物体系的动能变化就取决于所有外力做的总功了.但是对于不能看成单个物体或说不能看质点的物体,可将其看成是由大量质点组成的质点系,对质点系组成的系统应用动能定理时,就不能仅考虑外力的作用,还需考虑内力所做的功即:W 外+W rt=AE k例3.一位质量为m的运动员从下蹲状态向上起跳,经At时间,身体伸直并刚好离开地面,速度为v。
在此过程中,A.地面对他的冲量为mv+mgAt,地面对他做的功为1 mv2B.地面对他的冲量为mv+mgAt,地面对他做的功为零C.地面对他的冲量为mv,地面对他做的功为1 mv2D.地面对他的冲量为mv-mgAt,地面对他做的功为零5.动能定理的应用技巧利用动能定理求变力的功(i)变力的功无法用公式W=Fscosa 直接求解,有时该力也不是均匀变化,无法用高中知识表达平均力,此时B的支持力大小等于B所受重力的4,可以考虑用动能定理间接求解.例4.如图所示,某货场利用固定于地面的、半径R=1.8 m的四分之一圆轨道将质量为m1=10 kg的货物(可视为质点)从高处运送至地面,已知当货物由轨道顶端无初速度滑下时,到达轨道底端的速度为5 m/s.为避免货物与地面发生撞击,在地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为l=2 m,质量均为m2=20 kg,木板上表面与轨道末端相切.货物与木板间的动摩擦因数为也=0.4,木板与地面间的动摩擦因数为巴=0.1(最大静摩擦力与滑动摩擦力大小相等,取g=10 m/s2).(1)求货物沿圆轨道下滑过程中克服摩擦力做的功;(2)通过计算判断货物是否会从木板B的右端滑落?若能,求货物滑离木板B右端时的速度;若不能,求货物最终停在木板B上的位置.应用动能定理求解多过程问题(ii)物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程根据动能定理列式求解,则可以使问题简化根据题意灵活地选取研究过程可以使问题变得简单.有时取全过程简单,有时则取某一阶段简单原则是尽量使做功的力减少,各个力的功计算方便;或使初、末动能等于零例5.以初速度v0竖直向上抛出一质量为m的小物体。
假定物块所受的空气阻力f大小不变。
已知重力加速度为g,则物体上升的最大高度和返回到原抛出点的速率分别为v2: mg一 fA、 ---- 和v-------------------2g(1+f) °\’ mg + fmg例6.如图所示,物块m从高为h的斜面上滑下,又在同样材料的水平面上滑行s后静止,已知斜面倾角为。
,物块由斜面到水平面时圆滑过渡,求物块与接触面间的动摩擦因数。
B、v2■ mg----- 和v J 一七2 g (1+f) °\mg+ fv2: mg - f C、2;^和微E mgv2:~mg~D、---- 0^~和v J --------- T2 g (1+ 2-) °\mg + fmg例4题图图四(iii)应用动能定理求解多物体系问题对于多物体、多过程问题,由于运动过程繁琐,用牛顿第二定律解题相当复杂,而从能量观点出发,应用动能定理解题往往可以使问题简化.但应注意,从能量角度解题,如果研究对象是一个物体,往往用动能定理求解,而对于系统,往往是根据总体能量守恒的观点来处理问题例7.如图所示,放在水平面上的小车上表面水平,AB是半径为R的14光滑圆弧轨道,下端B的切线水平且与平板车上表面平齐,车的质量为M.现有一质量为m的小滑块,从轨道上端A处无初速释放,滑到B 端后,再滑到平板车上.若车固定不动,小滑块恰不能从车上掉下.(重力加速度为g)(1)求滑块到达B端之前瞬间所受支持力的大小;(2)求滑块在车上滑动的过程中,克服摩擦力做的功;(3)若车不固定,且地面光滑,把滑块从A点正上方的P点无初速释放,P点到A点的高度为h,滑块从A点进入轨道,最后恰停在车的中点,求车的最大速度.(2)应用动能定理求路程在多阶段或往返运动中,如果摩擦力或介质阻力大小不变,方向与速度方向关系性相反.则在整个过程中克服摩擦力或介质阻力所做功等于力与路程的乘积,从而可将物体在摩擦力或介质阻力作用下通过的路程与动能定理联系起来.例8.如图所示,MNP为竖直面内一固定轨道,其圆弧段MN与水平段NP相切于N,P端固定一竖直挡板.M 相对于N的高度为h,NP长度为s.一物块自M端从静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞(物块碰撞前后的速度大小相等,方向相反)后停止在水平轨道上某处若在MN段的摩擦可忽略不计,物块与NP段轨道间的滑动摩擦因数为佑求物块停止的地方与N点的距离的可能值.(v)利用动能定理求运动时间动能定理通常不处理涉及时间的问题,但在变力的功率恒定的情况下,可以利用动能定理将物体的运动时间与通过的位移联系起来,可在位移与路程中知一求一.例9.某校物理兴趣小组决定举行遥控赛车比赛。
比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C 点,并能越过壕沟。
已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。
图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。
问:要使赛车完成比赛,电动机至少工作多长时间?(取g 10m / s2)模型演练1. 如图所示,给物块以初速度v0,使之沿斜面下滑,已知斜面与物块之间的动摩擦因数为,又知物块与斜面底端挡板碰后将以碰前的速率反弹,(斜面长L及倾角&已知,且t£m0>Mi),求物块运动的总路程。
练1图2. 如图所示,小滑块从左侧斜面上高为h1处由静止开始下滑,滑过长为s2的水平部分,又滑上右侧斜面,当滑至右侧斜面上高为h2处时速度减为零,设转角处无动能损失,滑块和左侧斜面、水平部分及右侧斜面间的动摩擦因数相同,求此动摩擦因数u。
练2图3. 如图所示,质量为m的物体,被经过光滑小孔的细绳牵引,且在光滑的水平面上做匀速圆周运动,拉力大小为F,转动半径为R。