北师大版八年级数学上第六章《一次函数》单元检测(1).docx
- 格式:docx
- 大小:65.01 KB
- 文档页数:5
第一张一、(1)点A在y轴右侧,距y轴6个单位长度,距x轴8个单位长度,则A点的坐标是,A点离原点的距离是。
(2)点(-3,2),(a,1)在函数1-y的图像上,则=kx(3)正比例函数的图像经过点(-3,5),则函数的关系式是。
(4)函数52与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是。
5)已知y与41成正比例,且当3时,6,写出y与x的函数关系式。
(6)写出下列函数关系式①速度60千米的匀速运动中,路程S与时间t的关系②等腰三角形顶角y与底角x之间的关系③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系④矩形周长30,则面积y与一条边长x之间的关系在上述各式中,是一次函数,是正比例函数(只填序号)(7)正比例函数的图像一定经过点。
(8)若点(3,a)在一次函数1a。
y的图像上,则==x3+(9)一次函数1-y的图像经过点(-3,0),则。
=kx(10)已知y与21成正比例,且当3时,6,写出y与x的函数关系式。
(11)函数2m x y +-=与14-=x y 的图像交于x 轴,则 。
二、(1)下面哪个点不在函数 —3的图像上( ).(-5,13) B.(0.5,2) C (3,0) D (1,1)(2)下列函数关系中表示一次函数的有( )①21 ②③x x y -+=21④t s 60=⑤x y 25100-=A.1个B.2个C.3个D.4个(3)下列函数中,y 随x 的增大而减小的有( )①12+-=x y ②x y -=6③31x y +-=④x y )21(-=A.1个B.2个C.3个D.4个三、在同一坐标系中作出21,x y 3=,34-=x y 的图像;在上述三个函数的图像中,哪一个函数的值先达到30?四、某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。
第六章一次函数单元综合测试一、选择题(每小题2分,共20分)25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( ) A.P =25+5tB.P =25-5tC.P =t525D.P =5t -25y =xx 3的自变量的取值X 围是( ) A.x ≥3B.x >3C.x ≠0且x ≠3D.x ≠0y =3x +1的图象一定通过( )A.(3,5)B.(-2,3)C.(2,7)D.(4,10)4.下列函数中,图象经过原点的有( ) ①y =2x -2 ②y =5x 2-4x ③y =-x 2④y =x65.某市自来水公司年度利润表如图,观察该图表可知,下列四个说法中错误的是( )6.下列函数中是一次函数的是( )A.y =2x 2-1 B.y =-x1 C.y =31+xD.y =3x +2x 2-1y =(m 2+2m )x 12-+m m+(2m -3)是x 的一次函数,则常数m 的值为( ) A.-2B.1C.-2或-1D.2或-1ax +by +c =0的图象,则下列条件中正确的为( )A.a =b ,c =0B.a =-b ,c =0C.a =b ,c =1D.a =-b ,c =1y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( )A.-3B.-23 C.9 D.-49 y =2x +1与y =-21x +6的图象的交点坐标是( ) A.(-1,-1)B.(2,5)C.(1,6)D.(-2,5)二、填空题(每小题3分,共24分)y =3x -6,当x =0时,y =______;当y =0时,x =______. y =11+x 中,自变量x 的取值X 围是______. 13.某某向打长途,设通话时间x (分),需付费yy 随x 的变化的图象,找出通话5分钟需付费______元.P (-3,2),那么它的解析式为______.y =-(k -1)x +5随着x 的增大,y 的值也随着增大,那么k 的取值X 围是______. y =1-5x 经过点(0,______)与点(______,0),y 随x 的增大而______.y =(m 2-4)x +(1-m )和y =(m -1)x +m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m =______.18.假定甲乙两人在一次赛跑中,路程S 与时间t 的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______米/秒.三、解答题(每小题7分,共56分)19.到某某的低速公路约240千米,骑自行车以每小时20千米匀速从出发,t 小时后离某某S 千米.(1)写出S 与t 之间的函数关系式; (2)画出这个函数的图象;(3)回答:①8小时后距某某多远?②出发后几小时,到两地距离相等?P ,它的纵坐标与横坐标的比值是-65. (1)求这个函数的解析式;(2)点P 1(10,-12)、P 2(-3,36)在这个函数图象上吗?为什么?y =34x -4的图象,并回答下面的问题: (1)求它的图象与x 轴、y 轴所围成图形的面积; (2)求原点到此图象的距离.y =kx +b 的图象经过点A 和点B.(1)写出点A 和点B 的坐标并求出k 、b 的值; (2)求出当x =23时的函数值. y =(2a +4)x -(3-b ),当a 、b 为何值时(1)y 随x 的增大而增大; (2)图象与y 轴交在x 轴上方; (3)图象过原点.A (1,3)、B (-2,0)、C (2,4)是否在同一条直线上,为什么?25.为发展电信事业,方便用户,电信公司对移动采用不同的收费方式,所使用的便民卡和如意卡在×市X 围内每月(30天)的通话时间x (分钟)与通话费y (元)的关系如图 所示:分别求出通话费y 1、y 2与通话时间x 之间的函数关系式.x (立方米),应交水费为y (元).(1)分别写出未超过7立方米和多于7立方米时,y 与x 的函数关系式;(2)如果某单位共有50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?单元测试二、11.-6,2 12.x ≠-1 13. 6 14.y =-32x 15.k <1 16.1,51, 减小 17.-1或2 18.100,甲,8三、19.(1)S =240-20t (2)略 (3)①80千米②t =620.(1)y =-65x (2)都不在 点的坐标代入函数式不成立 21.图略 (1)6 (2)51222.(1)k =-2,b =1 (2)-223.(1)a >-2,b 为任意数 (2)a ≠-2且b >3 (3)a ≠-2且b =3 24.在 略 25.y 1=51x +29 y 2=21x 26.(1)yx (0≤x ≤7) y =1.9(x -7)+8.4(x >7) (2)28。
北师大版八年级数学上册《一次函数》单元测试卷一、选择题1、下列函数:①y=–2x,②y=–3x2+1,③y=x–2,其中一次函数的个数有()A.0个B.1个C.2个D.3个2、一次函数y=2x-5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3、某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里4、随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为()A.33元B.36元C.40元D.42元5、若kb<0,且b﹣k>0,则函数y=kx+b的图象大致是()A.B.C.D.6、如图所示,y与x的关系式为()A.y=-x+120 B.y=120+xC.y=60-x D.y=60+x7、A,B两地相距20 km,甲、乙两人都从A地去B地,如图,l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系,下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是( )A.1 B.2 C.3 D.48、一次函数y=(m﹣2)x+3的图象如图所示,则m的取值范围是()A.m<2 B.0<m<2C.m<0 D.m>2二、填空题9、若点在一次函数的图像上,则代数式的值是__________.10、在平面直角坐标系,A(-2,0),B(0,3),点M在直线y=x 上,且SΔMAB=6,则点M 的坐标为_____.11、将直线y=2x+1向下平移3个单位长度后所得直线的解析式是____________.12、若点(n,n+3)在一次函数的图象上,则n=__.13、在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图所示,观察图象,可得小刚追上小明时离起点__________km;(第10题图)(第13题图)(第18题图)14、将一次函数的图象向上平移个单位后,当时,的取值范围是_________.15、已知为整数,且一次函数的图像不经过第二象限,则=__________.16、某市居民用水的价格是2.2元/立方米,设小煜家用水量为x(m3),所付的水费为y 元,则y关于x的函数表达式为______;当x=15时,函数值y是___,它的实际意义是______;若这个月小煜家付了35.2元水费,则这个月小煜家用了______m3的水.17、已知y=y1+y2,y1与x2成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4,则当x=3时,y的值为_________.18、如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC和BD表示,当他们行走3小时后,他们之间的距离为_____千米.三、解答题19、已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点的坐标;(2)求直线y=﹣3x+6与坐标轴围成的三角形的面积.20、已知如图直线y=2x+1与直线y=kx+6交于点P(2,5).(1)求k的值.(2)求两直线与x轴围成的三角形面积.21、我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费的办法收费.即一个月用水10吨以内(包括10吨)的用户,每吨收水费a元;一个月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图(1)求a的值,某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;22、已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.参考答案1、C2、B3、A4、C5、B6、A7、C8、A9、310、(3,)或(- 9,)11、y=2x-212、13、43.214、15、-316、y=2.2x33 用15m3的水需付水费33元1617、10.18、1.519、(1)A(2,0),B(0,6);(2)6.20、(1);(2).21、(1)1.5;12元;(2)2.y=2x-5.22、(1)y=kx+b(2)120吨(3)100吨【解析】1、①y=–2x是正比例函数,也是一次函数,②y=–3x2+1不是一次函数,③y=x–2是一次函数.故选C.2、分析:由直线的解析式得到k>0,b<0,利用一次函数的性质即可确定直线经过的象限.详解:∵y=2x-5,∴k>0,b<0,故直线经过第一、三、四象限.不经过第二象限.故选:B.点睛:此题主要考查一次函数的图象和性质,它的图象经过的象限由k,b的符号来确定.3、分析:直接利用函数图象进而分析得出符合题意跌答案.详解:A、小强乘公共汽车用了60-30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30-20=10(分钟),正确;C、公共汽车的平均速度是:15÷0.5=30(公里/小时),正确;D、小强从家到公共汽车站步行了2公里,正确.故选:A.点睛:此题主要考查了函数图象,正确利用图象得出正确信息是解题关键.4、分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:,解得:,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.5、分析:根据k,b的取值范围确定图象在坐标平面内的位置.详解:∵kb<0∴k、b异号∵b-k>0∴b>k∴b>0,k<0∴函数的图像为:.故选:B.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6、分析:根据三角形内角和为180°得出关系式.详解:根据三角形内角和定理可知:x+y+60=180,则y=-x+120,故选A.点睛:本题主要考查的就是三角形的内角和定理,属于基础题型.解答这个问题的关键就是明确三角形内角和定理.7、①l2与x轴的交点是(1,0),因此可得乙晚出发1小时。
北师大版八年级上册一次函数单元测试题班级姓名一.选择题(共12小题)1.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠12.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A B C D3.已知A(0,0),B(3,2)两点,经过A、B两点的图象的解析式为()A.y=3x B.y=x C.y=x D.y=x+14.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣45.函数y=x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣27.如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3 B.C.4 D.第7题图第8题图第9题图8.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣39.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.11.函数y1=|x|,.当y1>y2时,x的范围是()A.x<﹣1 B.﹣1<x<2 C.x<﹣1或x>2 D.x>212.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y =x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A.(22014,22014)B.(22015,22015)C.(22014,22015)D.(22015,22014)二.填空题(共6小题)13.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.14.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.15.如图,点A的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为.第15题图第17题图16.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第象限.17.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形O BC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.18.已知函数f(x)=1+,其中f(a)表示当x=a时对应的函数值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…f(100)= .三.解答题(共7小题)19.已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.20.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.21.在直角坐标系中,直线l1经过点(1,﹣3)和(3,1),直线l2经过(1,0),且与直线l1交于点A(2,a).(1)求a 的值;(2)A (2,a )可看成怎样的二元一次方程组的解?(3)设直线l 1与y 轴交于点B ,直线l 2与y 轴交于点C ,求△ABC 的面积.22.在平面直角坐标系系xOy 中,直线y=2x +m 与y 轴交于点A ,与直线y=﹣x +4交于点B (3,n ),P 为直线y=﹣x +4上一点.(1)求m ,n 的值;(2)当线段AP 最短时,求点P 的坐标.23.如图:直线y=kx+3与x 轴、 y 轴分别交于A 、B 两点,43 OA OB 点C(x,y)是直线y=kx+3上与A 、B 不重合的动点. (1) 求直线y=kx+3的解析式;(2) 当点C 运动到什么位置时△AOC 的面积是6;(3) 过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使△BCD 与△AOB 全等?若存在, 请求出点C 的坐标;若不存在,请说明理由.备用图。
北师大版八年级上第六章一次函数单元测试一、选择题(每空4分,计20分)1.如果点A (—2,a )在函数y=21x+3的图象上,那么a 的值等于 【 】 A 、—7 B 、3 C 、—1 D 、42.小明、小强两人进行百米赛跑,小明比小强跑得快,如果两人同时跑,小明肯定赢,现在小明让小强先跑若干米,图中的射线a 、b 分别表示两人跑的路程与小明追赶时间的关系,根据图象判断:小明的速度比小强的速度每秒快 【 】A 、1米B 、1.5米C 、2米D 、2.5米3.2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x 立方米,水费为y 元,则y 与x 的函数关系用图象表示正确的是【 】4. 如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量【 】A 小于3吨B 大于3吨C 小于4吨D 大于4吨 5.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有【 】A 、1个B 、2个C 、3个D 、4个 二、填空题(每空4分,计20分)6.请你写出一个经过点(1,1)的函数解析式 .7.在函数32+-=x y 中,当自变量x 满足 时,图象在第一象限. 8.中国电信宣布,从2001年2月1日起,县城和农村电话收费标准一样,在县内通话3分钟内的收费是0.2元,每超1分钟加收0.1元,则电话费y (元)与通话时间t (3≥t 分,t 为正整数)的函数关系是 ;9.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质: 甲:函数的图象经过第一象限; 乙:函数的图象经过第二象限; 丙:在每个象限内,y 随x 的增大而减小.请你根据他们的叙述构造满足上述性质的一个函数: 10. 水池中原有水100立方米,现在以每分钟16立方米的速度向水池中注水,则水池中的总水量V (立方米)与注水时间t (分钟)之间的关系 。
学生做题前请先回答以下问题问题1:平行于x轴的直线上的点____坐标相同;平行于y轴的直线上的点____坐标相同.问题2:关于x轴对称的两个点,横坐标______,纵坐标_______;关于y轴对称的两个点,横坐标______,纵坐标_______.问题3:平面直角坐标系中有一点P(a,b),若ab=0,那么点P的位置在________.一次函数综合测试(一)(北师版)一、单选题(共8道,每道12分)1.若正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=bx-k的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:一次函数的图象与性质2.已知点,且,则点P关于x轴对称的点Q在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:A解题思路:试题难度:三颗星知识点:坐标的对称3.已知点A的坐标为(-1,-3),AB所在直线与y轴垂直,BC所在直线与y轴平行,且点C到y轴的距离为4,则点B的坐标是( )A.(4,-3)B.(4,-3)或(-4,-3)C.(-3,4)D.(-3,4)或(-3,-4)答案:B解题思路:试题难度:三颗星知识点:平行于坐标轴的坐标特征4.如图,已知直线y=kx-3经过点M,则一次函数的图象与两坐标轴围成的三角形的面积为( )A.9B.C. D.答案:D解题思路:试题难度:三颗星知识点:坐标线段长互转5.已知关于x的一次函数y=(m-2)x+2m-4,若这个函数的图象与y轴负半轴相交,且与两个坐标围成的三角形面积为2.(1)m的值为( );A.1B.C. D.1或3答案:A解题思路:试题难度:三颗星知识点:坐标线段长互转6.(上接第5题)(2)直线y=2x和(1)中函数的图象与x轴围成的三角形面积为( )A. B.C. D.1答案:A解题思路:试题难度:三颗星知识点:坐标线段长互转7.正方形ABCD在平面直角坐标系中的位置如图所示,已知A点坐标为(0,a),B点坐标为(b,0),则C点的坐标为( )A.(a-b,b)B.(a-b,-b)C.(a+b,b)D.(a+b,-b)答案:C解题思路:试题难度:三颗星知识点:坐标与线段长的相互转化8.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.有下列四种说法:①一次购买种子不超过10千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折;④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元.其中正确的说法有( )A.1个B.2个C.3个D.4个答案:D解题思路:试题难度:三颗星知识点:一次函数应用题。
《一次函数》单元习题精选知识要点梳理1、一次函数的定义一次函数的一般形式:y=kx+b (k ,b 为常数k≠0),当b=0时y=kx (k 为常数k≠0)也叫正比例函数。
思考:y=(m -1)x 是一次函数,则m=___________2、一次函数的图象与性质(1) 一次函数y=kx+b (k ,b 为常数k≠0) 的图象是一条直线,与x 轴的交点是______,(2) 与y 轴的交点是_______思考:画一次函数图象的常用方法?如何画y=2x+3的图象?(2)正比例函数y=kx (k 为常数k≠0)的图象是经过点_______和(1,k )的一条直线。
(3)一次函数y=kx+b (k ,b 为常数k≠0)的性质:当k >0时,图象过_______象限,y 随x 的增大而______当k <0时,图象过_______象限,y 随x 的增大而_____当b >0时,图象与y 轴交于_____半轴, 当b <0时,图象与y 轴交于_____半轴, 当b=0时呢?3、一次函数解析式的求法 :常用方法:待定系数法一、选择题1、下列函数关系中表示一次函数的有( )①12+=x y ②xy 1=③x x y -+=21④t s 60=⑤x y 25100-= A.1个 B.2个 C.3个 D.4个2、下列函数中,图象经过原点的为( )A .y =5x +1B .y =-5x -1C .y =-5x D .y =51-x 3、下列各函数中,y 是x 的正比例函数的是( ) A 、y=3x 2 B 、y=3x C 、y=3x D 、y=113x +4、下列语句不正确的是( )A 、所有的正比例函数都是一次函数B 、一次函数的一般形式是y=kx+bC 、正比例函数和一次函数的图象都是直线D 、正比例函数的图象是一条过原点的直线5.下列函数(1)y=2x π (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=12-x 中,是一次函数的有( )A 、 4个B 、 3个C 、 2个D 、 1个6.点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于原点的对称点2P 的坐标是( )A 、 (-4,-8)B 、 (4,8)C 、 (-4,8)D 、 (4,-8)7.下面哪个点不在函数32+-=x y 的图象上( )A 、(-5,13)B 、(0.5,2)C 、(3,0)D 、(1,1)8.下面函数图象不经过第二象限的为 ( )A 、 y=3x+2B 、 y=3x -2C 、y=-3x+2D 、 y=-3x -29.已知P (x ,y )在第四象限,且|x|=3,|y|=5,则P 点坐标为( )A 、 (3,5)B 、 (-3,5)C 、 (3,-5)D 、 (-3,-5)10、若y=(m-2)x+(m 2-4)是正比例函数,则m 的取值是A 、2B 、-2C 、±2D 、任意实数11、y=28(3)m m x --是正比例函数,则m 的值为( )A 、±3B 、3C 、﹣3D 、任意实数12、若23y x b =+-是正比例函数,则b 的值是( )A. 0B. 23C. 23-D. 32- 13、下列给出的四个点中,不在直线y =2x-3上的是( )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5)14、直线b kx y +=经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是( )A.32+=x yB.232+-=x y C.23+=x y D.1-=x y 15、下列函数(1)y=πx (2)y=2x -1 (3)y=1x (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )A.4个B.3个C.2个D.1个16、一次函数b ax y -=中,0,0><b a ,则它的图象可能是( )A B C D17、如图,线段AB 对应的函数表达式为( )A .y=-32x+2B .y=-23x+2C .y=-23x+2(0≤x≤3) D .y=-23x+20(0<x<3)18、若m <0, n >0, 则一次函数y=mx -n 的图象不经过( )A.第一象限B. 第二象限C.第三象限D.第四象限19、已知函数y =3x +1,当自变量增加m 时,相应的函数值增加( )A .3m +1B .3mC .mD .3m -120下面图象中,关于x 的一次函数y =-mx -(m -3)的图象不可能是( )21、一次函数b kx y +=与k bx y +=在同一坐标系中的图象大致是 ( )A B C D22、一次函数y=ax+b ,ab <0,则其大致图象正确的是( )23、一次函数y=kx+b的图象经过(m,1)、(-1,m),其中m>1,则k、b ( )A.k>0且b<0 B.k>0且b>0 C.k<0且b<0 D.k<0且b>0 24、两条直线y1=ax+b与y2=bx+a在同一坐标系中的图象可能是下图中的( )二、填空题25、在函数① y=2x ②y=-3x+1 ③ y= x2中,x是自变量,y是x的函数,一次函数有_______ 正比例函数有______。
【知识建构】【本章测评】一次函数(时间100分钟,满分100分)一、选择题(每小题3分,共计30分)1.下列函数中,是一次函数的是( ) A .y =3x B .y =x 2+3 C .y =3x -1 D .y =11x - 解析:根据一次函数的定义解题,若两个变量x ,y 间的关系式可以表示成y =kx +b(k 、b 为常数,k ≠0的形式,则称y 是x 的一次函数,其中x 是自变量,y 是因变量.当b =0时,则y =kx(k ≠0)称y 是x 的正比例函数.函数是一次函数必须符合下列两个条件: (1)关于两个变量x ,y 的次数是1次; (2)必须是关于两个变量的整式. 答案:选C .2.下列函数中,不是正比例函数的是( 7.D ) A .(0)xy k k=> B .y=kx (k<0) C .y=kx (k>0)D .23(3)y x x x =-+解析:根据一次函数的定义解题,若两个变量x ,y 间的关系式可以表示成y =kx +b(k 、b 为常数,k ≠0的形式,则称y 是x 的一次函数,其中x 是自变量,y 是因变量.当b =0时,则y =kx(k ≠0)称y 是x 的正比例函数.本题中不是正比例函数的是23(3)y x x x =-+.故答案:选D . 3.一次函数y =23x +2中,当x =9时,y 值为( )A.-4 B.-2 C.6 D.8解析:把x=9带入y=23x+2,求得y=8,故选D.答案:选D.4.如果点P(-1,3)在过原点的一条直线上,那么这条直线是()A.y=-3x B.y=13x C.y=3x-1 D.y=1-3x解析:因为这条直线经过原点,所以可设其表达式为y=kx,把点P(-1,3)带入求出k=-3即可.答案:选A.5.当x逐渐增大,y反而减小的函数是()A.y=x B.y=0.001x C.y=13D.y=-5x解析:根据一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的性质:当k>0时,y随x的增大而增大.当k<0时,y随x的增大而减小.函数y=x中,k=1>0,y随x的增大而增大;函数y=0.001x中,k=0.001>0,y随x的增大而增大;函数y=31的图象是平行于x轴的一条直线;函数y= y=-5x中,k=-5<0,y随x的增大而减小.故选D.答案:选D.6.函数y=-mx(m>0)的图象是( )解析:因为函数y=-mx(m>0)为正比例函数,所以其图象经过原点.又因为m>0,则-m<0,所以y随x的增大而减小,其图象经过二、四象限.故选A.答案:选A.7.一次函数y=kx+b的图象经过第一、三、四象限,则( )A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<0解析:根据直线y=kx+b(k≠0)在坐标平面内的位置与k、b的关系:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交;b=0时,直线过原点;b<0时,直线与y 轴负半轴相交. 本题如图1所示:图1故选B . 答案:选B .8.已知变量y 与x 之间的函数关系的图象如图 2,它的解析式是()图2解析:从函数图象上可以看出,这条线段经过点(3,0)和(0,2),所以可以设其函数关系式为y=kx+2.再把点(3,0)带入求得k=32-,所以其函数关系式为y=32-x+2.且自变量的取值范围为0≤x ≤3.故选C .答案:选C .9.某市自来水公司年度利润表如图3,观察该图表可知,下列四个说法中错误的是( ) A .1996年的利润比1995年的利润增长-2145.33万元 B .1997年的利润比1996年的利润增长5679.03万元 C .1998年的利润比1997年的利润增长315.51万元 D .1999年的利润比1998年的利润增长-7706.77万元解析:从图象中获得的信息可得:1999年的利润比1998年的利润增长8652.01-(-945.30)=-9597.31.故选D .)30(232≤≤+-=x x y A 223+-=x y B)30(223≤≤+-=x x y C 232+-=x yD答案:选D .10.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( ) A .-3B .-23 C .9 D .-49解析:本题可先求函数y =2x +3与x 轴的交点,当y =0时,x =-23,即:交点(-23,0).再把交点(-23,0)代入函数y =3x -2b ,求得b =-49.故选D . 答案:选D .二、填空题(每空3分,共计21分)11.已知一次函数y =kx +5过点P (-1,2),则k =_________;函数y 随自变量x 的增大而_________.解析:把点P (-1,2)代入一次函数y =kx +5,求得k =3;因为k =3>0,所以函数y 随自变量x 的增大而增大答案:3 增大12.已知一次函数y =2x +4的图象经过点(m ,8),则m =_________.解析:要求m 的值,实质是求当y =8时,x =?把y =8代入一次函数y =2x +4,求得x =2,所以m =2.答案:213.已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数解析式是________. 解析:设所求的函数解析式为y=k(x+1)① 将x=5,y=12代入①,得 12=k(5+1),所以k=2. 答案:y=2x+214.某林场现有森林面积为1560平方千米,计划今后每年增加160平方千米的树林,那么森林面积y (平方千米)与年数x 的函数关系式为______,6年后林场的森林面积为______.解析:森林面积=每年增加的面积×年数+现有森林面积,所以y =160x +1560,6年后林场的森林面积为:160×6+1560=2520平方千米.答案:y =160x +1560 2520平方千米15.长沙向北京打长途电话,设通话时间x (分),需付电话费y (元),通话3分以内话费为3.6元.请你根据如图4所示的y 随x 的变化的图象,找出通话5分钟需付电话费____元.图4解析:要找出通话5分钟需付电话费,实质是求当x =5时,y =?从y 随x 的变化的图象中可以看出,当x =5时,y =6.答案:6三、解答题(本题共计49分)16.(6分)如图5下面有三个关系式和三个图象,哪一个关系式与哪一个图象能够表示同一个一次函数?(1)y =1-x 2; (2)a +b =3; (3)s=2t图5解析:(1)中,的图象是一次函数的图象,而y =1-x 2不是一次函数;(2)函数a +b =3可变形为b =-a +3,当a =3时,b =0,当a =0时,b =3,即:其图象经过点(3,0)和(0,3),所以符合要求;(3)先把函数s=2t 变形为t =21s ,当s=1时,t =21,即:其图象经过点(1,21),所以它不符合要求;答案:(2)符合要求17.(7分)已知y 是x 的一次函数 (1)根据下表写出函数表达式;分别把x =4,9,31代入(1)中所求关系式,求出相应的y 值.根据题意,设y =kx +b把(1,1),(3,5)代入上式,得 1=k +b① 5=3k +b②由①得,b =1-k 由②得,b =5-3k 所以1-k =5-3k 所以k =2 把k =2代入①,得b =-1 所以y =2x -1 当x =4时,y =7 当x =9时,y =17 当x =31时,y =61答案:y=2x-1,当x=4时,y=7 当x=9时,y=17当x=31时,y=6118.(8分)作出函数y=1-x的图象,并回答下列问题.(1)随着x值的增加,y值的变化情况是_________;(2)图象与y轴的交点坐标是_________,与x轴的交点坐标是_________;(3)当x_________时,y≥0.解析:因为函数y=1-x是一次函数,其图象是一条直线,所以可用两点确定一条直线的方法画这个函数的图象.取(0,1)、(1,0)较简便,如图.(1)根据一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.函数y=1-x中,k=-1<0,y随x的增大而减小;(2)求图象与y轴的交点坐标,只须把x =0代入y=1-x中,求出y即可;与x轴的交点坐标,只须把y =0代入y=1-x中,求出x即可;(3)从图象中可以看出当x≤1时,y≥0.答案:函数图象如图6所示:图6(1)因为k<0所以随着x的增加,y的值逐渐减小;(2)图象与y轴的交点坐标是(0,1),与x轴的交点坐标是(1,0);(3)当x≤1时,y≥0.19.(8分)小明和小亮进行百米赛跑,小明比小亮跑得快.如果两人同时起步,小明肯定赢.现在小明让小亮先跑若干米.如图7中l1,l2分别表示两人的路程与小明追赶时间的关系.图7(1)哪条线表示小明的路程与时间的关系? (2)小明让小亮先跑了多少米? (3)谁将赢得这场比赛?解析:(1)因为小明后跑,小亮先跑,所以当x =0时,小明跑的路程为0,故l 2 表示小明的路程与时间的关系;(2)观察图象可知,小明让小亮先跑了10米;(3) 观察图象可知,当S=100米时,小明的时间小于小亮的时间,所以小明将赢得这场比赛.答案:(1) l 2 表示小明的路程与时间的关系; (2)观察图象可知,小明让小亮先跑了10米; (3)小明将赢得这场比赛.20.(10分)某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y (元)与租书时间x (天)之间的关系如图8所示.图8(1)分别写出用租书卡和会员卡租书的金额y (元)与租书时间x (天)之间的函数关系式. (2)两种租书方式每天租书的收费分别是多少元?(x ≤100)解析:(1)观察图象可知,用租书卡的金额与租书时间之间的函数图象经过点(0,0),和(100,50),为正比例函数,可设其函数关系式为y =kx ,把点(100,50)代入求得k =21,即:函数关系式为y =21x ;用会员卡租书的金额与租书时间之间的函数图象是一次函数,可设其函数关系式为y =kx +b ,其图象经过点(0,20)和(100,50),代入可得b =20,k =103,即:函数关系式为y =103x +20;(2)用租书卡的方式租书,每天租书的收费为50÷100=0.5元;用会员卡的方式租书,每天租书的收费为(50-20)÷100=0.3元.答案:(1)用租书卡时,y 与x 间的关系式为y =kx 当x =100,y =50时,k =21 所以y =21x 用会员卡时,y 与x 间的关系式为y =kx +b 因为(0,20),(100,50)在直线上, 所以b =20. 100k +b =50. 因为b =20,所以k =103,所以y =103x +20 (2)用租书卡的方式租书,每天租书的收费为50÷100=0.5(元) 用会员卡的方式租书,每天租书的收费为(50-20)÷100=0.3(元)21:(10分)有一批货,如果月初出售,可获利1000元,并可将本利和再去投资,到月末获利1.5%;如果月末售出这批货,可获利1200元,但要付50元保管费.(1)请表示出这批货物的成本a (元)与月初出售到月末的获利额p (元)之间的关系; (2)请问这批货在月初还是月末售出好?【解析】本题为决策性问题,一般先列出算式或建立函数关系式(变量之间的关系式),通过算式大小的比较或确定函数最值来作出相应的决策.【答案】(1)月初出售到月末的可获利润:(认真审题,理解题意是关键) p=1000+(a+1000)×1.5%=0.015a+1015即这批货物的成本a (元)与月初出售到月末的获利额p (元)之间的关系为: p=0.015a+1015.(2)如果月末售出这批货可获利润: q=1200-50=1150(元),由p -q=0.015a+1015-1150=0.015×(a -9000),所以当a>9000时,月初出售好;当a=9000时,月初、月末出售一样;当a<9000时,月末出售好.。
八年级数学上册一次函数单元检测试卷A(无答案)北师大版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册一次函数单元检测试卷A(无答案)北师大版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册一次函数单元检测试卷A(无答案)北师大版(word版可编辑修改)的全部内容。
一次函数单元检测试卷A一、填空题:(每题3分共30分)1、下列说法中不正确的是_________。
①一次函数不一定是正比例函数 ②不是一次函数就一定不是正比例函数③正比例函数是特殊的一次函数 ④不是正比例函数就一定不是一次函数2、下列函数中,y 随x 的增大而增大的函数是____________。
①y=2-x ②y=—2x+1 ③ y=x —2 ④y= —x-23、下列各点中,在函数y=-2x+5的图象上的是___________。
①(0,―5) ②(0,5) ③(–2,–1) ④(4,―3) ⑤(2,1)4、若一次函数y=kx —4的图象经过点(–2,4),则k 等于_________。
5、如果一次函数y=kx+b 的图象不经过第一象限,那么k____0,b_____.6、一次函数y=kx+b 图象如图,那么k____0,b_____.7、一次函数y=kx+6,y 随x 的增大而减小,则这个一次函数的图象不经过第______象限。
8、已知3m 22x )2m m (y -+=,如果y 是x 的正比例函数,则m 的值为_________。
9、直线y=—2x+4与两坐标轴的交点坐标分别为A,B ,则三角形AOB 的面积为_________。
1.请你说一说下列各题中分别有几个变量?你能将其中某个变量看成另一个变量的函数吗?③第三题:2、3、2.请你想一想:下列各题中,哪些是函数关系,哪些不是函数关系:(1)在一定的时间内,匀速运动所走的路程和速度. (2)在平静的湖面上,投入一粒石子,泛起的波纹的周长与半径. (3)x +3与x .(4)三角形的面积一定,它的一边和这边上的高. (5)正方形的面积和梯形的面积. (6)水管中水流的速度和水管的长度. (7)圆的面积和它的周长. (8)底是定长的等腰三角形的周长与底边上的高.3. 如图是弹簧挂上重物后,弹簧的长度y (厘米)与所挂物体的质量x (千克)之间的变化关系图.根据图象,回答问题:(1)不挂重物时,弹簧长多少厘米?(2)当所挂物体的质量分别为5千克,10千克,15千克,20千克时弹簧的长度分别是多少厘米?(3)当物体的质量x 取0千克至20千克之间任一确定的值时,相应的弹簧的长度y 能确定吗?反过来,弹簧的长度y 是15~25之间一个确定的值,你能确定所挂重物的质量是多少吗?(4)弹簧长度y 可以看成是物体质量x 的函数吗?4、当你用温度计测量水的温度时,温度计水银柱的高度是随温度的变化而如何变化的?当你坐在匀速行驶的客车上时,汽车行驶的路程是随时间的增加而怎样变化的?在我们的生活中,变化无时不在.在报纸或电视上,你见过以下图形吗?图甲是某次比赛中四位选手的得分情况,图乙是某种股票某月内的收盘价的变化情况.请你想一想:(1)以上例子中都有一个变化过程,在这个变化过程中有几个变量,它们有关系吗?(2)图甲中,你能知道每个选手的得分吗?(3)图乙中,你能知道这个月内每一天的收盘价吗?哪一天的收盘价最高?哪一天的收盘价最低?收盘价是10元的有几天?§6.1.1一次函数一、选择题1.下列变量之间的关系中,具有函数关系的有( )①三角形的面积与底边 ②多边形的内角和与边数 ③圆的面积与半径④y =12-x 中的y 与xA.1个B.2个C.3个D.4个2.对于圆的面积公式S =πR 2,下列说法中,正确的为( )A.π是自变量B.R 2是自变量C.R 是自变量D.πR 2是自变量3.已知函数y =212+-x x ,当x =a 时的函数值为1,则a 的值为( )A.3B.-1C.-3D.14.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟内收2.4元,每加一分钟加收1元.则表示电话费y (元)与通话时间x (分)之间的函数关系正确的是( )二、填空题5.轮子每分钟旋转60转,则轮子的转数n 与时间t (分)之间的关系是__________.其中______是自变量,______是因变量.6.计划花500元购买篮球,所能购买的总数n (个)与单价a (元)的函数关系式为______,其中______是自变量,______是因变量.7.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为______.8.已知矩形的周长为24,设它的一边长为x ,那么它的面积y 与x 之间的函数关系式为______. 9.已知等腰三角形的周长为20 cm,则腰长y (cm)与底边x (cm)的函数关系式为______,其中自变量x 的取值范围是______.三、解答题10.如图所示堆放钢管.x11.如图,这是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)______时气温最高,______时气温最低,最高气温是______,最低气温是______. (2)20时的气温是______; (3)______时的气温是6 ℃;(4)______时间内,气温不断下降; (5)______时间内,气温持续不变.12.某市出租车起步价是7元(路程小于或等于2千米),超过2千米每增加1千米加收1.6元,请写出出租车费y (元)与行程x (千米)之间的函数关系式.13.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2 m/s ,到达坡底时小球的速度达到40 m/s.(1)求小球的速度v (m/s)与时间t (s)之间的函数关系式;(2)求t 的取值范围;(3)求3.5 s 时小球的速度;(4)求n (s)时小球的速度为16 m/s.§6.1.2一次函数一、填空题1.以下函数:①y =2x 2+x +1 ②y =2πr ③y =x1④y =(2-1)x ⑤y =-(a +x )(a 是常数) ⑥s =2t 是一次函数的是________.2.当m =________时,y =(m -1)x 2m 是正比例函数.3.当k =________时,y =(k +1)x 2k +k 是一次函数.二、写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比例函数?(1)小红去商店买笔记本,每个笔记本2.5元,小红所付买本款y (元)与买本的个数x (个)之间的关系. 答:_____________________________________ (2)等腰三角形的周长是18,若腰长为y ,底边长为x ,则y 与x 之间的关系.并求出x 的取值范围. 答:_____________________________________ (3)有一个长为120米,宽为110米的矩形场地准备扩建,使长增加x 米,宽增加y 米,且使矩形的周长为500米,则y 与x 的关系. 答_________________________________(4)据测试:拧不紧的水龙头每秒钟会滴下两滴水,每滴水约0.05毫升.小明同学在洗手时,没有把水龙头拧紧,当小明离开x 小时后水龙头滴了y 毫升水.y 与x 之间的关系.答:__________________________________ 三、设某种储蓄的月利率为0.16%,现存入a (a >0)元本金.(1)写出本息和y (元)与所存月数x (月)之间的函数关系式.(2)当a =20000时,计算10个月后的本息和是多少元?四、容积为800公升的水池内已贮水200公升,若每分钟注入的水量是15公升,设池内的水量为Q (公升),注水时间为t (分).(1)请写出Q 与t 的函数关系式. (2)注水多长时间可以把水池注满? (3)当注水时间为0.2小时时,池中水量是多少?五、暑假里,我校组织部分学生去某地参加数学素质杯夏令营.已知该校距目的地240千米,如果乘车去,汽车行驶的速度为每小时40千米.(1)汽车出发后1小时、2小时、3小时……汽车分别行驶了多少千米?请填入下表:路程为y 千米,你能写出y 与x 的关系式吗?(3)如果汽车行驶x 小时(0≤x ≤6),距目的地还有y ′千米,你能写出y ′与x 的关系式吗?(4)以上两个关系式中y 与x , y ′与x 的次数分别是多少?这两个关系式从形式上有什么共同特点?§6.2.1一次函数一、选择题1.下列函数中,是一次函数但不是正比例函数的为( )A.y =-2xB.y =-x 2C.y =-21-x D.y =xx 12-2.下列各关系中,符合正比例关系的是( ) A.正方形的周长P 和它的一边长a B.距离s 一定时,速度v 和时间t C.圆的面积S 和圆的半径r D.正方体的体积V 和棱长a3.若y =(m -1)x 22m -是正比例函数,则m 的值为( ) A.1B.-1C.1或-1D.2或-24.若函数y =(3m -2)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A.m >32 B.m <21 C.m =32 D.m =215.若5y +2与x -3成正比例,则y 是x 的( )A.正比例函数B.一次函数C.没有函数关系D.以上答案均不正确 二、填空题6.一次函数y =-7x +3中,k =______,b =______.7.已知y -2=kx (k ≠0),且当x =1时,y =7,则y 与x 之间的关系式为______.8.某油箱中有油20升,油从管道中均匀流出10分钟可流尽,则油箱中剩油量G (升)与流出时间t (分)之间的函数关系式为______,自变量t 的取值范围是______.9.某种国库券的年利率是2.45%,则存满三年的本息和y 与本金x 之间的函数关系式为______. 10.某林场现有森林面积为1560平方千米,计划今后每年增加160平方千米的树林,那么森林面积y (平方千米)与年数x 的函数关系式为______,6年后林场的森林面积为______. 三、解答题11.写出一次函数和正比例函数的表达式,并指出它们的区别和联系.12.等腰三角形的周长为12,底边长为y ,腰长为x ,求y 与x 之间的函数关系式,并写出自变量的取值范围.13.如图,在△ABC 中,∠B 与∠C 的平分线交于点P ,设∠A =x °,∠BPC =y °,当∠A 变化时,求y 与x 之间的函数关系式,并判断y 是不是x 的一次函数,指出自变量的取值范围.14.某商店出售某商品时,在进价的基础上加一定的利润,其数量x 与售价y 的关系如下表所示.请根据表中所提供的信息,列出y 与x 的函15.甲乙两地相距500千米,汽车从甲地以每小时80千米的速度开往乙地.(1)写出汽车离乙地的距离s (千米)与开出时间t (小时)之间的函数关系式,并指出是不是一次函数;(2)写出自变量的取值范围; (3)汽车从甲地开出多久,离乙地为100千米?§6.2.2一次函数一、填空题(1)一次函数的图象经过点(-1,2),且函数y的值随自变量x的增大而减小,请你写出一个符合上述条件的函数关系式________. (2)你能根据下列一次函数y=kx+b的草图,得到各图中k和b的符号吗?(3)若一次函数y=(2-m)x+m的图象经过第一、二、四象限时,m的取值范围是________,若它的图象不经过第二象限,m的取值范围是________.二、选择题(1)一水池蓄水20 m3,打开阀门后每小时流出5 m3,放水后池内剩下的水的立方数Q (m3)与放水时间t(时)的函数关系用图表示为()(2)两个受力面积分别为S A(米2)、S B(米2)(SA、S B为常数)的物体A、B,它们所受压强p(帕)与压力F(牛)的函数关系图象分别是射线l A、l B,则S A与S B的大小关系是()A.S A>S BB.S A<S BC.S A=S BD.不能确定(3)早晨,小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校走去,且v1>v2,则表示小强从家到学校的时间t(分钟)与路程S(千米)之间的关系是()三、已知一次函数y=-2x-2(1)画出函数的图象.(2)求图象与x轴、y轴的交点A、B的坐标. (3)求A、B两点间的距离.(4)求△AOB的面积.(5)利用图象求当x为何值时,y≥0.§6.3.1一次函数一、选择题1.函数y =kx 的图象经过点P (3,-1),则k 的值为( )A.3B.-3C.31 D.-31 2.下列函数中,图象经过原点的为( )A.y =5x +1B.y =-5x -1C.y =-5xD.y =51 x3.若一次函数y =kx +b 中,y 随x 的增大而减小,则( )A.k <0,b <0B.k <0,b >0C.k <0,b ≠0D.k <0,b 为任意数 4.当x =5时一次函数y =2x +k 和y =3kx -4的值相同,那么k 和y 的值分别为( )A.1,11B.-1,9C.5,11D.3,3 5.若直线y =kx +b 经过A (1,0),B (0,1),则( )A.k =-1,b =-1B.k =1,b =1C.k =1,b =-1D.k =-1,b =1 二、填空题6.把一个函数的自变量x 与对应的因变量y 的值分别作为点的______和______,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的______.7.作函数图象的一般步骤为______,______,______;一次函数的图象是一条______.8.直线y =3-9x 与x 轴的交点坐标为______,与y 轴的交点坐标为______.9.一次函数y =5kx -5k -3,当k =______时,图象过原点;当k ______时,y 随x 的增大而增大. 10.在一次函数y =2x -5中,当x 由3增大到4时,y 的值由______;当x 由-3增大到-2时,y 的值______. 三、解答题11.在同一直角坐标系中,画出函数y =51x ,y =x ,y =5x 的图象,然后比较哪一个与x 轴正方向所成的锐角最大,由此你得到什么猜想?再选几个图象验证你的猜想.12.已知直线y =(5-3m )x +32m -4与直线y =21x +6平行,求此直线的解析式.13.作出函数y =21x -3的图象并回答: (1)当x 的值增加时,y 的值如何变化? (2)当x 取何值时,y >0,y =0,y <0.14.作出函数y =34x -4的图象,并求它的图象与x 轴、y 轴所围成的图形的面积.§6.3.2一次函数一、填空题(1)若一次函数y=kx-3k+6的图象过原点,则k=_______,一次函数的解析式为________. (2)若y-1与x成正比例,且当x=-2时,y=4,那么y与x之间的函数关系式为________. (3)如图:直线AB是一次函数y=kx+b的图象,若|AB|=5,则函数的表达式为________.二、解答题1.汽车的油箱中的余油量Q(升)是它行驶的时间t(小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如下图:(1)根据图象,求油箱中的余油Q与行驶时间t的函数关系,并求出t的取值范围.(2)从开始算起,如果汽车每小时行驶40千米,当油箱中余油20升时,该汽车行驶了多少千米?2.一次函数的图象过点M(3,2),N(-1,-6)两点.(1)求函数的表达式;(2)画出该函数的图象.3.在直角坐标系中,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m,3),求这个函数的表达式,并求m的值.4.已知一次函数的图象过点A(2,-1)和点B,其中点B是另一条直线y=-21x+3与y轴的交点,求这个一次函数的表达式.5、知直线l与直线y=2x+1的交点的横坐标为2,与直线y=-x+8的交点的纵坐标为-7,求直线的表达式.§6.4一次函数1.如图:OA 、BA 分别表示甲乙两名学生运动的一次函数的图象,图中s 和t 分别表示运动的路程和时间,根据图象请你判断:(1)甲乙谁的速度比较快?为什么?答:__________________________________.(2)快者的速度比慢者的速度每秒快多少米?答:___________________________________. 2.一家小型放影厅盈利额y (元)同售票数x 之间的关系如图2所示,其中保险部门规定:超过150人时,要缴纳公安消防保险费50元.试根据关系图回答下列问题: (1)当售票数x 满足0<x ≤150时,盈利额y (元)与x 之间的函数关系式是________. (2)当售票数x 满足150<x ≤250时,盈利额y (元)与x 之间的函数关系式是________. (3)当售票数x 为__________时,不赔不赚;当售票数x 满足__________时,放影厅要赔本;若放影厅要获得最大利润200元,此时售票数x 应为____ ____. (4)当x 满足________时,此时利润比x =150时多. 3.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图3.结合图象回答: (1)农民自带的零钱有多少元? (2)降价前他每千克土豆出售的价格是多少? (3)降价后他按每千克0.8元将剩余土豆售完,这时他手中的钱(含备用零钱)是62元,问他一共带了多少千克土豆?4.某移动通讯公司开设两种业务.“全球通”:先缴50元月租费,然后每通话1分钟,再付0.4元,“神州行”:不缴纳月租费,每通话1分钟,付话费0.6元(通话均指市话).若设一个月内通话x 分钟,两种方式的费用分别为y 1和y 2元.(通话时不足1分钟的按1分钟计算,如3分20秒按4分钟收费) (1)写出y 1、y 2与x 之间的函数关系式. (2)在同一坐标系下做出以上两个函数的图象. (3)一个月内通话多少分钟,两种费用相同. (4)某人估计一个月内通话300分钟,应选择哪种合算?§6.5.1一次函数一、选择题1.在函数y =21x -1的图象上的点是( )A.(-3,-2)B.(-4,-3)C.(23,41)D.(5,21)2.如果一个正比例函数的图象经过点A (3,-1),那么这个正比例函数的解析式为( )A.y =3xB.y =-3xC.y =31xD.y =-31x3.函数y =3x -6和y =-x +4的图象交于一点,这一点的坐标是( )A.(-25,-23)B.(25,23)C.(23,25) D.(-2,3)4.已知直线y =-53x +6和y =x -2,则它们与y 轴所围成的三角形的面积为( )A.6B.10C.20D.12 5.直线y =kx +b 的图象如图所示,则( ) A.k =-32,b =-2B.k =32,b =-2C.k =-23,b =-2D.k =23,b =-2二、填空题6.函数y =5x -10,当x =2时,y =______;当x =0时,y =______.7.函数y =mx -(m -2)的图象经过点(0,3),则m =______.8.点(1,m ),(2,n )在函数y =-x +1的图象上,则m 、n 的大小关系是______.9.当b =______时,直线y =x +b 与直线y =2x +3的交点在y 轴上.10.一次函数的图象经过点A (-2,1)和点B (1,-1),它的解析式是______. 三、解答题11.已知一次函数y =(m -3)x +2m +4的图象过直线y =-31x +4与y 轴的交点M ,求此一次函数的解析式.12.某地长途客运公司规定,旅客可随身携带一定质量的行李.如果超过规定,则需购买行李票,行李票费用y (元)是行李质量x (千克)的一次函数,其图象如图所示. (1)写出y 与x 之间的函数关系式,并指出自变量x 的取值范围. (2)旅客最多可免费携带多少千克行李?13.直线y =kx +b 过点A (-1,5)且平行于直线y =-x .(1)求这条直线的解析式.(2)点B (m ,-5)在这条直线上,O 为坐标原点,求m 的值及△AOB 的面积.§6.5.2一次函数一、选择题(每小题2分,共20分)1.已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( )A.P =25+5tB.P =25-5tC.P =t525D.P =5t -252.函数y =xx 3-的自变量的取值范围是( ) A.x ≥3 B.x >3C.x ≠0且x ≠3D.x ≠03.函数y =3x +1的图象一定通过( )A.(3,5)B.(-2,3)C.(2,7)D.(4,10)4.下列函数中,图象经过原点的有( ) ①y =2x -2 ②y =5x 2-4x ③y =-x 2 ④y =x6A.1个B.2个C.3个D.4个 5.某市自来水公司年度利润表如图,观察该图表可知,下列四个说法中错误的是( )A.1996年的利润比1995年的利润增长-2173.33万元B.1997年的利润比1996年的利润增长5679.03万元C.1998年的利润比1997年的利润增长315.51万元D.1999年的利润比1998年的利润增长-7706.77万元6.下列函数中是一次函数的是( ) A.y =2x 2-1 B.y =-x1C.y =31+x D.y =3x +2x 2-17.已知函数y =(m 2+2m )x12-+m m +(2m -3)是x 的一次函数,则常数m 的值为( )A.-2B.1C.-2或-1D.2或-1 8.如图所示的图象是直线ax +by +c =0的图象,则下列条件中正确的为( ) A.a =b ,c =0 B.a =-b ,c =0 C.a =b ,c =1 D.a =-b ,c =19.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( )A.-3B.-23C.9D.-4910.函数y =2x +1与y =-21x +6的图象的交点坐标是( )A.(-1,-1)B.(2,5)C.(1,6)D.(-2,5)二、填空题(每小题3分,共24分)11.已知函数y =3x -6,当x =0时,y =______;当y =0时,x =______. 12.在函数y =11+x 中,自变量x 的取值范围是______.13.长沙向北京打长途电话,设通话时间x (分),需付电话费y (元),通话3分以内话费为3.6元.请你根据如图所示的y 随x 的变化的图象,找出通话5分钟需付电话费______元. 14.已知直线经过原点和P (-3,2),那么它的解析式为______.15.已知一次函数y =-(k -1)x +5随着x 的增大,y 的值也随着增大,那么k 的取值范围是______. 16.一次函数y =1-5x 经过点(0,______)与点(______,0),y 随x 的增大而______. 17.一次函数y =(m 2-4)x +(1-m )和y =(m -1)x +m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m=______.单元测试 一次函数18.假定甲乙两人在一次赛跑中,路程S 与时间t 的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______米/秒.三、解答题(每小题7分,共56分)19.北京到天津的低速公路约240千米,骑自行车以每小时20千米匀速从北京出发,t 小时后离天津S 千米.(1)写出S 与t 之间的函数关系式; (2)画出这个函数的图象; (3)回答:①8小时后距天津多远?②出发后几小时,到两地距离相等?20.作出函数y =34x -4的图象,并回答下面的问题:(1)求它的图象与x 轴、y 轴所围成图形的面积; (2)求原点到此图象的距离.21.如图一次函数y =kx +b的图象经过点A 和点B.(1)写出点A 和点B 的坐标并求出k 、b 的值; (2)求出当x =23时的函数值.22.为发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,所使用的便民卡和如意卡在×市范围内每月(30天)的通话时间x (分钟)与通话费y (元)的关系如图 所示:分别求出通话费y 1、y 2与通话时间x 之间的函数关系式.6.1.1参考答案1.①②③都含有两个变量,①中人均纯收入可以看成年份的函数,②中有效成分释放量是服用后的时间的函数,③中话费是通话时间的函数2.(1)(2)(3)(4)(7)(8)是函数关系,(5)(6)不是.3.(1)不挂重物时,弹簧长15 cm.(2)当所挂重物的质量分别是5千克、10千克、15千克、20千克时,弹簧的长度分别为17.5 cm 、20 cm 、22.5 cm 、25 cm(3)当x 取0~20之间任一确定值时,y 都惟一确定;反之也是.(4)y 可以看成是x 的函数. 4、(1)在每一个变化过程中都有两个变量,它们中的一个变量随另一个变量的变化而改变. (2)从图甲中可以读出每位选手的得分.(3)从图乙中可以得知这个月中每天的收盘价,这个月20日的收盘价最高,2日的收盘价最低,收盘价是10元的这个月中有六天. 6.1.2参考答案一、1.D 2.C 3\A 4.C二、5.n =60t ,t ,n 6.n =a500,a ,n7.y =0.2x +100 8.y =x (12-x ) 9.y =220x-,0<x <10 三、10.(1)1,3,6,…,2)1(+x x (2) 2)1(+x x 11.(1)16,4,10℃,-4℃ (2)8℃ (3)10(4)16-24 (5)12-1412.y =1.6(x -2)+713.(1)v =2t (2)0≤t ≤20 (3)7 (4)8 6.2.1参考答案一、1.②④⑤⑥ 2.-1 3.1二、(1)y =2.5x 是一次函数,也是正比例函数(2)y =9-21x (0<x <9)是一次函数,不是正比例函数(3)y =20-x 是一次函数,不是正比例函数 (4)y =360x 是一次函数,也是正比例函数 三、(1)y =a (1+0.16%x )或写成y =a +0.16%ax(2)当a =20000,x =10时,y =20320 四(1)Q =200+15t(2)注水40分钟可以把水池注满 (3)当注水0.2小时即12分钟时,池内有水380公升(3)y ′=240-40x (0≤x ≤6)(4)x 与y ,x 与y ′的次数都是1,都可以写成y =kx +b (k ,b 为常数,k ≠0)的形式. 6.2.2参考答案:一、1.C 2.A 3.B 4.C 5.B二、6.-7,3 7.y =5x +2 8.Q =20-2t ,0≤t ≤109.y =x +2.45%×3x 10.y =160x +1560,2520 三、11.略 12.y =12-2x (0<x <6)13.y =90+21x (0<x <180);y 是x 的一次函数 14.y =(8+0.4)x ,2115.(1)s =500-80t ,是一次函数 (2)0≤t ≤6.25 (3)t =5 6.3.1参考答案一、(1)y =-x +1,y =-2x ,y =-3x -1等,必须使k <0(2)①> > ②> < ③< > ④< <(3)m >2,m <0 二、(1)D (2)B (3)A 三、(1)如右图(2)A (-1,0)B (0,-2) (3)|AB |=5(4)S △AOB =1 (5)x ≤-16.3.2参考答案一、1.D2.C3.D4.A5.D 二、6.横坐标,纵坐标,图象7.列表,描点,连线,直线8.(31,0),(0,3) 9.-53,>0 10.由1增大到3,由-11增大到-9 三、11.略 12.y =21x -3 13.(1)增加 (2)x >6时,y >0,x =6时y =0,x <6时y <014.图略 6 6.4参考答案 一、(1)2 2x(2)y =-23x +1 (3)y =-2x +2二、1.(1)Q =60-5t ,0≤t ≤12(2)当Q =20时,t =8,汽车行驶了320千米. 2、(1)y =2x -4 (2)图略 3、y =-x +2 m 的值为-1 4、y =-2x +3 5、y =4x -36.5.1参考答案1.(1)由图象知甲8秒钟运动了64米,速度为8米/秒,乙8秒运动了64-12=52米,乙速度为6.5米/秒,所以甲的速度快. (2)甲比乙速度每秒快1.5米.2.(1)y =2x -200 (2)y =3x -400 (3)100 1≤x <100 200 (4)x ≥167,且x 是整数3.(1)自带10元零钱 (2)降价前售价为1.2元/千克(3)降价后共售土豆8.04662 =20千克 降价前已售30千克.所以共带50千克土豆. 4.(1)y 1=50+0.4x ,y 2=0.6x(2图略(3)令y 1=y 2得:50+0.4x =0.6xx =250,即一个月通话250分钟时,费用相同.(4)当x =300时,y 1=170,y 2=180 ∴选择“全球通”合算. 6.5.2参考答案一、1.B 2.D 3.B 4.C 5.B 二、6. 0,-10 7.-1 8.m >n 9. 310.y =-32x -31 三、11.y =-3x +412.(1)y =51x -6,x ≥30 (2)30 13.(1)y =-x +4 (2)m =9,20 单元测试参考答案: 一、1.B 2.A 3.C 4.B 5.D 6.C 7.B 8.A9.D 10.B二、11.-6,2 12.x ≠-1 13. 614.y =-32x 15.k <1 16.1,51, 减小 17.-1或2 18.100,甲,8三、19.(1)S =240-20t (2)略 (3)①80千米②t =620.图略 (1)6 (2)512 21.(1)k =-2,b =1 (2)-2 22.y 1=51x +29 y 2=21x。
初中数学试卷
桑水出品
八年级数学上学期一次函数单元测试
一、填空(每题3分共30分)
1.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是.
2.若函数y=-2x m+2是正比例函数,则m的值是.
3.已知一次函数y=kx+5的图象经过点(-1,2),则k=.
4.一次函数y=-2x+4的图象与x轴交点坐标是,与y轴交点坐标是,图象与坐标轴所围成的三角形面积是.
5.下列三个函数y=-2x,y=-1
4 x,y=( 2 - 3 )x共同点是(1);
(2);(3).
6.某种储蓄的月利率为0.15%,现存入1000元,则本息和y(元)与所存月数x之间的函数关系式是.
7.写出同时具备下列两个条件的一次函数表达式(写出一个即可).
(1)y随着x的增大而减小。
(2)图象经过点(1,-3)
8.某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表
质量x(千
克)
1 2 3 4 ……
售价y(元)3.60+0.20 7.20+0.20 10.80+
0.20
14.40+0.2 ……
由上表得y与x之间的关系式是.
9.某人用充值50元的IC卡从A地向B地打长途电话,按通话时间收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若此人第一次通话t分钟(3≤t≤45),则IC卡上所余的费用y(元)与t(分)之间的关系式是.
10.如图,已知A地在B地正南方3千米处,甲乙两人同时分别
从A、B两地向正北方向匀速直行,他们与A地的距离S(千米)与所
行的时间t(小时)之间的函数关系图象如图所示的AC和BD给出,当他们行走3小时后,他们之间的距离为千米.
二.选择题(每题3分,共30分)
11.下列函数(1)y=πx(2)y=2x-1(3)y=1
x(4)y=2-1-3x(5)y=x2-1中,
是一次函数的有()
(A)4个(B)3个(C)2个(D)1个
12.已知点(-4,y
1),(2,y
2
)都在直线y=-
1
2 x+2上,则y1y2大小关系是()
(A)y
1>y
2
(B)y
1
=y
2
(C)y
1
<y
2
(D)不能比较
13.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是()
(A)(B)(C)(D)
14.已知一次函数y=kx+b,当x增加3时,减小2,则k的值是()
(A)-(B)-(C)(D)
15.已知一次函数y=kx+b的图象如图所示,则k,b的符号是()
(A)k>0,b>0 (B)k>0,b<0
(C)k<0,b>0 (D)k<0,b<0
16.已知一次函数y=ax+4与y=bx-2的图象在x轴上相交于同一点,则的值是()
(A)4 (B)-2 (C)1
2(D)-
1
2
17.弹簧的长度y(cm)与所挂物体的质量x(kg)的关系是一次函数,图象如右图所示,则弹簧不挂物体时的长度是()
(A)9cm(B)10cm(C)10.5cm(D)11cm
18.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的
大致图象是()
(A)(B)(C)(D)19.如图,是一次函数y=kx+b的图象,则k和b的值分别为().
(A),-2 (B),-2
(C),2 (D),2
20. 已知直线y=2x+b与坐标轴围成的三角形的面积是4,则b的值是()
(A)4 (B)2 (C)±4 (D)±2
二、解答题(第21~25题,每题6分,第24,25题,每题8分,共46分)
21.在同一坐标系中,作出函数y=-2x与y=1
2 x+1的图象.
22.已知y-2与x成正比,且当x=1时,y=-6
(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a 23.已知函数y=(2m+1)x+m-3
(1)若函数图象经过原点,求m的值
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
24.已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y=1
2 x的图象
相交于点(2,a),求
(1)a的值
(2)k,b的值
(3)这两个函数图象与x轴所围成的三角形面积.
25.如图是某出租车单程收费y(元)与行驶路
程x(千米)之间的函数关系图象,根据图象回答下
列问题
(1)当行使8千米时,收费应为元
(2)从图象上你能获得哪些信息?(请写出2条)
①
②
(3)求出收费y(元)与行使x(千米)(x≥3)之
间的函数关系式
26.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的
目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a 元收费,超过的部分每立方米按c 元收费,该市某户今年9、10月份的用水量和所交水费如下表所示: 设某户每月用水量x (立方米),应交水费y (元)
求a ,c 的值
当x ≤6,x ≥6时,分别写出y 于x 的函数关系式
若该户11月份用水量为8立方米,求该户11月份水费是多少元?
27.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题. (1)农民自带的零钱是多少? (2)试求降价前y 与x 之间的关系式
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
月份
用水量(m 3) 收费(元)
9 5 7.5 10 9
27。