离散数学05任务
- 格式:docx
- 大小:106.48 KB
- 文档页数:8
第二篇集合论第四章集合及其运算4.1 集合的基本概念容提要4.1.1集合及其元素集合是一些确定的、作为整体识别的、互相区别的对象的总体。
组成集合的对象称为集合的成员或元素(member)。
通常用一对“{ }”把集合的元素括起来,表示一个集合。
元素对于集合的隶属关系是集合论的另一基本概念。
即当对象a是集合A的元素时,称元素a属于集合A,记为a∈A当对象a不是集合A的元素时,称a不属于A,记为⌝(a∈A)或a∉A对任何对象a和任何集合A,或者a∈A或者a∉A,两者恰居其一。
这正是集合对其元素的“确定性”要求。
定义4.1空集和只含有有限多个元素的集合称为有限集(finite sets),否则称为无限集(infinite sets)。
有限集合中元素的个数称为基数(cardina lit y)(无穷集合的基数概念将在以后重新严格定义)。
集合A的基数表示为|A|。
4.1.2 外延公理、概括公理和正规公理集合论依赖于三大基本原理:外延公理(extensionality axiom)、概括公理(comprehension axiom)和正规公理(regularity axiom)。
它们从根本上规定了集合概念的意义。
外延公理:两个集合A和B相等当且仅当它们具有相同的元素。
即对任意集合A,B,A=B ↔∀x(x∈A↔x∈B)外延公理事实上刻划了集合的下列特性:集合元素的“相异性”、“无序性”,及集合表示形式的不唯一性。
概括公理: 对任意个体域,任一谓词公式都确定一个以该域中的对象为元素的集合。
即对给定个体域U,对任意谓词公式P(x),存在集合S,使得S={x ⎢x∈U∧P(x)}概括公理规定了集合元素的确定性,以及集合的描述法表示的理论依据,它还规定了空集的存在性。
正规公理:不存在集合A1,A2, A3,…,使得…∈A3 ∈ A2 ∈A1正规公理的一个自然推论是:对任何集合A,{A}≠A(否则有…∈A∈A∈A)。
从而规定了集合{A}与A的不同层次性,因而正规公理也就规定了集合不能是自己的元素。
2016年秋国家开放大学《离散数学》形考4试题及答案(答案全部正确)04任务_0001试卷总分:100测试时间:0单项选择题一、单项选择题(共10 道试题,共100分。
)1.无向树T有8个结点,则T的边数为().A. 6B. 7 C. 8 D. 92.图G如图三所示,以下说法正确的是().A.{(a,d)}是割边B.{(a, d)}是边割集C. {(a, d) ,(b, d)}是边割集 D. {(b, d)}是边割集3. 设有向图(a)、(b)、(c)与(d)如图所示,则下列结论成立的是( ).A. (a)只是弱连通的B. (b)只是弱连通的C. (c)只是弱连通的D. (d)只是弱连通的4.如图一所示,以下说法正确的是().A. {(a, e)}是割边B. {(a,e)}是边割集C. {(a, e),(b,c)}是边割集 D. {(d,e)}是边割集5. 设G是有n个结点,m条边的连通图,必须删去G的()条边,才能确定G的一棵生成树.A. m-n+1B. m-n C. m+n+1D. n-m+16. 设G是连通平面图,有v个结点,e条边,r个面,则r= ().A. e-v+2B. v+e-2 C. e-v-2D.e+v+27. 设无向图G的邻接矩阵为,则G的边数为().A.6 B. 5C.4 D. 38.如图所示,以下说法正确的是 ( ).A. e是割点B. {a,e}是点割集C.{b, e}是点割集D.{d}是点割集9. 无向简单图G是棵树,当且仅当().A. G连通且边数比结点数少1B. G连通且结点数比边数少1C. G的边数比结点数少1D. G中没有回路.10.以下结论正确的是( ).A. 无向完全图都是欧拉图 B. 有n个结点n-1条边的无向图都是树C. 无向完全图都是平面图D. 树的每条边都是割边04任务_0002试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。
20春国家开放⼤学离散数学形考任务5资料参考答案离散数学形考任务5单项选择题
题⽬1
下列公式( A )为重⾔式.
选择⼀项:
A.
B.
C.
D.
题⽬2
下列等价公式成⽴的为( A ).
选择⼀项:
A. ┐P∧P┐Q∧Q
B. ┐P∨P Q
C. P∧Q P∨Q
D. ┐Q→P P→Q
题⽬3
下列等价公式成⽴的为( D ).
选择⼀项:
A. Q→(P∨Q)┐Q∧(P∨Q)
B. ┐P∧┐Q P∨Q
C. ┐P∨(P∧Q)Q
D. P→(┐Q→P)┐P→(P→Q)
题⽬4
下列公式中( C )为永真式.
选择⼀项:
A.
B.
C.
D.
题⽬5
前提条件的有效结论是( C ).
选择⼀项:
A. ┐P
B. P
C. ┐Q
D. Q
题⽬6
设命题公式G:,则使公式G取真值为1的P,Q,R赋值分别是( B ).选择⼀项:
A. 0, 0, 0
B. 1, 0, 0
C. 0, 1, 0
D. 0, 0, 1
题⽬7
设个体域D是整数集合,则命题的真值是( C ).选择⼀项:
A. F
B. 不确定
C. T
D. 以上说法都不是
题⽬8
设个体域为整数集,则公式的解释可为( A ).选择⼀项:
A. 对任⼀整数x存在整数y满⾜x+y=0
B. 存在⼀整数x对任意整数y满⾜x+y=0
C. 存在⼀整数x有整数y满⾜x+y=0
D. 任⼀整数x对任意整数y满⾜x+y=0
题⽬9。
习题5.11.设A=⎨a,b,c⎬,B=⎨1,2,3⎬,试说明下列A到B二元关系,哪些能构成A到B的函数?⑴f1=⎨<a,1>,<a,2>,<b,1>,<c,3>⎬⑵f2=⎨<a,1>,<b,1>,<c,1>⎬⑶f3=⎨<a,2>,<c,3>⎬⑷f4=⎨<a,3>,<b,2>,<c,3>,<b,3>⎬⑸f5=⎨<a,2>,<b,1>,<b,2>⎬解:⑴不能构成函数。
因为<a,1>∈f1且<a,2>∈f1⑵能构成函数⑶不能构成函数。
因为dom f3≠A⑷不能构成函数。
因为<b,2>∈f4且<b,3>∈f4⑸能构成函数。
2.试说明下列A上的二元关系,哪些能构成A到A的函数?⑴A=N(N为自然数集合),f1=⎨<a,b>| a∈A∧b∈A∧a+b<10⎬⑵A=R(R为实数集合),f2=⎨<a,b>| a∈A∧b∈A∧b=a2⎬⑶A=R(R为实数集合),f3=⎨<a,b>| a∈A∧b∈A∧b2=a⎬⑷A=N(N为自然数集合),f4=⎨<a,b>| a∈A∧b∈A∧b为小于a的素数的个数⎬⑸A=Z(Z为整数集合),f5=⎨<a,b>| a∈A∧b∈A∧b=|2a|+1⎬解:⑴不能构成函数。
由于1+1<10且1+2<10,所以<1,1>∈f1且<1,2>∈f1。
⑵能构成函数。
⑶不能构成函数。
由于12=1且(-1)2=1,所以<1,1>∈f3且<1,-1>∈f3。
⑷能构成函数。
⑸能构成函数。
3. 回答下列问题。
⑴设A=⎨a,b⎬,B=⎨1,2,3⎬。
求B A,验证|B A|= |B||A|。
第十四章部分课后习题参考答案5、设无向图G有10条边,3度与4度顶点各2个,其余顶点的度数均小于3,问G至少有多少个顶点?在最少顶点的情况下,写出度数列、厶(G)、.(G)。
解:由握手定理图G的度数之和为:2 10=203度与4度顶点各2个,这4个顶点的度数之和为14度。
其余顶点的度数共有6度。
其余顶点的度数均小于3,欲使G的顶点最少,其余顶点的度数应都取2,所以,G至少有7个顶点,出度数列为3,3,4,4,2,22 .1(G) = 4「(G) = 2 .7、设有向图D的度数列为2, 3, 2, 3,出度列为1, 2,1,1,求D的入度列,并求厶(D),、:(D),:(D)「.(D),.厂(D),解:D的度数列为2, 3, 2, 3,出度列为1, 2, 1, 1, D的入度列为1,1,1,2..:(D) =3,、(D) =2, :(D) =2,、• (D) = 1,.厂(D) = 2,、_(D) = 18设无向图中有6条边,3度与5度顶点各1个,其余顶点都是2度点,问该图有多少个顶点?解:由握手定理图G的度数之和为:2 6=12设2度点x个,则3 1 5 1 2x =12 , x=2,该图有4个顶点.14、下面给出的两个正整数数列中哪个是可图化的?对可图化的数列,试给出3种非同构的无向图,其中至少有两个时简单图。
(1) 2,2,3,3,4,4,5 (2) 2,2,2,2,3,3,4,4解:(1) 2+2+3+3+4+4+5=23 是奇数,不可图化;⑵2 + 2+2+2+3+3+4+4=16,是偶数,可图化;18、设有3个4阶4条边的无向简单图G1、G2、G3,证明它们至少有两个是同构的。
证明:4阶4条边的无向简单图的顶点的最大度数为3,度数之和为8,因而度数列为2, 2, 2, 2;3, 2, 2, 1; 3, 3, 1, 1。
但3, 3, 1, 1对应的图不是简单图。
所以从同构的观点看,4阶4条边的无向简单图只有两个:所以,G i 、G 2、G 3至少有两个是同构的。
离散数学(第五版)清华大学出版社第5章习题解答5.1 A:③; B:⑥; C:⑧; D:⑩; E:⑨分析S 为n 元集,那么S×S有n2个元素.S 上的一个二元运算就是函数n2n2f:S×S→S.这样的函数有n 个.因此{a,b}上的二元运算有n =16个.下面说明通过运算表判别二元运算性质及求特导元素的方法.1 °交换律若运算表中元素关于主对角线成对称分布,则该运算满足交换律.2 °幂等律设运算表表头元素的排列顺序为x1,x2,Lxn,如果主对角线元素的排列也为x1,x2,Lxn,则该运算满足幂等律.其他性质,如结合律或者涉及到两个运算表的分配律和吸收律,在运算表中没有明显的特征,只能针对所有可能的元素x,y,z等来验证相关的算律是否成立.3 °幺元e设运算表表头元素的排列顺序为x1.,x2,Lxn,如果元素xi所在的行和列的元素排列顺序也是x1,x2,Lxn,则xi为幺元.4 °零元θ.如果元素xi所在的行和列的元素都是xi,则xi是零元.5 °幂等元.设运算表表头元素的排列顺序为x1,x2,Lxn,如果主对角线上第i个元素恰为xii∈{1,2,L,n}那么xi是幂等元.易见幺元和零元都是幂等元.6 °可逆元素及其逆元.设xi为任意元素,如果xi所在的行和列都有幺元,并且这两个幺元关于主对角线成对称分布,比如说第i行第j列和第j行第i列的两个位置,那么xj与xi互为逆元.如果xi所在的行和列具有共同的幺元,则幺元一定在主对角线上,那么xi的逆元就是xi自己.如果xi所在的和地或者所在的列没有幺元,那么x 不是可逆元素.不难看出幺元e一定是可逆元素,且e−1=e;而i零元θ不是可逆元素.以本题为例,f1,f2,f3的运算表是对称分布的,因此,这三个运算是可交换的,62而f4不是可交换的.再看幂等律.四个运算表表头元素排列都是a,b,其中主对角线元素排列为a,b的只有f4,所以, f4遵从幂等律.下面考虑幺元.如果某元素所在的行和列元素的排列都是a,b,该元素就是幺元.不难看出只有f2中的a满足这一要求,因此,a 是f2的幺元,其他三个运算都不存在幺元.最后考虑零元.如果a所在的行和列元素都是a,那么a就是零元;同样的,若b所在的行和列元素都是b,那么b 就是零元.检查这四个运算表,f1中的a满足要求,是零元,其他运算都没有零元.在f4的运算表中,尽管a和b的列都满足要求,但行不满足要求.因而f4中也没有零元.5.2 A:①; B:③; C:⑤; D:⑦; E:⑩分析对于用解析表达式定义的二元运算°和*,差别它们是否满足交换律,结合律,幂等律,分配律和吸收律的方法总结如下:任取x,y,根据°运算的解析表达式验证等式xoy=yox是否成立.如果成立°运算就满足交换律.2 ° °运算的地合律任取x,y,z根据°运算的解析表达式验证等式(xoy)oz=xo(yoz)是否成立. 如果成立, °运算就是可结合的.3 ° °运算的幂等律任取x,根据°运算的解析表达式验证等式xox=x是否成立.如果成立,°运算满足幂等律.4 ° °运算对*运算的分配律任取x,y,z , 根据°和* 运算的解析表达式验证等式xo(y*z)=(xoy)*(xoz)和(y*z)ox=(yox)*(zox)是否成立。
国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩 = 形成性考核×30% + 终结性考试×70%形考任务1单项选择题题目1若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:A. 传递B. 对称C. 自反和传递D. 自反题目4设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( ).选择一项:A. {1, 2, 3, 5}B. {4, 5, 6, 7}C. {2, 3, 4, 5}D. {1, 2, 3, 4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A. 1B. 3C. 2D. 0题目6集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:A. 不是对称的B. 反自反C. 不是自反的D. 传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A. 3B. 2C. 8D. 6题目9设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次。
离散数学作业5
离散数学图论部分形成性考核书面作业
本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业.
要求:将此作业用A4纸打印出来,并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分.作业应手工书写答题,字迹工整,解答题要有解答过程,完成后上交任课教师(不收电子稿).
一、填空题
1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 .
2.设给定图G (如右由图所示),则图G 的点割集是
{f}{e,c} .
3.设G 是一个图,结点集合为V ,边集合为E ,则
G 的结点 度数之和 等于边数的两倍.
4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 .
5.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 ︱V ︱ ,则在G 中存在一条汉密尔顿路.
6.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W<|S| .
7.设完全图K n 有n 个结点(n 2),m 条边,当 n
为奇数 时,K n 中存在欧拉回路.
8.结点数v 与边数e 满足 e= v -1 关系的无向连通图就是树.
9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树.
10.设正则5叉树的树叶数为17,则分支数为i = 4 .
姓 名: 学 号: 得 分: 教师签名:
二、判断说明题(判断下列各题,并说明理由.)
1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.
答:错误。
应叙述为:“如果图G是无向连通图,且其结点度数均为偶数,则图G存在一条欧拉回路。
”
2.如下图所示的图G存在一条欧拉回路.
答:错误。
因为图中存在奇数度结点,所以不存在欧拉回路。
3.如下图所示的图G不是欧拉图而是汉密尔顿图.
G
答:正确。
因为有4个结点的度数为奇数,所以不是欧拉图;而对于图中任意点集V中的非空子集1V,都有)(1VGP V1。
其中)(1VGP是从图中删除1V结点及其关联的边。
4.设G是一个有7个结点16条边的连通图,则G为平面图.
答:错误。
若G是连通平面图,那么若63,3vev就有,而16>3×7-6,所以不满足定理条件,叙述错误。
5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.
答:正确。
因为连通平面图满足欧拉公式。
即:2rev。
由此题条件知6-11+7=2成立。
三、计算题
1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试
(1) 给出G的图形表示;(2) 写出其邻接矩阵;
(3) 求出每个结点的度数;(4) 画出其补图的图形.
2.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;
(3)求出G权最小的生成树及其权值.
3.已知带权图G如右图所示.
(1) 求图G的最小生成树;(2)计算该生成树的权值.
4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.
四、证明题
1.设G 是一个n 阶无向简单图,n 是大于等于3的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.
证明:设a 为G
中任意一个奇数度顶点,由G 定义,a
仍为G 顶点,为区分起见,记为a ’, 则deg(a)+deg(a ’)=n-1, 而n 为奇数,则a ’必为奇数度顶点。
由a 的任意性,容易得知结论成立。
2.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2
k 条边才能使其成为欧拉图.
证明:由定理推论知:在任何图中,度数为奇数的结点必是偶数个,则k 是偶数。
又由欧拉图的充要条件是图G 中不含奇数度结点。
因此,只要在每对
奇数度结点间各加一条边,使图G的所有结点的度数变为偶数,成为欧拉图。
故
最少要加2 k 条边才能使其成为欧拉图。