动能和动能定理复习_专题训练
- 格式:pdf
- 大小:183.14 KB
- 文档页数:6
动能和动能定理动能和动能定理1.关于动能、动能定理,下列说法正确的是(关于动能、动能定理,下列说法正确的是() A.一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化 B.运动物体所受的合力为零,则物体的动能肯定不变运动物体所受的合力为零,则物体的动能肯定不变 C.合力做正功,物体动能可能减小合力做正功,物体动能可能减小D.动能不变的物体,一定处于平衡状态动能不变的物体,一定处于平衡状态2.质量为m 的物体在水平力F 的作用下由静止开始在光滑地面上运动,前进一段距离之后速度大小为v ,再前进一段距离使物体的速度增大为2v ,则(,则( ) A .第二过程的速度增量等于第一过程的速度增量.第二过程的速度增量等于第一过程的速度增量 B .第二过程的动能增量是第一过程动能增量的3倍 C .第二过程合外力做的功等于第一过程合外力做的功.第二过程合外力做的功等于第一过程合外力做的功D .第二过程合外力做的功等于第一过程合外力做功的3倍3.如图所示,AB 为41圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,从静止开始下落,恰好运动到恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为(服摩擦力所做的功为( ) A.mgR μ21B.mgR 21C.mgR -D.mgR )1(μ-4.如图所示,质量为M 的木块静止在光滑的水平面上,质量为m 的子弹以速度0v 沿水平方向射中木块并最终留在木块中与木块一起以速v 运动.已知当子弹相对木块静止时,已知当子弹相对木块静止时,木块前木块前进距离L ,子弹进入木块的深度为'L .若木块对子弹的阻力F 视为恒定,(子弹可视为质点)则下列关系式中正确的是(则下列关系式中正确的是( ) A.221mv FL = B.2'21mv FL =C.220')m 21-21v M mv FL +=(D.220'm 21-21)(vmv L L F =+5.质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(),则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为()A . mv 02﹣μmg (s+x ) B.mv 02﹣μmgx C . μmgsD.μmg (s+x ) 6.质量不等,但有相同动能的两个物体,在动摩擦因数相同的水平地面上滑行,直至停止,则(则() A .质量大的物体滑行的距离大.质量大的物体滑行的距离大 B .质量小的物体滑行的距离大.质量小的物体滑行的距离大 C .它们滑行的距离一样大.它们滑行的距离一样大D .它们克服摩擦力所做的功一样多.它们克服摩擦力所做的功一样多7.在平直公路上,汽车由静止开始做匀加速运动,当速度达到m v 后,立即关闭发动机直至静止,v -t 图象如图所示,设汽车的牵引力为F ,摩擦力为f ,全程中牵引力做功为1W ,克服摩擦力做功为2W ,则(,则( ) A.F :f =3:1 B.1W :2W =1:1 C.F :f =1:4D.1W :2W =3:1 8.当前,我国“高铁”事业发展迅猛,假设一辆高速列车在机车牵引力和恒定阻力作用下,在水平轨道上由静止开始启动,其v -t 图象如图示,已知在0~1t 时段为过原点的倾斜直线,1t 时刻达到额定功率P ,此后保持功率P 不变,在3t 时刻达到最大速度3v ,以后匀速运动,则下述判断正确的有(,以后匀速运动,则下述判断正确的有() A .从1t 至3t 时间内位移大小等于)(21321t t v v -+ B .在0至3t 时刻,机车的牵引力最大为1v P C .在2t 时刻的加速度大于1t 时刻的加速度时刻的加速度 D .0至3t 时刻,该列车所受的恒定阻力做功为)21-211323t t P mv -( 9.如图所示,物体在离斜面底端3m 处静止开始下滑,然后滑到有小圆弧与斜面连接的水平面上,若物体与斜面、水平面的动摩擦因数均为0.4,倾斜角为37。
动能和动能定理练习一. 选择题:1. 甲乙两物体质量的比m m 1231::=,速度的比v v 1213::=,在相同的阻力作用下逐渐停下,则它们的位移比S S 12:是( B ) A. 1:1B. 1:3C. 3:1D. 4:12. 汽车在平直公路上行驶,关闭发动机继续运动S 1距离后速度由2v 变为v ,再运动S 2距离后速度由v 变为v2,设运动时受到阻力不变,则S S 21:为( D ) A. 1:1B. 1:2C. 1:2D. 1:43. 一子弹以速度v 飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为( C )A. 3块B. 6块C. 9块D. 12块4. 一个恒力F 作用在正在粗糙水平面上运动着的物体上。
如果物体作减速运动,则:( BD )A. F 对物体一定做负功B. F 对物体可能做负功C. F 对物体一定做正功D. F 对物体可能做正功5. 质量不等但有相同动能的两物体,在摩擦系数相同的水平地面上滑行直到停止,则( BD )A. 质量大的物体滑行距离大B. 质量小的物体滑行距离大C. 它们滑行的距离一样大D. 质量大的滑行时间短6. 质量相同的A 、B 两物体,它们的动能4A B k K E E =,从同一个粗糙斜面底端冲上斜面,在上滑到C 点时,它们的动能分别为E k A '和E k B ',如果物体和斜面的摩擦系数相同,则( B )A. E E k k A B ''=4B. E E k k A B ''>4C. E E k k A B ''<4D. 无法确定它们动能的大小关系7. 质量为m 的跳水运动员,从离地面高h 的跳台上以速度v 1斜向上跳起,跳起高度离跳台为H ,最后以速度v 2进入水中,不计空气阻力,则运动员起跳时所做的功( A )A.1212mvB. mgHC. mgH mgh +D.1212mv mgh +8. 某人用手将1kg 物体由静止向上提起1m ,这时物体的速度为2m/s (g 取102m s /),则下列说法错误的是( BD )A. 手对物体做功12JB. 合外力做功2JC. 合外力做功12JD. 物体克服重力做功10J9. 质量为m 的小球在竖直圆环内运动,轨道半径为R ,通过最高点的最小速度为v ,当小球以速度4v 通过最低点后,经过最高点速度减为2v ,在这过程中小球克服摩擦阻力所做的功是( D )A. mgRB. 2mgRC. 3mgRD. 4mgR10. 在平直公路上,汽车由静止开始作匀加速运动,当速度达到v m 后立即关闭发动机直到停止,v -t 图象如图所示。
高中物理一轮复习专项训练动能与动能定理一、高中物理精讲专题测试动能与动能定理1.以下图,质量 m=3kg 的小物块以初速度秽v0=4m/s 水平向右抛出,恰巧从 A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R= 3.75m,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道 BD 光滑连结, A 与圆心 D 的连线与竖直方向成37角, MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其余部分圆滑。
最右边是一个半径为 r =0.4m 的半圆弧轨道, C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在 D点光滑连结。
已知重力加快度g=10m/s 2, sin37°=0.6, cos37°=0.8。
(1)求小物块经过 B 点时对轨道的压力大小;(2)若 MN 的长度为 L0=6m,求小物块经过 C 点时对轨道的压力大小;(3)若小物块恰巧能经过 C 点,求 MN 的长度 L。
【答案】( 1) 62N( 2) 60N( 3)10m【分析】【详解】(1)物块做平抛运动到 A 点时,依据平抛运动的规律有:v0 v A cos37v04 m / s5m / s解得: v Acos370.8小物块经过 A 点运动到 B 点,依据机械能守恒定律有:1mv A2mg R Rcos371mv B222小物块经过 B 点时,有:F NB mg m vB2R解得:F NB mg 32cos37m v B262NR依据牛顿第三定律,小物块对轨道的压力大小是62N(2)小物块由 B 点运动到 C 点,依据动能定理有:mgL0mg 2r1mv C21mv B222在 C 点,由牛顿第二定律得:F NC mg m v C2r代入数据解得: F NC60N依据牛顿第三定律,小物块经过 C 点时对轨道的压力大小是60N(3)小物块恰巧能经过 C 点时,依据mg mvC22r解得:v C 2gr100.4m / s 2m / s小物块从 B 点运动到 C 点的过程,依据动能定理有:mgL mg 2r 1mv C221mv B2 22代入数据解得:L=10m2.以下图,在倾角为θ=30°m的的固定斜面上固定一块与斜面垂直的圆滑挡板,质量为半圆柱体 A 紧靠挡板放在斜面上,质量为2m 的圆柱体 B 放在 A 上并靠在挡板上静止。
动能、动能定理、重力势能练习一、选择题1、静止在光滑水平面上的物体,受到右图所示水平变力的作用,则A.F在2秒内对物体做功为零B.物体在2秒内位移为零C.2秒内F对物体的冲量为零D.物体在2秒末的速度为零2、车作匀加速运动,速度从零增加到V的过程中发动机做功W1,从V增加到2V的过程中发动机做功W2,设牵引力和阻力恒定,则有A、W2=2W lB、W2=3W1C、W2-=4W lD、仅能判断W2>W13、如图,物体A、B与地面间的动摩擦因数相同质量也相同,在斜向力F的作用下,一起沿水平面运动,则下列说法正确的是A.摩擦力对A、B两物体所做功相等B.外力对A、B两物体做功相等C.力F对A所做功与A对B所做功相等D。
A对B所做功与B对A所做功大小相等4.质量为m的物块始终静止在倾角为θ的斜面上,下列说法正确的是A.若斜面向右匀速移动距离S,斜面对物块没有做功B.若斜面向上匀速移动距离S,斜面对物块做功mgsC.若斜面向左以加速度a匀加速移动距离S,斜面对物块做功masD.若斜面向下以加速度a匀加速移动距离S,斜面对物块做功m(g+a)s5、用100N的力将0.5千克的足球以8m/s的初速度沿水平方向踢出20米,则人对球做功为A.200J B.16J C.2000J D.无法确定6、物体与转台间的动摩擦因数为μ,与转轴间距离为R,m随转台由静止开始加速转动,当转速增加至某值时,m即将在转台上相对滑动,此时起转台做匀速转动,此过程中摩擦力对m做的功为A.0 B.2πμmgR C.2μmgR D.μmgR/27、m从高H处长S的斜面顶端以加速度a由静止起滑到底端时的速度为V,斜面倾角为θ,动摩擦因数为μ,则下滑过程克服摩擦力做功为A.mgH-mV2∕2 B.mgsin θ-mas C.μmgscos θD.mgH8、子弹以水平速度V射人静止在光滑水平面上的木块M,并留在其中,则A.子弹克服阻力做功与木块获得的动能相等B.阻力对于弹做功小于子弹动能的减少C.子弹克服阻力做功与子弹对木块做功相等D.子弹克阻力做功大于子弹对木块做功9、有两个物体其质量M1>M2它们初动能—样,若两物体受到不变的阻力F1和F2作用经过相同的时间停下,它们的位移分别为S1和S2,则A.F1>F2,且S1<S2 B.F1> F2,且S1>S2C .F1< F2,且S1<S2D.F1> F2,且S1>S210、如图,球m用长为L的细线悬挂于O点,现用水平力F,使球从平衡位置P缓慢地移动到O点,此过程中F 所做的功A.mgLcosθB.FLsinθC.FL D.mgL(1-cosθ)二、填空题11、一人从高处坠下,当人下落H高度时安全带刚好绷紧,人又下落h后人的速度减为零,设人的质量为M,则绷紧过程中安全带对人的平均作用力为——·12、木块受水平力F作用在水平面上由静止开始运动,前进S米后撤去F,木块又沿原方向前进3S停止,则摩擦力f=__________。
【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。
动能和动能定理--高一物理专题练习(内容+练习)一、动能的表达式1.表达式:E k=12m v2.2.单位:与功的单位相同,国际单位为焦耳,符号为J.3.标矢性:动能是标量,只有大小,没有方向.二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W=12m v22-12m v12.如果物体受到几个力的共同作用,W即为合力做的功,它等于各个力做功的代数和.3.动能定理既适用于恒力做功的情况,也适用于变力做功的情况;既适用于直线运动,也适用于曲线运动.三.对动能定理的理解(1)在一个过程中合外力对物体做的功或者外力对物体做的总功等于物体在这个过程中动能的变化.(2)W与ΔE k的关系:合外力做功是物体动能变化的原因.①合外力对物体做正功,即W>0,ΔE k>0,表明物体的动能增大;②合外力对物体做负功,即W<0,ΔE k<0,表明物体的动能减小;如果合外力对物体做功,物体动能发生变化,速度一定发生变化;而速度变化动能不一定变化,比如做匀速圆周运动的物体所受合外力不做功.③如果合外力对物体不做功,则动能不变.(3)物体动能的改变可由合外力做功来度量.一、单选题1.如图所示,在光滑水平面上小物块在水平向右恒力1F作用下从静止开始向右运动,经时间t撤去1F,同时在小物块上施加水平向左的恒力2F,再经2t物块回到出发点,此时小物块的动能为k E,则以下说法正确的是()A .2145F F =B .12F F =C .1F 做的功为k49E D .2F 做功的为kE 【答案】C【解析】AB .设第一阶段的加速度为1a ,第二阶段的加速度为2a ,从静止出发到回到出发点对两个阶段列方程22112112422a t a t t a t ⎛⎫=-⋅- ⎪⎝⎭解得1254a a =根据牛顿第二定律得2154F F =故AB 错误;CD .由于12:4:5F F =所以二者做功之比为12:4:5W W =二者做功之和等于k E ,所以1F 做的功为k 49E ,2F 做的功为k 59E ,故C 正确,D 错误。
高中物理【动能和动能定理】专题训练练习题课时作业(A) [A 组 基础达标练]1.如图所示,电梯质量为M ,在它的水平地板上放置一质量为m 的物体。
电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v 1增加到v 2时,上升高度为H ,重力加速度为g ,则在这个过程中,下列说法或表达式正确的是( )A .对物体,动能定理的表达式为W N =12m v 22,其中W N 为支持力做的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力做的功C .对物体,动能定理的表达式为W N -mgH =12m v 22-12m v 12 D .对电梯,其所受合力做的功为12M v 22-12M v 12-mgH 解析:物体受重力和支持力作用,根据动能定理得W合=W N -mgH =12m v 22-12m v 12,故选项C 正确,A 、B 错误;对电梯,合力做的功等于电梯动能的变化量,故选项D 错误。
答案:C2.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R 。
一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做的功为( )A .μmgR B.12mgR C .mgRD .(1-μ)mgR解析:BC 段物体所受摩擦力F f =μmg ,位移为R ,故BC 段摩擦力对物体做的功W =-F f R =-μmgR ,对全程由动能定理可知,mgR +W 1+W =0,解得W 1=μmgR -mgR ,故AB 段克服摩擦力做的功为W 克=-W 1=mgR -μmgR =(1-μ)mgR ,故A 、B 、C 错误,D 正确。
答案:D3.一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 作用下从平衡位置P 点很缓慢地移动到Q 点,如图所示,则力F 所做的功为( ) A .mgl cos θ B .Fl sin θ C .mgl (1-cos θ)D .Fl (1-sin θ)解析:小球的运动过程是缓慢的,因而小球任何时刻均可看作是平衡状态,力F 的大小在不断变化,F 做功是变力做功。
动能定理专题
题型1:弄清求变力做功的几种方法
等值法
1.如图所示,定滑轮至滑块的高度为h,已知细绳的拉力为F(恒定),滑块沿水平面由A点前进S至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。
微元法(不推荐,但希望同学们知道这种方法)
2.如图所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为 ( )
A、 0J
B、20πJ C 、10J D、20J.
平均力法
3.一辆汽车质量为105kg,从静止开始运动,其阻力为车重的0.05倍。
其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。
当车前进100m时,牵引力做的功是多少?
动能定理求变力做功法
4.如图所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长
L=3m,BC处的摩擦系数为1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
求物体在轨道AB段所受的阻力对物体做的功。
机械能守恒定律求变力做功法
5.如图所示,质量m=2kg的物体,从光滑斜面的顶端A点以V0=5m/s的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5m,求弹簧的弹力对物体所做的功。
题型2:弄清滑轮系统拉力做功的计算方法
图8
F1
F2
6.如图所示,在倾角为30°的斜面上,一条轻绳的一端固定在斜面上,绳子跨过连在滑块上的定滑轮,绳子另一端受到一个方向总是竖直向上,大小恒为F=100N的拉力,使物块沿斜面向上滑行1m(滑轮右边的绳子始终与斜面平行)的过程中,拉力F做的功是( )
A.100J B.150J
C.200J D.条件不足,无法确定
V0
S0
α
P
图11
题型3:应用动能定理简解多过程题型。
7.如图11所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P 为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块
所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?
题型4:利用动能定理巧求动摩擦因数
A
B
C
h
S1
S2
α
图12
8.如图12所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。
已知斜面高为h,滑块运动的整个水平距离为s,设转角B处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。
综合题型:利用动能定理巧求机车脱钩题型
S2
S1
L
V0
V0
图13
9、总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力,如图13所示。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?
1解析:设绳对物体的拉力为T,显然人对绳的拉力F等于T。
T在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该题型是变力做功的题型。
但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。
而拉力F的大小和方向都不变,所以F做的功可以用公式W=FScosa直接计算。
由图1可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为: 2.解析:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=FΔS,则转一周中各个小元段做功的代数和为
W=F×2πR=10×2πJ=20πJ=62.8J,故B正确。
3.解析:由于车的牵引力和位移的关系为F=103x+f0,是线性关系,故前进100m过程中的牵引力做的功可看作是平均牵引力所做的功。
由题意可知f0=0.05×105×10N=5×104N,所以前进100m过程中的平均牵引力:
∴W=
S=1×105×100J=1×107J。
4.解析:物体在从A滑到C的过程中,有重力、AB段的阻力、AC段的摩擦力共三个力做功,重力做功WG=mgR,水平面上摩擦力做功W f1=-
μmgL,由于物体在AB段受的阻力是变力,做的功不能直接求。
根据动能定理可知:W外=0,所以mgR-umgL-W AB=0即W AB=mgR-umgL=6(J)。
5.解析:由于斜面光滑故机械能守恒,但弹簧的弹力是变力,弹力对物体做负功,弹簧的弹性势能增加,且弹力做的功的数值与弹性势能的增加量相等。
取B所在水平面为零参考面,弹簧原长处D 点为弹性势能的零参考点,则状态A:E A= mgh+mV02/2 对状态B:E B=-W弹簧+0
由机械能守恒定律得: W弹簧=-(mgh+mv02/2)=-125(J)。
6.解析:拉力F做的功等效为图8中F1、F2两个恒力所做功的代数和。
即W=F1·S+F2Scos60°,而F1=F2=F=100N,所以
W=F·S(1+cos60°)=150J。
即B选项正确。
7.解析:滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端。
在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功。
设其经过和总路程为L,对全过程,由动能定理得: 得
8.解析:滑块从A点滑到C点,只有重力和摩擦力做功,设滑块质量为m,动摩擦因数为,斜面倾角为,斜面底边长,水平部分长,由动能定理得:
9.解析:此题用动能定理求解比用运动学、牛顿第二定律求解简便。
对车头,脱钩后的全过程用动能定理得:
对车尾,脱钩后用动能定理得:
而,由于原来列车是匀速前进的,所以F=kMg
由以上方程解得。