简单随机抽样习题及解答
- 格式:doc
- 大小:43.50 KB
- 文档页数:3
高一数学《随机抽样》练习题一、选择题1。
对于简单随机抽样,个体被抽到的机会 A.相等B .不相等 C.不确定 D.与抽取的次数有关2. 抽签法中确保样本代表性的关键是A.制签 B 。
搅拌均匀 C .逐一抽取 D.抽取不放回3。
用随机数表法从100名学生(男生25人)中20人进行评教,某男学生被抽到的机率是A.1001 B .251C.51D.414。
某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是 A.40 B 。
50 C .120 D.1505。
从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为A。
36%B .72% C .90%D .25%6。
为了解1200名学生对学校教改试验,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为A 。
40B .30 C.20 D.127。
从N 个编号中要抽取n 个号码入样,若采用系统抽样方法抽取,则分段间隔应为 A。
n N C.[n N ] D.[nN]1 8.下列说法正确的个数是①总体的个体数不多时宜用简单随机抽样法②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样 ③百货商场的抓奖活动是抽签法④整个抽样过程中,每个个体被抽取的机率相等(有剔除时例外) A.1 B.2 C .3 D 。
49。
某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员 A 。
3人 B。
4人 C 。
7人 D.12人 10. 问题:①有1000个乒乓球分别装在3个箱子内,其中箱子内有500个,蓝色箱子内有200个,箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ。
随机抽样法Ⅱ。
系统抽样法Ⅲ。
分层抽样法。
其中问题与方法能配对的是A.①Ⅰ,②ⅡB。
习题一1.请列举一些你所了解的以及被接受的抽样调查。
2.抽样调查基础理论及其意义;3.抽样调查的特点。
4.样本可能数目及其意义;5.影响抽样误差的因素;6.某个总体抽取一个n=50的独立同分布样本,样本数据如下:567 601 665 732 366 937 462 619 279 287690 520 502 312 452 562 557 574 350 875834 203 593 980 172 287 753 259 276 876692 371 887 641 399 442 927 442 918 11178 416 405 210 58 797 746 153 644 4761)计算样本均值y与样本方差s2;2)若用y估计总体均值,按数理统计结果,y是否无偏,并写出它的方差表达式;3)根据上述样本数据,如何估计v(y)?4)假定y的分布是近似正态的,试分别给出总体均值μ的置信度为80%,90%,95%,99%的(近似)置信区间。
习题二一判断题1 普查是对总体的所有单元进行调查,而抽样调查仅对总体的部分单元进行调查。
2 概率抽样就是随机抽样,即要求按一定的概率以随机原则抽取样本,同时每个单元被抽中的概率是可以计算出来的。
3 抽样单元与总体单元是一致的。
4 偏倚是由于系统性因素产生的。
5 在没有偏倚的情况下,用样本统计量对目标量进行估计,要求估计量的方差越小越好。
6 偏倚与抽样误差一样都是由于抽样的随机性产生的。
7 偏倚与抽样误差一样都随样本量的增大而减小。
8 抽样单元是构成抽样框的基本要素,抽样单元只包含一个个体。
9 抽样单元可以分级,但在抽样调查中却没有与之相对应的不同级的抽样框。
10 总体目标量与样本统计量有不同的意义,但样本统计量它是样本的函数,是随机变量。
11 一个抽样设计方案比另一个抽样设计方案好,是因为它的估计量方差小。
12 抽样误差在概率抽样中可以对其进行计量并加以控制,随着样本量的增大抽样误差会越来越小,随着n越来越接近N,抽样误差几乎可以消除。
《抽样技术》练习题5及答案习题⼀1.请列举⼀些你所了解的以及被接受的抽样调查。
2.抽样调查基础理论及其意义;3.抽样调查的特点。
4.样本可能数⽬及其意义;5.影响抽样误差的因素;6.某个总体抽取⼀个n=50的独⽴同分布样本,样本数据如下:567 601 665 732 366 937 462 619 279 287690 520 502 312 452 562 557 574 350 875834 203 593 980 172 287 753 259 276 876692 371 887 641 399 442 927 442 918 11178 416 405 210 58 797 746 153 644 4761)计算样本均值y与样本⽅差s2;2)若⽤y估计总体均值,按数理统计结果,y是否⽆偏,并写出它的⽅差表达式;3)根据上述样本数据,如何估计v(y)?4)假定y的分布是近似正态的,试分别给出总体均值µ的置信度为80%,90%,95%,99%的(近似)置信区间。
习题⼆⼀判断题1 普查是对总体的所有单元进⾏调查,⽽抽样调查仅对总体的部分单元进⾏调查。
2 概率抽样就是随机抽样,即要求按⼀定的概率以随机原则抽取样本,同时每个单元被抽中的概率是可以计算出来的。
3 抽样单元与总体单元是⼀致的。
4 偏倚是由于系统性因素产⽣的。
5 在没有偏倚的情况下,⽤样本统计量对⽬标量进⾏估计,要求估计量的⽅差越⼩越好。
6 偏倚与抽样误差⼀样都是由于抽样的随机性产⽣的。
7 偏倚与抽样误差⼀样都随样本量的增⼤⽽减⼩。
8 抽样单元是构成抽样框的基本要素,抽样单元只包含⼀个个体。
9 抽样单元可以分级,但在抽样调查中却没有与之相对应的不同级的抽样框。
10 总体⽬标量与样本统计量有不同的意义,但样本统计量它是样本的函数,是随机变量。
11 ⼀个抽样设计⽅案⽐另⼀个抽样设计⽅案好,是因为它的估计量⽅差⼩。
12 抽样误差在概率抽样中可以对其进⾏计量并加以控制,随着样本量的增⼤抽样误差会越来越⼩,随着n越来越接近N,抽样误差⼏乎可以消除。
抽样调查习题答案【篇一:抽样调查习题及答案】ss=txt>1. 抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。
2. 采用不重复抽样方法,从总体为n的单位中,抽取样本容量为n的可能样本个数为n(n-1)(n-2)??(n-n+1)。
3. 只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。
4. 参数估计有两种形式:一是点估计,二是区间估计。
5. 判别估计量优良性的三个准则是:无偏性、一致性和有效性。
6. 我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。
7. 常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。
9. 如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。
10. 在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。
二、判断题3. 重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。
(√) 4. 在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。
(√)1. 用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(c)a. 2倍b. 3倍c. 4倍d. 5倍2. 事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(d)a. 分层抽样b. 简单随机抽样c. 整群抽样d. 等距抽样3. 计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(b)a. 最小一个 b. 最大一个 c. 中间一个 d. 平均值4. 抽样误差是指(d)a. 计算过程中产生的误差b. 调查中产生的登记性误差c. 调查中产生的系统性误差d. 随机性的代表性误差5. 抽样成数是一个(a)a. 结构相对数b. 比例相对数c. 比较相对数d. 强度相对数 6. 成数和成数方差的关系是(c)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大 7. 整群抽样是对被抽中的群作全面调查,所以整群抽样是(b)a. 全面调查b. 非全面调查c. 一次性调查d. 经常性调查8. 对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)a. 4% b. 4.13% c. 9.18% d. 8.26%9. 根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(b)a. 甲产品大b. 乙产品大c. 相等d. 无法判断10. 抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(b)a. 甲企业较大b. 乙企业较大c. 不能作出结论d. 相同四、多项选择题抽样调查中的抽样误差是(abcde)a. 是不可避免要产生的b. 是可以通过改进调查方法来避免的c. 是可以计算出来的d. 只能在调查结果之后才能计算e. 其大小是可以控制的 2. 重复抽样的特点是(ac)a. 各次抽选相互影响b. 各次抽选互不影响c. 每次抽选时,总体单位数始终不变 d 每次抽选时,总体单位数逐渐减少e. 各单位被抽中的机会在各次抽选中相等 3. 抽样调查所需的样本容量取决于(abe)a. 总体中各单位标志间的变异程度b. 允许误差c. 样本个数d. 置信度e. 抽样方法4. 分层抽样误差的大小取决于(bcd)a. 各组样本容量占总体比重的分配状况b. 各组间的标志变异程度c. 样本容量的大小d. 各组内标志值的变异程度e. 总体标志值的变异程度 5. 在抽样调查中(acd)a. 全及指标是唯一确定的b. 样本指标是唯一确定的c. 全及总体是唯一确定的d. 样本指标是随机变量e. 全及指标是随机变量五、名词解释 1.抽样推断 2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。
第四章习题抽样调查一、填空题1. 抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。
2. 采用不重复抽样方法,从总体为N的单位中,抽取样本容量为n的可能样本个数为N(N-1)(N-2)……(N-N+1)。
3. 只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。
4. 参数估计有两种形式:一是点估计,二是区间估计。
5. 判别估计量优良性的三个准则是:无偏性、一致性和有效性。
6. 我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。
7. 常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。
8. 对于简单随机重复抽样,若其他条件不变,则当极限误差范围Δ缩小一半,抽样单位数必须为原来的4倍。
若Δ扩大一倍,则抽样单位数为原来的1/4。
9. 如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。
10. 在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。
二、判断题1. 抽样误差是抽样调查中无法避免的误差。
(√)2. 抽样误差的产生是由于破坏了随机原则所造成的。
(×)3. 重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。
(√)4. 在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。
(√)5. 抽样调查所遵循的基本原则是可靠性原则。
(×)6. 样本指标是一个客观存在的常数。
(×)7. 全面调查只有登记性误差而没有代表性误差,抽样调查只有代表性误差而没有登记性误差。
(×)8. 抽样平均误差就是抽样平均数的标准差。
(×)三、单项选择题1. 用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(C)A. 2倍B. 3倍C. 4倍D. 5倍2. 事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(D)A. 分层抽样B. 简单随机抽样C. 整群抽样D. 等距抽样3. 计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(B)A. 最小一个B. 最大一个C. 中间一个D. 平均值4. 抽样误差是指(D)A. 计算过程中产生的误差B. 调查中产生的登记性误差C. 调查中产生的系统性误差D. 随机性的代表性误差5. 抽样成数是一个(A)A. 结构相对数B. 比例相对数C. 比较相对数D. 强度相对数6. 成数和成数方差的关系是(C)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大7. 整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)A. 全面调查B. 非全面调查C. 一次性调查D. 经常性调查8. 对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)A. 4%B. 4.13%C. 9.18%D. 8.26%9. 根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)A. 甲产品大B. 乙产品大C. 相等D. 无法判断10. 抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(B)A. 甲企业较大B. 乙企业较大C. 不能作出结论D. 相同四、多项选择题抽样调查中的抽样误差是(ABCDE)A. 是不可避免要产生的B. 是可以通过改进调查方法来避免的C. 是可以计算出来的D. 只能在调查结果之后才能计算E. 其大小是可以控制的2. 重复抽样的特点是(AC)A. 各次抽选相互影响B. 各次抽选互不影响C. 每次抽选时,总体单位数始终不变D 每次抽选时,总体单位数逐渐减少E. 各单位被抽中的机会在各次抽选中相等3. 抽样调查所需的样本容量取决于(ABE)A. 总体中各单位标志间的变异程度B. 允许误差C. 样本个数D. 置信度E. 抽样方法4. 分层抽样误差的大小取决于(BCD)A. 各组样本容量占总体比重的分配状况B. 各组间的标志变异程度C. 样本容量的大小D. 各组内标志值的变异程度E. 总体标志值的变异程度5. 在抽样调查中(ACD)A. 全及指标是唯一确定的B. 样本指标是唯一确定的C. 全及总体是唯一确定的D. 样本指标是随机变量E. 全及指标是随机变量五、名词解释1.抽样推断2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。
随机抽样、用样本估计总体1.某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标).所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有 根棉花纤维的长度小于20 mm.惠生活 观影指南爱尚嘟嘟园迅播影院请支持我们,有更多资源和动力【答案】 30【解析】 因为频率分布直方图的矩形的高为,频率概率故矩形的高⨯组距即为频率.从图中可知长 度小于20 mm 的频率为(0.01+0.01+0.04)50⨯=.3,又总体为100根,故纤维长度小于20 mm 的根 数为1000⨯.3=30根. 惠生活 观影指南 爱尚 嘟嘟园 迅播影院 请支持我们,有更多资源和动力 课后作业夯基基础巩固2.从2 008名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽 样从2 008人中剔除8人,剩下的2 000人再按系统抽样的方法抽取,则这2 008名学生中每人入选的概率( )A.不全相等B.均不相等C.都相等,且为502008D.都相等,且为140【答案】 C 【解析】 随机抽样过程中,保证每个个体被抽取的可能性是相等的,所以每人入选的概率都相等,且为502008. 3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年 级的学生中应抽取的人数为… ( )A.6B.8C.10D.12【答案】 B【解析】 分层抽样的原理是按照各部分所占的比例抽取样本,设从高二年级抽取的学生数为n ,则30640n=,得n =8. 4.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的 频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C.60D.45【答案】A【解析】样本中产品净重小于100克的频率为(0.050+0.100)⨯2=0.3,频数为36.样本总数为36120 03= ..∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)20⨯=.75, ∴样本中净重大于或等于98克并且小于104克的产品的个数为1200⨯.75=90.5.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5B.91.5和92C.91和91.5D.92和92【答案】A【解析】按照从小到大的顺序排列为87,89,90,91,92,93,94,96.∵有8个数据,∴中位数是中间两个数的平均数:91922+=91.5,平均数为8789909192939496918+++++++=.5,故选A.6.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.6【答案】D【解析】每一个数据都加上60时,平均数也应加上60,而方差不变.7.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为.【答案】40【解析】在系统抽样中,确定分段间隔k,对编号进行分段,(N k N n=为总体的容量,n 为样本的容量), ∴12004030N k n ===. 8.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本,已知 学号为6,34,48的同学在样本中,那么还有一个同学的学号应为 .【答案】 20【解析】 根据题意,56人应分为4组,每组14人,第一组为6号,第二组为6+14=20号,第三组为20+14=34号,第四组为34+14=48号,故还有一个同学的学号为20.9.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95],由此得到频率分布直方图如图,则由此估计该厂工人一天生产该产品数量在[55,70)的人数约占该厂工人总数的百分率是 .【答案】 52.5%【解析】 结合频率分布直方图可以看出:生产数量在[55,65)的人数频率为0.04100⨯=.4,生产数量在[65,75)的人数频率为0.025⨯10=0.25,而生产数量在[65,70)的人数频率约为0.25⨯102=.125,那么生产数量在[55,70)的人数频率约为0.4+0.125=0.525,即52.5%. 10.(2011江苏高考,6)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差2s = .【答案】 165【解析】 ∵10685675x ++++==, ∴2s = 22222(107)(67)(87)(57)(67)1655-+-+-+-+-=. 11.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图,则该组数据的方差为.【答案】 5 【解析】 该运动员6场的总得分为14+17+18+18+20+21=108,平均得分为10818(6=分),方差为 2222221[(1418)(1718)(1818)(1818)(2018)(2118)]56-+-+-+-+-+-=,故填5. 12.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如 下表:惠生活 观影指南 爱尚 嘟嘟园 迅播影院 请支持我们,有更多资源和动力(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适【解】 (1)画茎叶图,如图所示,中间数为数据的十位数.从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此乙总体得分情况比甲好(2)根据公式得3333x x =,=甲乙;s =甲 3.96s ,=乙 3.35;甲的中位数是33,乙的中位数是综合比较选乙参加比赛较为合适.。
第2章2.1解:()1这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1 100。
()2这种抽样方法不是等概率的。
利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1 100。
()3这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。
2.2解:2.3 解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在大样本的条件下_y E yy -=近似服从标准正态分布, _Y 的195%α-=的置信区间为2y z y z y y αα⎡⎡-+=-+⎣⎣。
而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。
由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得 _21130050000()2060.6825300f v y s n --==⨯=。
将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。
下一步计算样本量。
绝对误差限d 和相对误差限r的关系为_d rY =。
根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_r Y V y z α⎛⎫⎪= ⎪⎝⎭。
也就是2_2_222/21111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫ ⎪⎛⎫⎝⎭ ⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。
把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。
第四章习题抽样调查一、填空题1. 抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。
2. 采用不重复抽样方法,从总体为N的单位中,抽取样本容量为n的可能样本个数为N(N-1)(N-2)……(N-N+1)。
3. 只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。
4. 参数估计有两种形式:一是点估计,二是区间估计。
5. 判别估计量优良性的三个准则是:无偏性、一致性和有效性。
6. 我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。
7. 常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。
8. 对于简单随机重复抽样,若其他条件不变,则当极限误差范围Δ缩小一半,抽样单位数必须为原来的4倍。
若Δ扩大一倍,则抽样单位数为原来的1/4。
9. 如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。
10. 在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。
二、判断题1. 抽样误差是抽样调查中无法避免的误差。
(√)2. 抽样误差的产生是由于破坏了随机原则所造成的。
(×)3. 重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。
(√)4. 在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。
(√)5. 抽样调查所遵循的基本原则是可靠性原则。
(×)6. 样本指标是一个客观存在的常数。
(×)7. 全面调查只有登记性误差而没有代表性误差,抽样调查只有代表性误差而没有登记性误差。
(×)8. 抽样平均误差就是抽样平均数的标准差。
(×)三、单项选择题1. 用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(C)A. 2倍B. 3倍C. 4倍D. 5倍2. 事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(D)A. 分层抽样B. 简单随机抽样C. 整群抽样D. 等距抽样3. 计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(B)A. 最小一个B. 最大一个C. 中间一个D. 平均值4. 抽样误差是指(D)A. 计算过程中产生的误差B. 调查中产生的登记性误差C. 调查中产生的系统性误差D. 随机性的代表性误差5. 抽样成数是一个(A)A. 结构相对数B. 比例相对数C. 比较相对数D. 强度相对数6. 成数和成数方差的关系是(C)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大7. 整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)A. 全面调查B. 非全面调查C. 一次性调查D. 经常性调查8. 对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)A. 4%B. 4.13%C. 9.18%D. 8.26%9. 根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)A. 甲产品大B. 乙产品大C. 相等D. 无法判断10. 抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(B)A. 甲企业较大B. 乙企业较大C. 不能作出结论D. 相同四、多项选择题抽样调查中的抽样误差是(ABCDE)A. 是不可避免要产生的B. 是可以通过改进调查方法来避免的C. 是可以计算出来的D. 只能在调查结果之后才能计算E. 其大小是可以控制的2. 重复抽样的特点是(AC)A. 各次抽选相互影响B. 各次抽选互不影响C. 每次抽选时,总体单位数始终不变D 每次抽选时,总体单位数逐渐减少E. 各单位被抽中的机会在各次抽选中相等3. 抽样调查所需的样本容量取决于(ABE)A. 总体中各单位标志间的变异程度B. 允许误差C. 样本个数D. 置信度E. 抽样方法4. 分层抽样误差的大小取决于(BCD)A. 各组样本容量占总体比重的分配状况B. 各组间的标志变异程度C. 样本容量的大小D. 各组内标志值的变异程度E. 总体标志值的变异程度5. 在抽样调查中(ACD)A. 全及指标是唯一确定的B. 样本指标是唯一确定的C. 全及总体是唯一确定的D. 样本指标是随机变量E. 全及指标是随机变量五、名词解释1.抽样推断2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。
1关于简单随机抽样的方法,下列说法中错误的是( )A.要求总体的个数有限B.从总体中逐个抽取C.每个个体被抽到的可能性不一样,与先后顺序有关D.它是一种不放回抽样2下列抽样方法是简单随机抽样的是( )A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从整数集中逐个抽取10个分析是奇数还是偶数D.运动员从8个跑道中随机抽取一个跑道3用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性的大小关系是( )A.相等 B .“第一次被抽到”的可能性大 C .“第二次被抽到”的可能性大 D.无法比较 4为了了解某市高三毕业生升学考试中数学成绩的情况,从参加考试的学生中随机地抽查了80名学生的数学成绩进行统计分析,在这个问题中,80名学生的数学成绩的全体是( )A.总体B.个体C.从总体中抽取的一个样本D.样本容量5总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 43699728 01983204 9234 4935 8200 3623 48696938 7481A.08B.07C.02D.016为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是 位.7某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为 .8从60件产品中抽取5件进行检查,请用抽签法抽取产品,并写出抽样过程.D.若学生甲和学生乙在同一班,学生丙在另外一班,则甲、乙两人同时被抽中的可能性跟甲、丙两人同时被抽中的可能性一样5某工厂共有n 名工人,为了调查工人的健康情况,从中随机抽取20名工人作为调查对象,若每位工人被抽到的可能性为15,则n = . 6一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为6的样本,请从随机数表的倒数第5行(如下表,且表中下一行接在上一行右边)第10列开始,向右读取,直到取足样本,则抽取样本的号码是 .95 33 95 22 00 18 74 72 00 18 3879 58 69 32 81 76 80 26 92 82 8084 25 398现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?2.1.2 系统抽样1某电影院有50排座位,每排有60个座位,一次报告会坐满了听众,会后留下座号为18的所有听众50人进行座谈,这是运用了( )A.抽签法B.随机数法C.系统抽样D.有放回抽样 2现用系统抽样抽取了一个容量为30的样本,其总体中含有300个个体,则总体中的个体编号后,分成的组数是 ( )A.300B.30C.10D.不确定3为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本.则总体中应随机剔除的个体数目是()A.2B.4C.5D.64从某牛奶生产线上每隔30分钟抽取一袋牛奶进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么()A.①是系统抽样,②是简单随机抽样B.①是简单随机抽样,②是简单随机抽样C.①是简单随机抽样,②是系统抽样D.①是系统抽样,②是系统抽样5某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间隔一样的系统抽样方法确定所选的6个班级的编号可能是()A.6,16,26,36,46,56B.3,10,17,24,31,38C.4,11,18,25,32,39D.5,14,23,32,41,506下列抽样试验中,最适宜用系统抽样法的是()A.某市的4个区共有2 000名学生,4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中抽取50个入样C.从某厂生产的10个电子元件中抽取2个入样D.从某厂生产的20个电子元件中抽取5个入样7若总体中含有1 645个个体,采用系统抽样的方法从中抽取容量为35的样本,则编号后确定编号分为段,分段间隔k=,每段有个个体.8某校高三(1)班有学生56人,学生编号依次为01,02,03,…,56.现用系统抽样的方法抽取一个容量为4的样本,已知编号为06,34,48的同学在样本中,则样本中另一位同学的编号应该是.9将参加数学竞赛的1 000名学生编号如下:000,001,002,…,999,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,第一段编号为000,001,002,…,019,若在第一段随机抽取的一个号码为015,则抽取的第40个号码为.10某单位的在岗职工为620人,为了调查上班时从家到单位的路上平均所用的时间,决定抽取10%的职工调查这一情况,如何采用系统抽样抽取样本?能力提升1为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况,若用系统抽样方法,则抽样间隔和随机剔除的个数分别为()A.3,2B.2,3C.2,30D.30,22用系统抽样法(按等距离的规则)从160名学生中抽取容量为20的样本,将这160名学生从1到160编号.按编号顺序平均分成20段(1~8号,9~16号,…,153~160号),若第16段应抽出的号码为125,则第1段中用简单随机抽样确定的号码是()A.7B.5C.4D.33将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,94已知标有1~20号的小球20个,按下面方法抽样(按从小号到大号排序):(1)若以编号2为起点,采用系统抽样抽取4个球,则这4个球的编号的平均值为;(2)若以编号3为起点,采用系统抽样抽取4个球,则这4个球的编号的平均值为.5用系统抽样的方法从个体数为1 003的总体中抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性为.6一个总体中有100个个体,随机编号为00,01,02,...,99.依编号顺序平均分成10个小组,组号分别为1,2,3, (10)现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是.7某批产品共有1 564件,产品按出厂顺序编号,号码从1到1564,检测员要从中抽取15件产品作检测,请你给出一个系统抽样方案.8下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:120030=40;确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.2.1.3分层抽样1某城区有农民、工人、知识分子家庭共计2 000户,其中农民家庭1 800户,工人家庭100户,知识分子家庭100户.现要从中抽取容量为40的样本,以调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有()①简单随机抽样②系统抽样③分层抽样A.②③B.①③C.③D.①②③2某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样3某校高三(1)班有学生54人,(2)班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则(1)班和(2)班分别被抽取的人数是()A.8,8B.10,6C.9,7D.12,44某工厂生产A,B,C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,则样本容量n为()A.50B.60C.70D.805从某地区15 000位老人中按性别分层抽取一个容量为500的样本,调查其生活能否自理的情况如下表所示.则该地区生活不能自理的老人中男性比女性多的人数约为()A.60B.100C.1 500D.2 0006某商场有四类食品,其中粮食类、植物油类、动物类及果蔬类分别有40种、10种、30种、20种,现采用分层抽样的方法,从中随机抽取一个容量为20的样本进行食品安全检测,则抽取的动物类食品的种数是.7一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的可能性为112,则总体中的个体数为.8两个志愿者组织共有志愿者2 400人,现用分层抽样的方法,从所有志愿者中抽取一个容量为160的样本.已知从甲志愿者组织中抽取的人数为150,则乙志愿者组织中的人数有.9某学校有高一学生720人,高二学生700人,高三学生680人,现调查学生的视力情况,决定采用分层抽样的方法抽取一个容量为105的样本,则需从高三学生中抽取人.能力提升1某校现有高一学生210人,高二学生270人,高三学生300人.学校学生会用分层抽样的方法从这三个年级的学生中随机抽取几名学生进行问卷调查.如果从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为()A.10B.9C.8D.72某学校进行数学竞赛,将考生的成绩分成90分以下、90~120分、120~150分三种情况进行统计,发现三个成绩段的人数之比依次为5∶3∶1.现用分层抽样的方法抽取一个容量为m的样本,其中分数在90~120分的人数是45,则此样本的容量m的值为()A.75B.100C.125D.1353某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8B.11C.16D.104某校共有学生2 000名,各年级男、女生人数如下表所示:现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.24B.18C.16D.125防疫站对学生进行身体健康调查.红星中学共有学生1 600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是.6某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为.7某校500名学生中,有200人的血型为O型,有125人的血型为A型,有125人的血型为B型,有50人的血型为AB型.为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?8一个地区共有5个乡镇,共3万人,其人口比例为3∶2∶5∶2∶3,从这3万人中抽取一个300人的样本,分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关,则应采取什么样的抽样方法?并写出具体过程.。
第四章习题抽样调查一、填空题1. 抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。
2. 采用不重复抽样方法,从总体为N的单位中,抽取样本容量为n的可能样本个数为N(N-1)(N-2)……(N-N+1)。
3. 只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。
4. 参数估计有两种形式:一是点估计,二是区间估计。
5. 判别估计量优良性的三个准则是:无偏性、一致性和有效性。
6. 我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。
7. 常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。
8. 对于简单随机重复抽样,若其他条件不变,则当极限误差范围Δ缩小一半,抽样单位数必须为原来的4倍。
若Δ扩大一倍,则抽样单位数为原来的1/4。
9. 如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。
10. 在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。
二、判断题1. 抽样误差是抽样调查中无法避免的误差。
(√)2. 抽样误差的产生是由于破坏了随机原则所造成的。
(×)3. 重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。
(√)4. 在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。
(√)5. 抽样调查所遵循的基本原则是可靠性原则。
(×)6. 样本指标是一个客观存在的常数。
(×)7. 全面调查只有登记性误差而没有代表性误差,抽样调查只有代表性误差而没有登记性误差。
(×)8. 抽样平均误差就是抽样平均数的标准差。
(×)三、单项选择题1. 用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(C)A. 2倍B. 3倍C. 4倍D. 5倍2. 事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(D)A. 分层抽样B. 简单随机抽样C. 整群抽样D. 等距抽样3. 计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(B)A. 最小一个B. 最大一个C. 中间一个D. 平均值4. 抽样误差是指(D)A. 计算过程中产生的误差B. 调查中产生的登记性误差C. 调查中产生的系统性误差D. 随机性的代表性误差5. 抽样成数是一个(A)A. 结构相对数B. 比例相对数C. 比较相对数D. 强度相对数6. 成数和成数方差的关系是(C)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大7. 整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)A. 全面调查B. 非全面调查C. 一次性调查D. 经常性调查8. 对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)A. 4%B. 4.13%C. 9.18%D. 8.26%9. 根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)A. 甲产品大B. 乙产品大C. 相等D. 无法判断10. 抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(B)A. 甲企业较大B. 乙企业较大C. 不能作出结论D. 相同四、多项选择题抽样调查中的抽样误差是(ABCDE)A. 是不可避免要产生的B. 是可以通过改进调查方法来避免的C. 是可以计算出来的D. 只能在调查结果之后才能计算E. 其大小是可以控制的2. 重复抽样的特点是(AC)A. 各次抽选相互影响B. 各次抽选互不影响C. 每次抽选时,总体单位数始终不变D 每次抽选时,总体单位数逐渐减少E. 各单位被抽中的机会在各次抽选中相等3. 抽样调查所需的样本容量取决于(ABE)A. 总体中各单位标志间的变异程度B. 允许误差C. 样本个数D. 置信度E. 抽样方法4. 分层抽样误差的大小取决于(BCD)A. 各组样本容量占总体比重的分配状况B. 各组间的标志变异程度C. 样本容量的大小D. 各组内标志值的变异程度E. 总体标志值的变异程度5. 在抽样调查中(ACD)A. 全及指标是唯一确定的B. 样本指标是唯一确定的C. 全及总体是唯一确定的D. 样本指标是随机变量E. 全及指标是随机变量五、名词解释1.抽样推断2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。
抽样技术各类简答题参考答案习题一1.请列举一些你所了解的以及被接受的抽样调查。
略2. 抽样调查基础理论及其意义;答:大数定律,中心极限定理,误差分布理论,概率理论。
大数定律是统计抽样调查的数理基础,也给统计学中的大量观察法提供了理论和数学方面的依据;中心极限定理说明,用样本平均值产生的概率来代替从总体中直接抽出来的样本计算的抽取样本的概率,为抽样推断奠定了科学的理论基础;认识抽样误差及其分布的目的是希望所设计的抽样方案所取得的绝大部分的估计量能较好的集中在总体指标的附近,通过计算抽样误差的极限是抽样误差处于被控制的状态;概率论作为数学的一个分支而引进统计学中,是统计学发展史上的重要事件。
3.抽样调查的特点。
答:1)随机抽样;2)以部分推断总体;3)存在抽样误差,但可计算,控制;4)速度快、周期短、精度高、费用低;5)抽样技术灵活多样;6)应用广泛。
4.样本可能数目及其意义;答:样本可能数目是在容量为N的总体中抽取容量为n的样本时,所有可能被抽中的不同样本的个数,用A表示。
意义:正确理解样本可能数目的概念,对于准确理解和把握抽样调查误差的计算,样本统计量的抽样分布、抽样估计的优良标准等一系列理论和方法问题都有十分重要的帮助。
5. 影响抽样误差的因素;答:抽样误差是用样本统计量推断总体参数时的误差,它属于一种代表性误差,在抽样调查中抽样误差是不可避免的,但可以计算,并且可以被控制在任意小的范围内;影响抽样误差的因素:1)有样本量大小,抽样误差通常会随着样本量的大小而增减,在某些情形下,抽样误差与样本量大小的平方根成反比关系;2)所研究现象总体变异程度的大小,一般而言,总体变异程度越大则抽样误差可能越大;3)抽样的方式方法,如放回抽样的误差大于不放回抽样,各种不同的抽样组织方式也常会有不同的抽样误差。
在实际工作中,样本量和抽样方式方法的影响是可以控制的,总体变异程度虽不可以控制,但却可通过设计一些复杂的抽样技术而将其影响加以控制。
第一节一、简单随机抽样的概念一般地,设一个总体含有N个个体,从中(逐个不放回抽取)n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都(相等),就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N是(有限或总体个数不多)(3)简单随机样本是从总体中()抽取的。
(4)简单随机抽样是一种()的抽样。
(5)简单随机抽样的每个个体入样的可能性均为()思考?列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
二、抽签法和随机数法1、抽签法的定义。
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
【说明】抽签法的一般步骤:思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?2、随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。
怎样利用随机数表产生样本呢?阅读教材56-57【说明】随机数表法的步骤:思考:结合自己的体会说说随机数法有什么优缺点?【例题精析】例1:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?例2 :现有30个零件,需从中抽取10个进行检查,问如何采用简单随机抽样得到一个容量为10的样本?【达标训练】A组1.在简单抽样中,某一个个体被抽的可能是()A.与第几次抽样有关,第一次抽中的可能性大些。
B.与第几次抽样无关,每次抽中的可能性相等。
C.与第几次抽样有关,最后一次抽中的可能性较大。
抽样调查,习题答案篇一:《抽样技术》第四版习题答案第2章2.1 解:?1? 这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1。
100?2?这种抽样方法不是等概率的。
利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是抽中的编号为36~63的每个单元的入样概率都是2,而尚未被1001。
100?3?这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是1,所以这种抽样是等概率的。
10002.3 解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在大间为??z?_E近似服从标准正态分布,Y的195%的置信区_z。
1而V1?f2S中总体的方差S2是未知的,用样本方差s2来代替,置信区间n为,?_2。
?由题意知道,y?9.5,s?206,而且样本量为n?300,N?50000,代入可以求得v(y)?_1?f21?50000s??206?0.6825。
将它们代入上面的式子可得该市居民n300 日用电量的95%置信区间为??7.8808,11.1192??。
下一步计算样本量。
绝对误差限d和相对误差限r的关系为d?rY。
根据置信区间的求解方法可知____PyYrY1P1_2_rY根据正态分布的分位数可以知道P。
?Z1??,所以Vz?2?_rY??11?也就是S2nnNz??2?_222_rY1?。
22Nz/2S把y?9.5,s?206,r?10%,N?50000代入上式可得,n?86以总体比例P的195%的置信区间n?1可以写为pzp?z?,将p?0.35,n?200,N?10000代入可得置信区间为??0.2844,0.4156??。
2.5 解:利用得到的样本,计算得到样本均值为?2890/20?144.5,从而估计小区的平均文化支出为144.5元。
第九章 9.1 9.1.1A 级——基础过关练1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5 000名居民的阅读时间的全体是( )A .总体B .个体C .样本量D .从总体中抽取的一个样本【答案】A 【解析】根据题意,结合总体、样本、个体、样本容量的定义可知,5 000名居民的阅读时间的全体是总体.2.(2019年哈尔滨第三中学期末)总体由编号为01,02,03,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第3列开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )78 16 65 72 08 02 63 14 07 02 43 69 97 28 01 9832 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81A .08B .07C .02D .01【答案】B 【解析】从随机数表第1行的第3列开始由左到右依次选取两个数字中小于20的编号,依次为16,08,02,14,07,则第5个个体的编号为07.故选B .3.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .从实数集中逐个抽取10个数分析能否被2整除C .福利彩票用摇奖机摇奖D .规定凡买到明信片的最后几位号码是“6637”的人获三等奖【答案】C 【解析】简单随机抽样要求总体个数有限,从总体中逐个进行不放回抽样,每个个体有相同的可能性被抽到,分析可知选C .4.(2019年天津期末)已知m 个数的平均数为a ,n 个数的平均数为b ,用这m +n 个数的平均数为( )A .a +b 2B .a +b m +nC .ma +nb a +bD .ma +nb m +n【答案】D 【解析】m 个数的平均数为a ,n 个数的平均数为b ,则这m +n 个数的平均数为x =ma +nb m +n.故选D . 5.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.下列说法中正确的为( )①2 000名运动员的年龄是总体;②每个运动员的年龄是个体;③所抽取的20名运动员的年龄是一个样本;④样本量为2 000;⑤每个运动员被抽到的机会相等.A .①⑤B .④⑤C .③④⑤D .①②③⑤【答案】D 【解析】样本容量为20,④错误.①②③⑤正确.6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各随机抽取3名学生进行调查.【答案】②④ 【解析】①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.7.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的概率是________.【答案】15 【解析】简单随机抽样是等可能性抽样,每个个体被抽到的概率都是20100=15. 8.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.【答案】抽签法 【解析】三十个小球相当于号签,搅拌均匀后逐个不放回地抽取,这是典型的抽签法.9.某校2018级高一年级有50位任课教师,为了调查老师的业余兴趣情况,打算抽取一个样本量为5的样本,问此样本若采用抽签法将如何获得?解:首先,把50位任课教师编上号码:01,02,03,…,50.制作50个形状、大小均相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在一个不透明的箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,不放回,连续抽取5次,就得到一个容量为5的样本.10.某企业调查消费者对某产品的需求量,要从95户居民中抽选10户居民,用随机数法抽选样本时,应如何操作?附部分随机数表:85 38 44 05 2748 98 76 06 0216 08 52 99 7161 27 94 30 2192 98 02 77 6826 91 62 77 83解:第一步:将95户居民编号,每一户一个编号,即01~95.第二步:随机确定抽样的起点和抽样的顺序.如假定从第1行第6列开始读取,读数顺序从左往右,每次读两位.(横的数列称为“行”,纵的数列称为“列”).第三步:将编号范围内的数取出,编号范围外或重复的数去掉.得到的样本号码是:40,52,74,89,87,60,21,85,29,16.由此产生10个样本号码,编号为这些号码的居民家庭就是抽样调查的对象.B级——能力提升练11.下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个样本量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量【答案】B【解析】A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.12.某总样本量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个样本量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A .mN MB .mM NC .MN mD .N【答案】A 【解析】由随机抽样的意义可得x N =m M ,故x =mN M,即抽取的m 个个体中带有标记的个数估计为mN M. 13.(2020年荆门月考)某学校为了调查学生的学习情况,由每班随机抽取5名学生进行调查,若一班有50名学生,将每一学生编号从01到50,请从随机数表的第1行第5列(如表为随机数表的前2行)开始,依次向右,直到取足样本,则第五个编号为________.78 16 65 14 08 02 63 14 07 02 43 69 97 28 01 9832 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81【答案】43 【解析】根据应用随机数表取样本数据的特征知,依次抽取的5个数据分别为14,08,02,07,43.所以第5个编号为43.14.一个布袋中有6个同样质地的小球,从中不放回地抽取3个小球,则某一特定小球被抽到的可能性是________;第三次抽取时,剩余小球中的某一特定小球被抽到的可能性是________.【答案】12 14 【解析】因为简单随机抽样时每个个体被抽到的可能性为36=12,所以某一特定小球被抽到的可能性是12.因为此抽样是不放回抽样,所以第一次抽样时,每个小球被抽到的可能性均为16;第二次抽取时,剩余5个小球中每个小球被抽到的可能性均为15;第三次抽取时,剩余4个小球中每个小球被抽到的可能性均为14. 15.为制定本市高一、高二、高三年级学生校服的生产计划,有关部门准备对180名高中男生的身高作调查,现有三种调查方案:方案一:测量少年体校中180名男子篮球、排球队员的身高;方案二:查阅有关外地180名高中男生身高的统计资料;方案三:在本市的市区任选两所中学、郊区任选一所中学,在这三所学校有关的年级中,用抽签的方法分别选出20名男生,然后测量他们的身高.为了达到估计本市高中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?解:方案三比较合理,理由如下:方案一中,少年体校的男子篮球、排球的运动员的身高一定高于一般的情况,因此无法用测量的结果去估计总体的结果.方案二中,用外地学生的身高也不能准确地反映本地学生身高的实际情况.方案三中的抽样方法符合简单随机抽样,因此用方案三比较合理.16.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?(下面抽取了第5行到9行的随机数表)16 22 77 94 3949 54 43 54 8217 37 93 23 7887 35 20 96 4384 26 34 91 6484 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79解:(方法一,抽签法)①将这40件产品编号为01,02, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.(方法二,随机数法)①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第7行第9列的数8开始;③从选定的数8开始向右读下去,得到一个两位数字号码88,由于88>39,将它去掉;继续向右读,得到77,由于77>39,将它去掉;继续向右读,得到04,将它取出;继续下去,又得到21,33,25,12,06,01,16,19,10,至此,10个样本号码已经取满,于是,所要抽取的样本号码是04,21,33,25,12,06,01,16,19,10.C级——探索创新练17.从某批零件中抽取50个,然后再从这50个中抽取40个进行合格检查,发现合格产品有36个,则该产品的合格率为()A.36%B.72%C.90%D.25%【答案】C 【解析】3640×100%=90%. 18.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110【答案】D 【解析】由简单随机抽样的定义知,每个个体在每次抽取中都有相同的可能性被抽到,故五班在每次抽样中被抽到的可能性都是110.。
抽样调查习题答案【篇一:抽样调查习题及答案】ss=txt>1. 抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。
2. 采用不重复抽样方法,从总体为n的单位中,抽取样本容量为n的可能样本个数为n(n-1)(n-2)??(n-n+1)。
3. 只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。
4. 参数估计有两种形式:一是点估计,二是区间估计。
5. 判别估计量优良性的三个准则是:无偏性、一致性和有效性。
6. 我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。
7. 常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。
9. 如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。
10. 在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。
二、判断题3. 重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。
(√) 4. 在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。
(√)1. 用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(c)a. 2倍b. 3倍c. 4倍d. 5倍2. 事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(d)a. 分层抽样b. 简单随机抽样c. 整群抽样d. 等距抽样3. 计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(b)a. 最小一个 b. 最大一个 c. 中间一个 d. 平均值 4. 抽样误差是指(d)a. 计算过程中产生的误差b. 调查中产生的登记性误差c. 调查中产生的系统性误差 d. 随机性的代表性误差5. 抽样成数是一个(a)a. 结构相对数b. 比例相对数c. 比较相对数d. 强度相对数 6. 成数和成数方差的关系是(c)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大 7. 整群抽样是对被抽中的群作全面调查,所以整群抽样是(b)a. 全面调查b. 非全面调查c. 一次性调查d. 经常性调查8. 对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)a. 4% b. 4.13% c. 9.18% d. 8.26%9. 根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(b)a. 甲产品大b. 乙产品大c. 相等d. 无法判断10. 抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(b)a. 甲企业较大b. 乙企业较大c. 不能作出结论d. 相同四、多项选择题抽样调查中的抽样误差是(abcde)a. 是不可避免要产生的b. 是可以通过改进调查方法来避免的c. 是可以计算出来的d. 只能在调查结果之后才能计算e. 其大小是可以控制的 2. 重复抽样的特点是(ac)a. 各次抽选相互影响b. 各次抽选互不影响c. 每次抽选时,总体单位数始终不变 d 每次抽选时,总体单位数逐渐减少e. 各单位被抽中的机会在各次抽选中相等 3. 抽样调查所需的样本容量取决于(abe)a. 总体中各单位标志间的变异程度b. 允许误差c. 样本个数d. 置信度e. 抽样方法4. 分层抽样误差的大小取决于(bcd)a. 各组样本容量占总体比重的分配状况b. 各组间的标志变异程度c. 样本容量的大小d. 各组内标志值的变异程度e. 总体标志值的变异程度 5. 在抽样调查中(acd)a. 全及指标是唯一确定的b. 样本指标是唯一确定的c. 全及总体是唯一确定的d. 样本指标是随机变量e. 全及指标是随机变量五、名词解释 1.抽样推断 2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。
简单随机抽样习题及解答
一、名词解释
简单随机抽样 抽样比 设计效应
二、单选题
1、假设根据抽样方差公式确定的初始样本量为400,有效回答率为0.8,那么实际样本量应
为:( )
A 320 B 800 C 400 D 480
答案:B
2、已知某方案的设计效应为0.8,若计算得简单随机抽样的必要样本量为300, 则该方案
所需样本量为( )
A 375 B 540 C 240 D 360
答案:C
3、假设根据抽样方差公式确定的初始样本量为400,如现在要将抽样相对误差降低20%,
则样本量应为:( )
A 256 B 320 C 500 D 625
答案:D
三、多选题
1、简单随机抽样的抽样原则有( )
A 随机抽样原则
B 抽样单元入样概率已知
C 抽样单元入样概率相等
D 随意抽取原则
答案:ABC
2、影响样本容量的因素有:
A 总体大小
B 抽样误差
C 总体方差
D 置信水平
答案:ABCD
3、简单随机抽样的实施方法有( )
A 随机数法
B 抽签法
C 计算机抽取
D 判断抽取
答案:ABC
四、简答题
1、简述样本容量的确定步骤
2、简述预估计总体方差的方法
五、计算
1、某工厂欲制定工作定额,估计所需平均操作时间,从全厂98名从事该项作业的工人中随
机抽选8人,其操作时间分别为4.2,5.1,7.9,3.8,5.3,4.6,5.1,4.1(单位:分),试以
95%的置信度估计该项作业平均所需时间的置信区间(有限总体修正系数可忽略)。
2、某居民区共有10000户,现用抽样调查的方法估计该区居民的用水量。采用简单随机抽
样抽选了100户,得ý=12.5,s2=12.52。估计该居民区的总用水量95%的置信区间。若要求
估计的相对误差不超过20%,试问应抽多少户做样本?
(1)该区居民的平均用水量的置信区间:
该区居民的用水总量的95%置信区间:(1181,1319)
(2)
35.96)5.122.052.1296.1()(220YrSun
9643.95100Nnnn
3. 某县采用简单随机抽样估计粮食、棉花、大豆的播种面积,抽样单元为农户。根据以往
资料其变量的变异系数为
名称 粮食 棉花 大豆
变异系数 0.38 0.39 0.44
若要求以上各个项目的置信度为95%,相对误差不超过4%,需要抽取多少户?若用这一样
本估计粮食的播种面积,其精度是多少?
(1)
)04.6,98.3(
4356.036.20125.54356.0)(1897.0)9881(86527.1)1()(0125.51ˆ21
ys
fnsyv
ynyY
n
i
i
)19.13,81.11(
35.096.15.1235.0)(1239.0)01.01(10052.12)1()(5.12ˆ2
ys
fnsyv
yY
2
22
r
ct
n
名称 粮食 棉花 大豆
样本量 347 366 465
需要抽取465户
(2)
4. 从一叠单据中用简单随机抽样方法抽取了250张,发现其中有50张单据出现错误,试
以95%的置信度估计这批单据中有错误的比例。若已知这批单据共1000张,你的结论有何
变化?若要求估计的绝对误差不超过1%,则至少抽取多少张单据作样本?
2.025050nap
05.0025.096.1025.0)(000643.01)(d
ps
n
pq
pv
这批单据中有错误的比例95%的置信区间:(0.15,0.25)
已知这批单据共1000张,有错误的比例95%的置信区间:(0.16,0.24)
6147220dPQun
98.046538.0111ncr