简单随机抽样(含答案)
- 格式:doc
- 大小:111.00 KB
- 文档页数:6
第二章统计§2.1随机抽样2.1.1简单随机抽样自主学习学习目标1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.自学导引1.总体与个体一般把所考察对象的某一数值指标的________________看作总体,构成总体的____________作为个体,从总体中抽出若干个体所组成的集合叫做________.2.随机抽样在抽样时要保证每一个个体都____________,每一个个体被抽到的机会是________,满足这样的条件的抽样是随机抽样.3.简单随机抽样一般地,从元素个数为N的总体中____________抽取容量为n的样本,如果每一次抽取时总体中的各个个体有________的可能性被抽到,这种抽样方法叫做简单随机抽样,这样抽取的样本叫做________________.4.常用的简单随机抽样方法有________和____________.对点讲练知识点一简单随机抽样的概念例1下列抽取样本的方法是简单随机抽样吗?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.(3)从50个个体中一次性抽取5个个体作为样本.点评判定的依据是简单随机抽样的四个特点.“一次性”抽取和“逐个”抽取形式不同,但是不影响个体被抽到的可能性.而“一次性”抽取不符合简单随机抽样的定义,因而(3)不是简单随机抽样.变式迁移1下面的抽样方法是简单随机抽样吗?为什么?(1)某班有40名同学,指定个子最高的5名同学参加校篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回再拿出一件,连续玩了5件;(3)从一批2 000个灯泡中逐个抽取20个进行质量检查.知识点二抽签法的应用例2某单位支援西部开发,现从报名的18名志愿者中选取6名组成志愿小组到西藏工作3年.请用抽签法设计抽样方案.点评抽签法注意:一是编号;二是搅拌均匀;三是依次抽取.变式迁移2从20名学生中抽取5名进行问卷调查,写出抽取样本的过程.知识点三随机数表法的应用例3设某校共有100名教师,为了支援西部教育事业,现要从中随机抽出12名教师组成暑期西部讲师团,请写出利用随机数表法抽取该样本的步骤.点评利用随机数表法抽取个体时,关键是事先确定以表中的哪个数(哪行哪列)作为起点,以及读数的方向,向左、向右、向上或向下都可以,同时,读数时结合编号特点进行读取,编号为两位,则两位、两位地读取,编号为三位数,则三位、三位地读取,如果出现重号则跳过,接着读取.变式迁移3要从某汽车厂生产的3 000辆汽车中随机抽取10辆进行测试.请选择合适的抽样方法,并写出抽样过程.抽签法与随机数表法的相同点与不同点相同点:(1)抽签法和随机数表法都是简单随机抽样的方法,并且要求被抽取样本的总体的个体数有限;(2)抽签法和随机数表法都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)抽签法相对于随机数表法简单,随机数表法较抽签法稍麻烦一点;(2)随机数表法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个体数相对较少的情况,所以当总体中的个体数较多时,应当选用随机数表法,这样可以节约大量的人力和制作号签的成本与精力.课时作业一、选择题1.我校期中考试后,为了分析高一年级1 220名学生的学习成绩,从中随机抽取了50名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1 220名学生是总体B.每个学生是个体C.50名学生是所抽取的一个样本D.样本容量是502.在简单随机抽样中,某个个体被抽中的可能性是()A.与第几次抽样有关,第1次抽中的可能性要大些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样3.下列调查中属于抽样调查的是()①每隔10年进行一次人口普查②某商品的质量优劣③某报社对某个事情进行舆论调查④高考考生的查体A.②③B.①④C.③④D.①②4.下列抽样实验中,用抽签法方便的是()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从某厂生产的3 000件产品中抽取10件进行质量检验D.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验5.用随机数表进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字.这些步骤的先后顺序应为()A.①②③B.①③②C.③②①D.③①②二、填空题6.福利彩票的中奖号码是从1~36中选出7个号码来按规则确定中奖情况,这种从36个中选出7个号码的抽样方法是________.7.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为________.8.我班有50名学生,学号从01到50,数学老师在上统计课时,运用随机数表法选取5名学生提问.老师首先选定随机数表中的第21行第29个数2开始提问,然后向右走,到头后从下一行返回,即下一行是从左向右,再下一行从右开始,如果不在50以内则跳过去,那么被提问的5名学生是________________.附:随机数表的第21行第21个数开始到第22行的第10个数 (44227884260433460952)68079706577457256576…三、解答题9.现要在20名学生中抽取5名进行问卷调查,试写出抽取样本的过程.10.某个车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽出10件在同一条件下测量,如何采用简单随机抽样的方法抽取上述样本?第二章统计§2.1随机抽样2.1.1简单随机抽样自学导引1.全体构成的集合每一个元素样本2.可能被抽到均等的3.不放回地相同简单随机样本4.抽签法随机数表法对点讲练例1解(1)不是简单随机抽样,因为被抽取的样本的总体的个数是无限的而不是有限的.(2)不是简单随机抽样,因为它是有放回地抽样.(3)不是简单随机抽样,因为它是一次性抽取,而不是“逐个”抽取.变式迁移1解(1)不是简单随机抽样,因为这不是等可能抽样;(2)不是简单随机抽样,因为它是有放回抽样;(3)满足简单随机抽样的四个特点,故是简单随机抽样.例2解按抽签法的一般步骤进行设计.第一步:将18名志愿者编号,号码为1,2, (18)第二步:将号码分别写在一张纸条上,揉成团,制成号签;第三步:将所有号签放入一个箱子中,充分搅匀;第四步:依次取出6个号码,并记录其编号;第五步:将对应编号的志愿小组成员选出.变式迁移2 解 (1)先将20名学生进行编号,从1编到20;(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码对应学生,即得样本.例3 解 其步骤如下:第一步:将100名教师进行编号:00,01,02, (99)第二步:给出的随机数表中是5个数一组,使用各个5位数组的前2位,从各数组中任选一个前2位小于或等于99的数作为起始号码、例如从第1行的第3组数开始.第三步:依次向右读可以得到40,48,60,16,29,61,43,27,26,84,78,39.第四步:以上号码对应的12名教师就是要抽取的对象.变式迁移3 解 第一步:将3 000辆汽车编号,号码是0000,0001,…,2999; 第二步:给出的随机数表中是5个数一组,使用各个5位数组中的前4位,从各数组中任选一个前4位小于或等于2999的数作为起始号码,例如从第二行的第4组数开始;第三步:依次向右读,可以得到2691,2778,2037,2104,1290,2881,1212,2298,1321,2624. 课时作业1.D [总体、个体、样本都是学生的成绩,样本容量为50.]2.B [简单随机抽样每个个体被抽取的可能性相等.]3.A4.B5.B6.抽签法7.120解析 ∵30N=0.25,∴N =120. 8.26 04 33 46 09解析 用随机数法进行抽样,关键是弄清所选定的起始数码和读数的方向,还要弄清编号的位数与随机数表的构成.9.解 (1)先将20名学生进行编号,编号为1,2, (20)(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中充分搅拌,使之均匀,然后依次从箱子中抽取5个号签,于是和这5个号签上的号码对应的5名学生就构成了一个样本.10.解 有两种方法:方法一 (抽签法)将100个轴进行编号1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,可将这些号签放在一起,并进行均匀搅拌,接着依次抽取10个号签,然后测量这10个号签对应的轴的直径.方法二 (随机数表法)将100个轴进行编号00,01,…,99,据课本上的随机数表,如取第6行第2组数开始选取10个,13,57,74,32,98,55,42,59,66,36,然后测量这10个编号对应的轴的直径.。
简单随机抽样检测试题(有答案)第1课时简单随机抽样1.现从80件产品中随机抽出20件进行质量检验,下列说法正确的是()A.80件产品是总体B.20件产品是样本C.样本容量是80D.样本容量是202.对于简单随机抽样,每个个体每次被抽到的机会都()A.相等B.不相等C.无法确定D.没关系3.下列抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位是2709的为三等奖B.某车间包装一种产品,在自动包装传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.从10件产品选取3件进行质量检验4.(2010•抚顺高一检测)某学校为了解高一800名新入学同学的数学学习水平,从中随机抽取100名同学的中考数学成绩进行分析,在这个问题中,下列说法正确的是()A.800名同学是总体B.100名同学是样本C.每名同学是个体D.样本容量是1005.为了了解某班学生会考的合格率,要从该班60名同学中抽取20人进行考查分析,则这次考查中的总体容量是,样本容量是.6.(2010•淮北高一质检)一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是.95339522001874720018387958 69328176802692828084253990 84607980243659873882075389 35963523791805989007354640 62988054972056951574800832 16467050806772164279203189 03433846826872321482997080 60471897634930213071597305 5008222371779101932049829659269466396798607.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为()A.N•B.m•C.N•D.N8.从60件产品中抽取10件进行检查,写出抽取样本的过程.9.某车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽出10件在同一条件下测量(轴的直径要求为20mm±0.5mm),如何采用简单随机抽样法抽取上述样本?10.现有一批零件,其编号为600,601,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查.若用随机数法,怎样设计方案?11.(创新题)第九届Channel[V]全球华语榜中榜在上海举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.12.(2010•洛阳高一综测)上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员.试问:这两种选法是否都是抽签法?为什么?这两种选法有何异同?答案1.D2.A3.D4.D5.60206.18,00,38,58,32,26,25,397.A8.解析:第一步,将60件产品编号01,02, (60)第二步,在随机数表中任取一数作为开始,如从第一行第一列03开始;第三步,从03开始向右读,依次选出03,47,43,36,46,33,26,16,45,60共10个对应编号的产品当作样本.9.解析:100件轴的直径为总体,将这100件轴编号00,01,02,…,99,利用随机数法来抽取.10.解析:第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如,选第7行第6个数“7”,向右读;第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916;第三步,以上号码对应的10个零件就是要抽取的对象.11.解析:第一步,先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上分别写上编号,然后放入一个小筒中搅匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从18名香港艺人中抽取6人,从10名台湾艺人中抽取4人.第二步,确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面分别写上1到20这20个数字,代表演出顺序,让每个演员抽一张,各人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.12.解析:选法一满足抽签法的特征,是抽签法,选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为.。
2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2答案B由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个答案A解析由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案7,4,6解析应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6.16.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k×100=20.17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.。
人教A版9.1.1简单随机抽样课前检测一、单选题1.对于简单随机抽样,每个个体每次被抽到的机会()A.相等B.不相等C.无法确定D.与抽取的次数有关2.天气预报说,在今后的三天中,每天下雨的概率都为60%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:用1,2,3,4,5,6表示下雨,从下列随机数表的第1行第3列的1开始读取,直到读取了10组数据,18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 1055 23 64 05 05 26 62 38 97 75 34 16 07 44 99 83 11 46 32 24据此估计,这三天中恰有两天下雨的概率近似为()A.35B.25C.12D.7103.用简单随机抽样方法从含有10个个体的总体中, 抽取一个容量为3的样本, 其中个体甲被第三次抽到的可能性为().A.13B.19C.310D.1104.福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表(如下)第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为()A.23 B.09 C.02 D.175.总体由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行第6列的数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.12 B.07 C.15 D.166.某班有40位同学,座位号记为01,02,,40,用下面的随机数表选取5组数作为参加青年志愿者活动的5位同学的座位号.4954 4454 8217 3793 2378 8735 2096 4384 2634 91645724 5506 8877 0474 4767 2176 3350 2583 9212 0767 5086选取方法是从随机数表第一行的第11列和第12列数字开始,由左到右依次选取两个数字,则选出来的第5个志愿者的座位号是( )A.09 B.20 C.37 D.387.下列抽样方法是简单随机抽样的是( )A.坛子中有1个大球,4个小球,搅拌均匀后,从中随机摸出一个球B.在校园里随意选三名同学进行调查C.在剧院里抽取三名观众调查,将所有座号写在同样的纸片上,放入箱子搅匀后逐个抽取,共取三张D.买彩票时随手写几组号8.下列4个抽样中,简单随机抽样的个数是( )①一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签. A.0 B.1 C.2 D.39.某班对一次实验成绩进行分析,利用随机数表法抽取样本时,先将50个同学按01,02.03,…50进行编号,然后从随机数表第9行第11列的数开始向右读,则选出的第6个个体是()(注:表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 3815 51 00 13 42 99 66 02 79 54A.00 B.13 C.42 D.4410.下列抽样方法是简单随机抽样的是()A.从100个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中逐个抽取10个做奇偶性分析D.运动员从8个跑道中随机选取一个跑道二、填空题11.一个总体数为60的个体编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第7~8列的22开始,依次向下,到最后一行后,再从下两列的上边开始,继续向下读,直到取足样本,则抽取样本的号码是______.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 6012.某中学高二年级甲班的学生共有25名女生和35名男生,现以简单随机抽样的方法从甲班全班同学中推选5名学生代表甲班参加全校演讲比赛,则甲班中某女生被抽到的概率是________.13.2020年抗击新冠肺炎疫情期间,为不影响学生的学习生活,学校实行停课不停学.为督促学生按时学习,某校要求所有学生每天打卡,全校学生的总人数为1200人.某日随机抽查200人,发现因各种原因未及时打卡的学生数为12,估计该日这个学校未及时打卡的学生数为______.14.某工厂共有n名工人,为了调查工人的健康情况,从中随机抽取20名工人作为调查对象,若每位工人被抽到的可能性为15,则n ________.三、解答题15.已知总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5个数字开始,由左到右依次选取两个数字,写出选取的5个个体编号.7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 748116.某单位拟从40名员工中选1人赠送电影票,可采用下面两种选法:选法一:将这40名员工按1~40进行编号,并相应地制作号码为1〜40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的员工幸运入选;选法二:将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名员工逐一从中摸取一个球,则摸到红球的员工幸运入选.试问:(1)这两种选法是否都是抽签法,为什么?(2)这两种选法中每名员工被选中的可能性是否相等?参考答案1.A【分析】根据简单随机抽样的概念,直接选出正确选项.【详解】根据简单随机抽样的概念可知,每个个体每次被抽到的机会相等,故选A.【点睛】本小题主要考查简单随机抽要的概念,属于基础题.2.B【分析】由题意知模拟三天恰有两天下雨的结果,观察经随机模拟产生的数据,用列举法找出表示三天中恰有两天下雨的数据,再由古典概型的概率公式即可求解.【详解】由题意知模拟三天恰有两天下雨的结果,观察经随机模拟产生的数据可得,表示三天中恰有两天下雨的数据有:4 17,3 86,19 6,2 06,共4组数据,所以这三天中恰有两天下雨的概率42 P105 ==.【点睛】本题主要考查模拟方法估计概率,属于基础题型.3.D【解析】分析:由随机抽样的特点可得,在抽样过程中每个个体在一次抽取中被抽中的概率是相等的,结合已知中的总体容量可得答案.详解:在抽样过程中,个体甲每一次被抽中的概率是相等的,由于总体容量为10,所以“个体甲被第三次抽到的可能性为110”.故选D.点睛:简单随机抽样的特点是等可能抽样,即在抽样过程中每个个体被抽到的概率是相等的,本题考查学生对抽样特点的理解和应用.4.C从随机数表第1行的第6列数字开始由左到右依次选取两个数字,如果在01和33之间就取出来,如果不在该区间,就不取,以此类推得到选出来的第6个红色球的编号.【详解】从随机数表第1行的第6列数字开始由左到右依次选取两个数字,除去大于33以及重复数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02.故答案为C.【点睛】本题主要考查随机数表,意在考查学生对该知识的掌握水平和分析推理能力.5.C【分析】根据随机数表的选数方法进行判断即可.【详解】按照随机数表法的方法取数为03,07,12,16,15,所以第5个个体的编号为15.故选:C【点睛】本题考查了随机数表的方法,属于基础题.6.B【分析】根据随机数表法的方法进行,每次选两个数字,选过的两个数字不要,即可选出正确答案. 【详解】解析:由题意结合随机数表可得由左到右依次选取的两个数字为17,37,23,35,20,故选出来的第5个志愿者的座位号是20.故选:B【点睛】本题考查了随机数表的作用方法,属于基础题.7.C【分析】根据简单随机抽样的定义直接判断即可.解析:A不是,因为球大小不同,造成不公平.B,D不是,因为“随意选”“随手写”并不说明对每个个体机会均等.C符合随机抽样的定义,是简单随机抽样.【点睛】本题考查了简单随机抽样的定义,属于基础题.8.B【分析】根据简单随机抽样的特点逐个判断即可.【详解】①:不是简单随机抽样.因为一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件,它不是“逐个抽取”.②:不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”③:不是简单随机抽样.因为50名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.④:是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的、等可能的抽样.综上,只有④是简单随机抽样.故选:B【点睛】本题考查了简单抽样的定义,属于基础题.9.B【分析】根据随机数表抽取原则按序得到所抽取的个体即可得到结果.【详解】第9行第11列开始读取,依次得到的编号为:78(舍)、64(舍)、56(舍)、07、82(舍)、52(舍)、42、07(重复,舍)、44、38、15、51(舍)、00(舍)、13即第6个个体为13故选:B【点睛】本题考查简单随机抽样方法中的随机数表法,关键是明确随机数表抽取时,超出所给编号范围和重复抽取的编号需去除.10.D【分析】根据简单随机抽样的四个特征:①有限性;②逐个抽取;③不放回;④等可能性,进行判断. 【详解】解:选项A错在“一次性”抽取;选项B错在“有放回”抽取;选项C错在总体容量无限;选项D符合,故选:D.【点睛】本题考查简单随机抽样的特征,是基础题.11.22,25,00,32,39,38,18【分析】根据题目中的规则在编号范围内取数即可得解.【详解】先选取22,向下69不符合要求,下面选取25,向下87,79不符合要求,再从下两列的上边开始,继续向下读,00、32、39、38、18,因此,抽取的样本的号码是22,25,00,32,39,38,18.故答案为:22,25,00,32,39,38,18.【点睛】本题考查了随机数表法,属于基础题.12.1 12【分析】根据简单随机抽样的特点可直接选出答案.【详解】全班共有253560+=名学生,抽取5人,以简单随机抽样的方法,甲班中某女生被抽到的概率是51 6012=.故答案为:1 12【点睛】本题考查的是简单随机抽样,较简单. 13.72【分析】根据所占比例可得答案.【详解】由题意得12120072200⨯=,所以该日这个学校未及时打卡的学生数为72.故答案为:72.【点睛】本题考查由部分估计总体,属于基础题.14.100【分析】抽取人数除以总人数,即得每位工人被抽到的概率,结合已知,得到关于n的方程,求解即得.【详解】解:∵该工厂共有n名工人,随机抽取20名,∴每名工人被抽到的概率为20n,∴2015n=,解得100n=,故答案为:100.【点睛】本题考查简单随机抽样中事件的概率,等可能事件的概率问题,属基础题.15.08,02,14,07,01.【分析】根据随机数表,依次进行选择即可得到结论.【详解】解:从随机数表的第一行得第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次选是08,02,14,07,,02,01等,其中02出现两次,所以依次选取的5个个体编号依次是08,02,14,07,01.【点睛】本题主要考查简单随机抽样的应用,正确理解随机数法是解决本题的关键,比较基础.16.(1)见解析;(2)这两种选法中每名员工被选中的可能性相等,均为1 40.【分析】(1)根据抽签法的特征判断即可得到结论;(2)每名员工被选中的可能性均为140,可知可能性相同.【详解】(1)选法一:满足抽签法的特征,是抽签法;选法二:不是抽签法抽签法要求所有的号签编号互不相同,而选法二中的39个白球无法相互区分(2)这两种选法中每名员工被选中的可能性相等,均为1 40【点睛】本题考查抽签法的判断与等可能事件的判断,属于基础题.。
25.1 简单的随机抽样一、填空题:1.为了了解某厂1千台冰箱的质量,把这1千台冰箱编上序号,然后用抽签的方法抽取10台,这种抽样方法是___________,这种抽样方法_____代表性.(填“具有”或“不具有”)2.为了了解一批灯泡的使用寿命,从中随机抽取20个灯泡进行试验,这个问题中,总体是指____________________________________,样本是指_____________________________.3.为了了解某地区九年级9000名学生的体重情况,从中随机抽出了500名学生的体重,在这个问题中,总体是指______________________________________________________,样本是指_____________________________________________________________.4.检查一箱装有1250件包装食品的质量,按2%抽查一部分,在这个问题中,总体是指______________________________________,样本是指___________________________.二、解答题:1.判断下面几个抽样调查选项的样本方法是否合适,请说明理由.(1)某校今年有420名初三毕业生参加考试,从中抽取50名男生的成绩进行统计分析.(2)估计我国儿童的身高状况,在某幼儿园的一个班级里作调查.(3)为了解观众对所观看影片的评价情况,随机调查某电影院单排单号的观众.(4)某市为了解读者到市图书馆借阅图书的情况,从全年的借阅人数中调查了20天中每天到图书馆借阅图书的人数.(5)为了解一批圆珠笔心的使用寿命情况,在其生产线上每隔100盒抽取一盒检查.(6)为调查一个学校的学生上学坐班车的情况,抽取初一年级的两个班作调查.2.老师布置给每个小组一个任务,用抽样调查的方法估计全班同学每天的睡眠时间,第一小组向全班学号能被5整除的同学进行了调查.你认为这种调查合适吗?请简要说明理由.3.为了了解某市老年人的健康状况,某天早晨对在公园晨练的50位老人进行了调查.你认为这样的抽样调查合适吗?请简要说明理由.4.要了解师范大学的学生每人一周上网的时间,对在某网吧正在上网的10名该校的大学生进行了调查.你认为这样的调查合适吗?请简要说明理由.5.某校学生会为了更好地丰富学生的课余生活,想了解同学们主要有哪些兴趣爱好,他们决定派学生会干部去调查10个同学,这个干部来到学校操场,看到有8个同学正在打篮球,就依次采访了这些同学,他们又去了音乐室,看到有2位同学正在唱歌,然后他又去了食堂,采访了6位正在一边吃饭一边聊天的同学,你认为这个学生会干部这样选取样本合适吗?为什么?三、创新题:1.眼睛是心灵的窗口,可见保护眼睛是多么重要,可是我们都重视保护自已的眼睛了吗?请用随机抽样的方法调查一下你所在学校九年级学生的视力情况,并针对你的调查结果给同学们写出你的好建议.2.1936年,美国《文学文摘》杂志根据1000万户电话用户和从该杂志订户所收回的意见,断言兰登将以370:161的优势在总统选举中击败罗斯福,但结果是,罗斯福当选了,《文学文摘》大丢面子.原因何在呢?请你分析.答案:学文摘》的调查没注重代表性,这是教训.更多资料请访问教师资源网。
9.1.1 简单随机抽样一、选择题1.关于简单随机抽样,下列说法正确的是( )①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③不做特殊说明时它是一种不放回抽样;④它是一种等可能性抽样A.①②③④B.③④C.①②③D.①③④【答案】A【解析】根据简单随机抽样的定义和性质知:①它要求被抽取样本的总体的个数有限,正确;②它是从总体中逐个地进行抽取,正确;③不作特殊说明时它是一种不放回抽样,正确;④它是一种等可能性抽样,正确;故选:A2.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为()A.40% B.50% C.60% D.2 3【答案】A【解析】在简单随机抽样中,由于每个个体被抽到的可能性是相等的,所以抽到一名女生的可能性为20100%40%50⨯=.选A.3.利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下面摘取了随机数表中的第11 行至第15行),根据下表,读出的第3个数是18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 0526 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 7123 42 40 64 74 82 97 77 77 81 07 45 32 14 08 32 98 94 07 72 93 85 79 10 7552 36 28 19 95 50 92 26 11 97 00 56 76 31 38 80 22 02 53 53 86 60 42 04 5337 85 94 35 12 83 39 50 08 30 42 34 07 96 88 54 42 06 87 98 35 85 29 48 39A.841 B.114 C.014 D.146【答案】B【解析】从随机数表中的第12行第5列的数3开始向右读数,每次读三位,读数时要做到不重不漏,不超范围,依次得到的三位数分别为389,449,114,…,因此第三个数为114.选B.4.用简单随机抽样的方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽取”的可能性、“第二次被抽取”的可能性分别是()A.16,16B.13,16C.16,13D.13,13【答案】D【解析】由于简单随机抽样中每个个体每次被抽到的机会均等,所以个体a“第一次被抽取”的可能性与“第二次被抽取”的可能性是相同的,都为2163.故选D.5.(多选题)下列调查中,适宜采用抽样调查的是()A.调查某市中小学生每天的运动时间B.某幼儿园中有位小朋友得了手足口病,对此幼儿园中的小朋友进行检查C.农业科技人员调查今年麦穗的单穗平均质量D.调查新冠病毒疫区感染人员情况【答案】AC【解析】因为B中要对所有小朋友进行检查,所以用普查的方式;D中需要用普查的方式。
简单随机抽样一、单选题1. 抽样比的计算公式为( B )。
A. f= (n-1)/ (N-1)B. f=n/NC. f= (n-1)/ND. f= (N-n)/N2. 不放回的简单随机抽样指的是哪种情形的随机抽样?(D ) A. 放回有序 B. 放回无序 C. 不放回有序 D. 不放回无序3. 放回的简答随机抽样指的是哪种情形的随机抽样?( A ) A. 放回有序 B. 放回无序 C. 不放回有序 D. 不放回无序4. 通常所讨论的简单随机抽样指的是( D )。
A. 放回的简单随机抽样 B. 放回无序随机抽样 C. 不放回有序随机抽样 D. 不放回的简单随机抽样5. 下面给出的四个式子中,错误的是(D )。
A. ()E y Y = B.()E Ny Y =C.()E p P =D. ˆ()E RR = 6. 关于简单随机抽样的核心定理,下面表达式正确的是( A )。
A. 21()f V y S n-=B. 21()1f V y s n -=-C. 21()V y s n =D. 21()f V y s n-=7. 下面关于各种抽样方法的设计效应,表述错误的是( B )。
A. 简单随机抽样的deff=1B. 分层随机抽样的deff>1C. 整群随机抽样的deff>1D. 机械随机抽样的deff ≈18. 假设考虑了有效回答率之外所有其他因素的初始样本量为400,而设计有效回答率为80%,那么样本量应定为( B )。
A. 320B. 500C. 400D. 480 9. 在要求的精度水平下,不考虑其他因素的影响,若简单随机抽样所需要的样本量为300,分层随机抽样的设计效应deff=0.8,那么若想达到相同的精度,分层随机抽样所需要的样本量为(C )。
A. 375B. 540C. 240D. 360二、多选题1. 随机抽样可以分为( ABCD)。
A. 放回有序B. 放回无序C. 不放回有序D.不放回无序2.随机抽样的抽取原则是(ABC )A.随机取样原则B.抽样单元的入样概率已知C. 抽样单元的入样概率相等D.先入为主原则E.后入居上原则3.辅助变量的特点( ABCD )A.必须与主要变量高度相关B.与主要变量之间的相关系数整体上相当稳定C.辅助变量的信息质量更好D.辅助变量的总体总值必须是已知的,或更容易获得E.辅助变量可以是任何一个已知的变量4.影响样本容量的因素包括(ABCDE)A.总体规模B.(目标)抽样误差C.总体方差D.置信度E.有效回答率5. 简单随机抽样的实施方法(ABD)A.抽签法B.利用统计软件直接抽取法C.随便抽取法D.随机数法E.主观判断法6. 产生随机数的方式有(ABCDE)A.使用计算器B.使用计算机C.使用随机表D.使用随机数色子E.使用电子随机数抽样器三、简答题1.简述样本容量的确定步骤。
9.1随机抽样9.1.1简单随机抽样学习目标核心素养1.通过实例,了解简单随机抽样的含义及其解决问题的过程.(重点)2.掌握两种简单随机抽样方法:抽签法和随机数法.(重点、难点) 通过对简单随机抽样的概念和应用的学习,培养数据分析素养.在我国,食品安全问题越来越受到人们的关注,党中央、国务院和各级政府部门也高度重视,从制度建设和管理上都做了大量的、卓有成效的工作,取得了良好的效果.问题:某报告称,食品质量检测人员对某品牌牛奶的抽检合格率为99.9%,你知道这一数据是怎么得到的吗?1.全面调查和抽样调查调查方式普查抽样调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查,并以此为依先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.4.随机数法(1)定义:先把总体中的个体编号,用随机数工具产生与总体中个体数量相等的整数随机数,把产生的随机数作为抽中的编号,并剔除重复的编号,直到抽足样本所需要的个体数.(2)产生随机数的方法:①用随机试验生成随机数;②用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,…,Y N ,则Y =Y 1+Y 2+…+Y N N =1N ∑i =1NY i 为总体均值,又称总体平均数. (2)总体均值加权平均数的形式:如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y =1N ∑i =1kf i Y i .(3)如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y -=y 1+y 2+…+y n n =1n ∑i =1ny i 为样本均值,又称样本平均数.思考1:采用抽签法抽取样本时,为什么将编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌?[提示] 为了使每个号签被抽取的可能性相等,保证抽样的公平性.思考2:抽签法有什么优点和缺点?[提示] (1)优点:简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.(2)缺点:仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平.1.思考辨析(正确的画“√”,错误的画“×”)(1)抽签法和随机数法都适用于总体容量和样本容量较小时的抽样. ( )(2)利用随机数法抽取样本时,选定的初始数是任意的,但读数的方向只能是从左向右读. ( )(3)利用随机数法抽取样本时,若总体容量为100,则给每个个体分别编号为1,2,3, (100)( )[提示](1)正确.(2)错误.读数的方向也是任意的.(3)错误.应编号为00,01,02, (99)[答案](1)√(2)×(3)×2.使用简单随机抽样从1 000件产品中抽出50件进行某项检查,合适的抽样方法是()A.抽签法B.随机数法C.随机抽样法D.以上都不对B[由于总体相对较大,样本容量较小,故采用随机数法较为合适.]3.用抽签法抽取的一个容量为5的样本,它们的变量值分别为2,4,5,7,9,则该样本的平均数为()A.4.5 B.4.8C.5.4D.6C[y=2+4+5+7+95=5.4.]简单随机抽样的判断①一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某班从50名同学中,选出5名数学成绩最优秀的同学代表本班参加数学竞赛;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.A.0 B.1C.2 D.3B[根据简单随机抽样的特点逐个判断.①不是简单随机抽样.因为一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件它不是“逐个”抽取.②不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.③不是简单随机抽样.因为5名同学是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.④是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,等可能的抽样.综上,只有④是简单随机抽样.]简单随机抽样必须具备的特点(1)被抽取样本的总体中的个体数N是有限的;(2)抽取的样本是从总体中逐个抽取的;(3)简单随机抽样是一种等可能的抽样.,如果三个特征有一个不满足,就不是简单随机抽样.[跟进训练]1.为了进一步严厉打击交通违法,交警队在某一路口随机抽查司机是否酒驾,这种抽查是()A.简单随机抽样B.抽签法C.随机数法D.以上都不对D[由于不知道总体的情况(包括总体个数),因此不属于简单随机抽样.]抽签法的应用琴.[解]第一步,将20架钢琴编号,号码是01,02, (20)第二步,将号码分别写在外观、质地等无差别的小纸片上作为号签.第三步,将小纸片放入一个不透明的盒里,充分搅匀.第四步,从盒中不放回地逐个抽取5个号签,使与号签上编号相同的钢琴进入样本.1.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.2.应用抽签法时应注意的问题:(1)编号时,如果已有编号可不必重新编号;(2)号签要求大小、形状完全相同;(3)号签要均匀搅拌;(4)根据实际需要采用有放回或无放回抽取.[跟进训练]2.为迎接2022年北京冬奥会,奥委会现从报名的某高校30名志愿者中选取6人组成奥运志愿小组,请用抽签法设计抽样方案.[解](1)将30名志愿者编号,号码分别是01,02, (30)(2)将号码分别写在外观、质地等无差别的小纸片上作为号签.(3)将小纸片放入一个不透明的盒里,充分搅匀.(4)从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.随机数法及其综合应用1.某工厂有2 000名工人,从中选取20人参加职工代表大会,采用简单随机抽样方法进行抽样,是用抽签法还是随机数法?为什么?[提示]采用随机数法,因为工人人数较多,制作号签比较麻烦,所以采用随机数法.2.某工厂的质检人员采用随机数法对生产的100件产品进行检查,若抽取10件进行检查,应如何对100件产品编号?[提示]可对这100件产品编号为:001,002,003, (100)【例3】某市质监局要检查某公司某个时间段生产的500克袋装牛奶的质量是否达标,现从500袋牛奶中抽取10袋进行检验.(1)利用随机数法抽取样本时,应如何操作?(2)如果用随机试验生成部分随机数如下所示,据此写出应抽取的袋装牛奶的编号.162,277,943,949,545,354, 821,737, 932,354,873,520,964,384,263,491,648,642,175,331,572,455,068,877,047,447,672,172,065,025,834,216,337,663, 013,785,916,955,567,199,810,507,175,128,673,580,667.(3)质监局对该公司生产的袋装牛奶检验的质量指标有两个:一是每袋牛奶的质量满足500±5g,二是10袋质量的平均数≥500g,同时满足这两个指标,才认为公司生产的牛奶为合格,否则为不合格.经过检测得到10袋袋装牛奶的质量(单位:g)为:502,500,499,497,503,499,501,500,498,499.计算这个样本的平均数,并按照以上标准判断牛奶质量是否合格.[解](1)第一步,将500袋牛奶编号为001,002, (500)第二步,用随机数工具产生1~500范围内的随机数.第三步,把产生的随机数作为抽中的编号,使编号对应的袋装牛奶进入样本.第四步,重复上述过程,直到产生不同的编号等于样本所需要的数量.(2)应抽取的袋装牛奶的编号为:162,277,354,384,263,491,175,331,455,068.(3)y=502+500+499+497+503+499+501+500+498+49910=499.8<500,所以该公司的牛奶质量不合格.1.该公司对质监部门的这种检验方法并不认可,公司自己质检部门抽取了100袋牛奶按照本例(3)检验标准,统计得到这100袋袋装牛奶的质量都满足500±5g,平均数为500.4g ,你认为质监局和公司的检验结果哪一个更可靠?为什么?[解] 该公司的质检部门的检验结果更可靠.因为质监局抽取的样本较少,不能很好地反映总体,该公司的质检部门抽取的样本量较大,一般来说,样本量大的会好于样本量小的.尤其是样本量不大时,增加样本量可以较好地提高估计的效果. 2.为进一步加强公司生产牛奶的质量,规定袋装牛奶的质量变量值为Y i =⎩⎨⎧1,质量不低于500 g 0,质量低于500 g,公司质监部门又抽取了一个容量为50的样本,其质量变量值如下:1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1据此估计该公司生产的袋装牛奶质量不低于500 g 的比例.[解] 由样本观测数据,计算可得样本平均数为y =0.56,据此估计该公司生产的袋装牛奶质量不低于500 g 的比例约为0.56.随机数法的注意点(1)当总体容量较大,样本容量不大时,可用随机数法抽取样本.(2)用随机数法抽取样本,为了方便,在编号时需统一编号的位数.(3)掌握利用信息技术产生随机数的方法和规则.一、知识必备1.简单随机抽样的相关概念以及抽签法和随机数法的抽样步骤.2.当总体容量和样本容量都不大时,用抽签法抽样;当总体容量较大,样本容量不大时,用随机数法抽样.二、方法必备1.要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的三个特点:总体有限、逐个抽取、等可能抽取.2.一个抽样试验能否用抽签法,关键看总体和样本的容量是否较少.1.(多选题)下面抽样方法不属于简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.某饮料公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10台手机中逐个不放回地随机抽取2台进行质量检验(假设10台手机已编号,对编号进行随机抽取)ABC[选项A中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;选项B中,一次性抽取不符合简单随机抽样逐个抽取的要求,故错误;选项C中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误;选项D符合简单随机抽样的要求.]2.抽签法确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回B[若样本具有很好的代表性,则每一个个体被抽取的机会相等,故需要对号签搅拌均匀.]3.“双色球”彩票中有33个红色球,每个球的编号分别为01,02, (33)一位彩民用随机数法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第5列和第6列的数字开始,从左向右读数,则依次选出来的第5个红色球的编号为()7816657208026314021443199714019832049234493682003623486969387181A.01 B.02C.14 D.19A [从随机数表中第1行第5列和第6列的数字开始,从左向右读数,依次是65(舍去),72(舍去),08,02,63(舍去),14,02(舍去),14(舍去),43(舍去),19,97(舍去),14(舍去),01,98(舍去),32;选出来的这6个数为:08,02,14,19,01,32,第5个红色球的编号为01.]4.在总体为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N 的值为________.120 [据题意30N=0.25,故N =120.] 5.某展览馆在22天中(全年中随机抽取的数据)每天进馆参观的人数如下:180,158,170,185,189,180,184,185,140,179,192,185,190,165,182,170,190,183,175,180,185,147可估计全年该展览馆平均每天参观的人数约为________.177 [根据题意,可用样本均值近似估计总体均值y -=122×(180+158+170+185+189+180+184+185+140+179+192+185+190+165+182+170+190+183+175+180+185+147)=177.]。
简单随机抽样一、单选题1. 抽样比的计算公式为( B )。
A. f= (n-1)/ (N-1)B. f=n/NC. f= (n-1)/ND. f= (N-n)/N2. 不放回的简单随机抽样指的是哪种情形的随机抽样?(D ) A. 放回有序 B. 放回无序 C. 不放回有序 D. 不放回无序3. 放回的简答随机抽样指的是哪种情形的随机抽样?( A ) A. 放回有序 B. 放回无序 C. 不放回有序 D. 不放回无序4. 通常所讨论的简单随机抽样指的是( D )。
A. 放回的简单随机抽样 B. 放回无序随机抽样 C. 不放回有序随机抽样 D. 不放回的简单随机抽样5. 下面给出的四个式子中,错误的是(D )。
A. ()E y Y = B.()E Ny Y =C.()E p P =D. ˆ()E RR = 6. 关于简单随机抽样的核心定理,下面表达式正确的是( A )。
A. 21()f V y S n-=B. 21()1f V y s n -=-C. 21()V y s n =D. 21()f V y s n-=7. 下面关于各种抽样方法的设计效应,表述错误的是( B )。
A. 简单随机抽样的deff=1B. 分层随机抽样的deff>1C. 整群随机抽样的deff>1D. 机械随机抽样的deff ≈18. 假设考虑了有效回答率之外所有其他因素的初始样本量为400,而设计有效回答率为80%,那么样本量应定为( B )。
A. 320B. 500C. 400D. 4809. 在要求的精度水平下,不考虑其他因素的影响,若简单随机抽样所需要的样本量为300,分层随机抽样的设计效应deff=0.8,那么若想达到相同的精度,分层随机抽样所需要的样本量为(C )。
A. 375B. 540C. 240D. 360 二、多选题1. 随机抽样可以分为( ABCD )。
A. 放回有序B. 放回无序C. 不放回有序D.不放回无序2.随机抽样的抽取原则是(ABC )A.随机取样原则B.抽样单元的入样概率已知C. 抽样单元的入样概率相等D.先入为主原则E.后入居上原则3.辅助变量的特点( ABCD )A.必须与主要变量高度相关B.与主要变量之间的相关系数整体上相当稳定C.辅助变量的信息质量更好D.辅助变量的总体总值必须是已知的,或更容易获得E.辅助变量可以是任何一个已知的变量4.影响样本容量的因素包括(ABCDE)A.总体规模B.(目标)抽样误差C.总体方差D.置信度E.有效回答率5. 简单随机抽样的实施方法(ABD)A.抽签法B.利用统计软件直接抽取法C.随便抽取法D.随机数法E.主观判断法6. 产生随机数的方式有(ABCDE)A.使用计算器B.使用计算机C.使用随机表D.使用随机数色子E.使用电子随机数抽样器三、简答题1.简述样本容量的确定步骤。
2.简述预估方差的几种方法;3.讨论下列从总体中抽得的样本是否属于概率抽选(回答“是”或“否”):(1)总体(1-112)。
抽法:从数1-56中随机抽取一个数r,再从数1-2中抽取一个数,以决定该数为r或56+r;(2)总体(1-112)。
抽法:首先从1-2中抽选一个数以决定两个群1-100或101-112,再从抽中的群中随机抽选一个数r;(3)总体(1-1109)。
抽法:从1-10000中抽选一个随机数r,若第一位是偶数,则用后面的三位数来表示1-1000(以000代表1000);若第一位数是奇数,当后面的三位数在101-109之间就代表1001和1109,若在110和1000之间被抛弃,重新抽选r;(4)总体(67084-68192)。
抽法:从1-1109中抽选一个随机数r,然后用r+67083作为被抽选的数;(5)总体(67084-68192)。
抽法:从1-2000中抽选一个随机数r,若在0084-1192之间就加67000取相应数,否则就抛弃,重选r;(6)总体有1109个数分布在61000-68000之间。
抽法:随机抽选四位数r加60000,如果该数有相应的数就算抽中,无相应数抛弃重选;(7)总体(1-17)。
抽法:在1-100中抽选r,再除以20,若余数在1-17之间,就抽中相应的数,否则抛弃重选;(8)总体(1-17)。
抽法:在1-100中随机抽选一个数除以17,以余数作为抽中的数。
4.设某个总体由L个子总体构成,今从该总体中抽取一个大小为n的简单随机样本,且设属于第j个子总体的单元数为n j固定的条件下,这n j个单元可看成是从第j个子总体中抽取的一个简单随机样本。
5. 简单随机抽样在抽样技术中的地位;6. 简单随机抽样中样本量确定的原则及主要考虑因素;7. 总体方差的预先确定思路。
四、计算题1. 为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取300户进行调查,现得到其日用电平均值为9.5(千瓦时),方差为206。
试估计该市居民日用电量的95%的置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?2. 某大学10000名本科生,现欲估计在暑假期间参加了各类英语培训的学生所占的比例,随机抽取了200名学生进行调查,得到p=0.35。
试估计该大学所有本科生中暑假参加培训班的比例的95%的置信区间。
3. 研究某小区家庭用于文化方面(报刊、电视、网络等)的支出,N=200,现抽取估计该小区的平均文化支出,并给出置信水平95%的置信区间。
4. 对某问题进行调查,在总体中抽取一个样本容量为200的简单随机样本,若赞成、反对及不表态的人数分别为:n1=132,n2=51,n3=17,试给出赞成、反对或不回答比例P1、P2、P3的近似置信区间。
设N很大,f可忽略。
5. 在人口变动情况的调查中,出生率是一个重要的指标.根据以前的调查数据,出生率的估计可取为18‰,问在置信度95%下,实际调查估计P的绝对误差限为0.5‰和相对误差限5%各需多大的样本量(忽略fpc,且N-1≈N)?6. 某地区350个乡为了获得粮食总产量的估计,调查了50个乡当年的粮食产量,得到均值为1220吨,方差为25600,据此估计该地区今年的粮食产量,并给出置信水平95%夫人置信区间。
7. 某次关于1000个家庭人均住房面积的调查中,委托方要求绝对误差限为2平方米,置信水平为95%,现根据以前的调查结果,认为总体方差为68,试确定简单随机抽样所需的样本量,若欲估计有效回答率为70%,则样本量最终为多少?8. 某地区对本地100家化肥厂的尿素产量进行调查,以至去年的总产量为2135吨,抽取10个企业调查今年的产量,得到样本均值为25吨,这些企业去年的年平均产量为22吨。
是采用比率估计方法计算该地区化肥总产量。
9. 请证明教材中的定理3.3:对简单随机抽样,有1(,)xy fCov y x S n-=其中,11()()1Nxy i i i S Y Y X X n ==---∑,为总体协方差.10. 如果在解第3题时,可以得到下表中的家庭月总支出,而全部家庭的总支出平均为1600,利用比估计的方法估计平均文化支出, 给出置信水平95%夫人置信区间,并比较比11. 某养牛场购进120头肉牛,购进时平均体重为100公斤,先从中抽取10头,,记录重量,三个月后再次测量,结果如下: 请采用回归估计法计算120头牛现在的平均重量,计算其方差的估计,并和简单各界的结果进行比较。
12. 设总体N=5,其指标值为{3,5,6,7,9} (1)计算总体方差2σ和S 2;(2)从中抽取n=2的随机样本,分别计算放回抽样和不放回抽样的方差)(y V ; (3)按放回抽样和不放回抽样的分别列出所有可能的样本并计算y ,验证)(y E =Y ; (4)按放回抽样和不放回抽样的所有可能的样本,计算其方差)(y V ,并与公式计算的结果进行比较;(5)对所有的可能样本计算样本方差s 2,并验证在放回抽样的情况下E (s 2)=2σ;在不放回的情况下:E (s 2)= S 2。
13. 在一森林抽样调查中,某林场共有1000公顷林地,随机布设了50块面积为0.06公顷的方形样地,测得这50块样地的平均储蓄量为9m3,标准差为1.63 m3,试以95%的置信度估计该林场的木材储蓄量。
14. 某居民区共有10000户,现用抽样调查的方法估计该区居民的用水量。
采用简单随机抽样抽选了100户,得ý=12.5,s2=1252。
估计该居民区的总用水量95%的置信区间。
若要求估计的相对误差不超过20%,试问应抽多少户做样本?15. 某工厂欲制定工作定额,估计所需平均操作时间,从全厂98名从事该项作业的工人中随机抽选8人,其操作时间分别为4.2,5.1,7.9,3.8,5.3,4.6,5.1,4.1(单位:分),试以95%的置信度估计该项作业平均所需时间的置信区间(有限总体修正系数可忽略)。
16. 从某百货商店的3000张发货票中随机抽取300张来估计家用电器销售额,发现其中有200张是销售家用电器的,这200张发货票的总金额是48956元,其离差平方和为12698499。
若置信度是95%,试估计这3000张发货票中家用电器销售额的置信区间。
17. 某总体有10个单元,分为A,B,C 三类,其中A 类有2个单元,B 类和C 类各有四个单元。
若采用不放回抽样抽取一样本量为4的简单随机样本来估计B 类单元在B,C 两类单元中的比例,试计算估计量的标准误。
18. 某县采用简单随机抽样估计粮食、棉花、大豆的播种面积,抽样单元为农户。
根据以往资料其变量的变异系数为 名称 粮食 棉花 大豆 变异系数 0.38 0.39 0.44若要求以上各个项目的置信度为95%,相对误差不超过4%,需要抽取多少户?若用这一样本估计粮食的播种面积,其精度是多少?19. 从一叠单据中用简单随机抽样方法抽取了250张,发现其中有50张单据出现错误,试以95%的置信度估计这批单据中有错误的比例。
若已知这批单据共1000张,你的结论有何变化?若要求估计的绝对误差不超过1%,则至少抽取多少张单据作样本?20. 欲调查二种疾病的发病率,疾病A 的发病率较高,预期为50%; 疾病B 的发病率预期为1%。
若要得到相同的标准差0.5%,采用简单随机抽样各需要多大的样本量?试对上述不同的结果加以适当的说明。
21. 假设总体中每个单元有两个指标值Y i 和X i ,i=1,…,N ,记y,为相应的简单随机样本的均值。
试证样本协方差∑=---=n i i i yxx x y y n s 1))((11 是总体协方差∑=---=n i i i yxX X Y Y n S 1))((11的无偏估计。