九年级月考数学试卷(10月)
- 格式:pdf
- 大小:604.10 KB
- 文档页数:5
山东省日照市东港区海曲中学2024-2025学年九年级上学期10月月考数学试卷一、单选题1.一元二次方程23x x =的解为( )A .0x =B .3x =C .0x =或3x =D .0x = 且3x = 2.把抛物线23y x =向左平移2个单位长度,再向上平移5个单位长度,得到的抛物线的解析式为( )A .2)3(25y x =+-B .23(5)2y x =++C .23(2)5y x =-+D .23(2)5y x =++3.抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( )A .14-B .14 C .4- D .44.若关于x 的一元二次方程(k +2)x 2+3x +k 2-k -6=0必有一根为0,则k 的值是( ) A .3 或-2 B .-3或2 C .3 D .-25.对于二次函数())41(3y x x =+-下列说法正确的是( )A .图象开口向下B .与x 轴交点坐标是()1,0和()3,0-C .x <1时,y 随x 的增大而减小D .图象的对称轴是直线x =−1 6.已知m ,n 是方程220x x --=的两个根,则代数式223m m n --的值等于( ) A .3- B .3 C .5 D .5-7.若点()12,A y 、()23,B y 、()31,C y -三点在二次函数24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .321y y y >> 8.运动员某次训练时,推出铅球后铅球在空中的飞行路线可以看作是抛物线的一部分(如图).铅球在空中飞行的竖直高度y (单位:m )与水平距离x (单位:m )近似地满足函数关系2y ax bx c =++(a 、b 、c 为常数,0a ≠).该函数的图象与y 轴交于点()0,1.8A ,顶点为()4,3.4B ,下列说法错误的是( )A .0.1a =-B .该铅球飞行到最高点时铅球离y 轴的水平距离是4mC .铅球在运动过程中距离地面的最大高度是3.4mD .此次训练,该铅球落地点离y 轴的距离小于9m9.(0)y ax b ab =+≠不经过第三象限,那么23y ax bx =++的图象大致为 ( ) A . B .C .D . 10.2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为x ,则可列方程为( )A .600(12)2850x +=B .2600(1)2850x +=C .2600600(1)600(1)2850x x ++++=D .22850(1)600x -=11.如图,正方形OABC 的顶点B 在抛物线2y x =的第一象限的图像上,若点B 的纵坐标是横坐标的2倍,则对角线AC 的长为( )A .2B .C .D 12.二次函数()20y ax bx c a =++≠的图象如图所示.下列结论:①0abc <;②<0a b c -+;③m 为任意实数,则2a b am bm +>+;④30a c +<;⑤若221122ax bx ax bx +=+且12x x ≠,则124x x +=,其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题13.若y 与x 的函数()2m 1y m 1x +=-+3x 是二次函数,则m =.14.抛物线2243y x x =--,当14x -≤≤时,y 的取值范围是.15.某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x (元)之间满足函数关系式5550y x =-+,若要求销售单价不得低于成本,为了每月所获利润最大,该商品销售单价应定为元.16.二次函数2y ax bx c =++的部分图象如图所示,则方程2(3)(3)2a x b x c ++++=的根是 .三、解答题17.用适当方法解下列方程:(1)()2346x x x +=+(2)23520x x +-=18.已知关于x 的一元二次方程24250x x m --+=有两个实数根.(1)求实数m 的取值范围;(2)若1x ,2x 是该方程的两个根,且满足212126x x x x m ++=+,求m 的值.19.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示).设矩形的一边AB 的长为x 米(要求AB AD <),矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(2)要想使花圃的面积最大,AB 边的长应为多少米?20.如图,已知二次函数212y ax x c =-+经过点()3,0B 和点C 0,−3 ,(1)求该二次函数的解析式;(2)如图,若一次函数2y kx b =+经过B 、C 两点,直接写出不等式22ax x c kx b -+<+的解;(3)点E 是抛物线的对称轴上一点,当AE CE +的值最小时,求点E 的坐标.21.如图,已知抛物线2y x bx c =++经过()10A -,、()30B ,两点.(1)求抛物线的解析式和顶点坐标;(2)当03x <<时,求y 的取值范围;(3)点P 为抛物线上一点,若10PAB S =V ,求出此时点P 的坐标.22.如图,点C 为二次函数()21y x =+的顶点,直线y x m =-+与该二次函数图象交于()3,4A -、B 两点(点B 在y 轴上),与二次函数图象的对称轴交于点D .(1)求m 的值及点C 坐标;(2)连接AC 、BC ,求ABC V 的面积.(3)在该二次函数的对称轴上是否存在点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形?若存在,请求出符合条件的Q 点的坐标;若不存在,请说明理由.。
四川省成都市第七中学2024-—2025学年上学期10月月考九年级数学试题一、单选题1.下列方程是一元二次方程的是()A .20ax bx c ++=B .320x x -=C .17x y+=D .227x x -=2.如图,在ABC V 中,90ACB ∠=︒,10AB =,点D 为斜边AB 上的中点,则CD 为()A .10B .3C .5D .43.把一元二次方程(1)(1)3x x x +-=化成一般形式,正确的是()A .2310x x --=B .2310x x -+=C .2310x x +-=D .2310x x ++=4.下列不属于菱形性质的是()A .四条边都相等B .两条对角线相等C .两条对角线互相垂直D .每一条对角线平分一组对角5.用配方法解一元二次方程时,首先把2650x x +-=化成()2x a b +=(a 、b 为常数)的形式,则a b +的值为()A .8B .11C .14D .176.如图,在矩形ABCD 中,点A 的坐标是()3,0-,点C 的坐标是()3,8,则BD 的长为().A .6B .8C .D .107.已知四边形ABCD 是平行四边形,下列说法正确的是()A .当AB BC =时,四边形ABCD 是矩形B .AC BD ⊥时,四边形ABCD 是菱形C .当90ABC ∠=︒时,四边形ABCD 是菱形D .当AC BD =时,四边形ABCD 是正方形8.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是()A .2322202570x x x +⨯-=B .322203220570x x +⨯=⨯-C .(322)(20)3220570x x --=⨯-D .()()32220570x x --=二、填空题9.一元二次方程261x x =+的一次项系数是.10.关于x 一元二次方程220240x x m -+=有一个根是1x =,则m 的值是.11.如图,在平面直角坐标系中,O 是坐标原点,四边形OABC 是正方形,点A 的坐标为()3,4,则点B 的坐标为.12.如图,正方形ABCD 中,E 在BC 延长线上,AE ,BD 交于点F ,连接FC ,若32E ∠= ,那么BCF ∠的度数是.13.如图,以矩形ABCD 的顶点A 为圆心,AD 长为半径画弧交CB 的延长线于E ;过点D 作DF AE ∥交BC 于点F ,连接AF ,45AB AD ==,,则AF 的长是.三、解答题14.解方程:(1)2(1)4x -=;(2)2254x x -=;(3)()()2323x x +=+.15.如图,菱形ABCD 的两条对角线相交于点O ,若菱形的边长是28150x x -+=的一个根,且8AC =,求该菱形的面积.16.先化简,再求值:22121124a a a a -+⎛⎫+÷ ⎪--⎝⎭,其中a 是一元二次方程2560x x -+=的实数根.17.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若AB =2BD =,求OE 的长度.18.如图1,四边形ABCD 是平行四边形,延长AB 至点E ,使得BE AB =,连接BD 和CE .(1)若CB 平分DBE ∠,求证:四边形BECD 是菱形;(2)如图2,将CBE △沿直线BC 翻拆点E 刚好落在线段AD 的中点F 处,延长CF 与BA 的延长线相交于点H ,并且CF 和BD 交于点G ,试求线段CH 、FG 、GB 之间的数量关系;(3)如图3,将CBE △沿直线BC 翻折,点E 刚好落在线段AD 上的点F 处,若6AD =,3DC =,且2FD FA =,求DFC S 的面积.四、填空题19.已知a 为方程2360x x --=的一个根,则代数式2625a a -+的值为.20.如图,在ABC V 中,30A ∠=︒,90B Ð=°,6BC =,将ABC V 沿中位线DE 剪开后,把得到的两部分拼成一个平行四边形,所得到的平行四边形的周长是.21.如图,在菱形ABCD 中,∠B =60°,E ,H 分别为AB ,BC 的中点,G ,F 分别为线段HD ,CE 的中点.若线段FG 的长为2AB 的长为.22.定义:我们把形如0123111x x x x ++++⋯的数成为“无限连分数”.如果a 是一个无理数,那么a就可以展成无限连分数,例如:11212122=++++⋯,如果1111111x =++++⋯,则x =.23.如图,在菱形ABCD 中,60A ∠=︒,点M 是AD 边的中点,点N 是菱形内一动点,连接MN ,BN,且满足MN BN +=ABCD 面积的最大值为.五、解答题24.如图,用篱笆靠墙围成矩形花圃ABCD ,墙可利用的最大长度为15米,花圃一面利用墙,其余三面用篱笆围成,篱笆总长为24米.(1)若围成的花圃面积为40平方米时,求BC 的长;(2)围成的花圃面积能否为75平方米,如果能,请求BC 的长;如果不能,请说明理由.25.如图,在平面直角坐标系中,点A ,B 分别在x 轴,y 轴正半轴上,2AO BO =,点(3.0)C (A 点在C 点的左侧),连接AB ,过点A 作AB 的垂线,过点C 作x 轴的垂线,两条垂线交于点D ,已知ABO DAC △≌△,直线BD 交x 轴于点E .(1)求直线AD 的解析式;(2)延长BA 到点M ,交DC 的延长线于点N ,连接DM ,若DM DB =,求MN 的长;(3)如图2,在直线AD 上找一点G ,直线BD 上找一点P ,直线CD 上找一点Q ,使得四边形AQPG 是菱形,求出P 点的坐标.26.已知,四边形ABCD 是正方形,DEF 绕点D 旋转()DE AB <,90EDF ∠=︒,DE DF =,连接AE ,CF .(1)如图1,求证:ADE CDF V V ≌;(2)直线AE 与CF 相交于点G .①如图2,,BM AG ⊥于点M ,⊥BN CF 于点N ,求证:四边形BMGN 正方形;②如图3,连接BG ,若5AB =,3DE =,直接写出在DEF 旋转的过程中,线段BG 长度的最小值.。
2024-2025学年湖北省武汉市部分学校九年级(上)月考数学试卷(10月份)一、选择题.(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号涂黑。
1.(3分)方程2x2﹣2x﹣1=0的一次项系数、常数项分别是()A.1、2B.2、﹣1C.﹣2、﹣1D.﹣2、12.(3分)用配方法解方程x2﹣4x+2=0,下列变形正确的是()A.(x﹣2)2=2B.(x﹣4)2=2C.(x﹣2)2=0D.(x﹣4)2=13.(3分)若关于x的一元二次方程x2﹣ax+6=0的一个根是2,则a的值为()A.2B.3C.12D.54.(3分)下列一元二次方程中没有实数根的是()A.x2+2x﹣1=0B.C.x2+x﹣2=0D.5.(3分)将抛物线y=x2+1先向上平移2个单位,再向右平移1个单位后所得的抛物线是()A.y=(x﹣1)2+3B.y=(x+1)2+3C.y=(x+2)2D.y=(x+1)2﹣16.(3分)已知方程6x2﹣7x﹣3=0的两根分别为x1、x2,则的值为()A.B.C.D.7.(3分)当函数是二次函数时,a的取值为()A.a=1B.a=±1C.a≠1D.a=﹣18.(3分)若m、n是方程x2+x﹣1=0的两个实数根,则的值是()A.1B.﹣1C.2D.09.(3分)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=2,与x轴的一个交点(﹣2,0).若关于x的一元二次方程ax2+bx+c=p(p<0)有整数根,则p的值有()A.2个B.3个C.4个D.5个10.(3分)函数y=ax+(a,b为常数,且a>0,b<0)的大致图象是()A.B.C.D.二、填空题.(共6小题,每小题3分,共18分)11.(3分)方程(2﹣3x)(6﹣x)=0的根为.12.(3分)抛物线y=x2﹣2x﹣2的顶点坐标是.13.(3分)关于x的一元二次方程(m+1)x2﹣3x+1=0有实数根,则m的取值范围是.14.(3分)某工厂一月份生产零件30万个,第一季度生产零件152.5万个.设该厂二、三月份平均每月的增长率为x,则x满足的方程是.15.(3分)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,顶点为D,其中点B坐标为(3,0),顶点D的横坐标为1,DE⊥x轴,垂足为E,下列结论:①当x>1时,y随x增大而减小;②a+b<0③3a+b+c>0;④当时,OC>2.其中结论正确的有(填序号).16.(3分)已知抛物线y=x2﹣(m+4)x+3m+2在﹣1≤x≤2的范围内能使y≥2恒成立,则m的取值范围为.三、解答题.(共有8小题,共72分)17.(8分)解方程:(1)x2+6x+4=0;(2)x(x﹣2)+x﹣2=0.18.(8分)如图,抛物线y=﹣x2+2x+3.(1)该抛物线的对称轴是直线;(2)关于x的一元二次方程﹣x2+2x+3=0的解为;(3)当x满足时,y>0;(4)当x满足0≤x≤4时,y的取值范围是.19.(8分)已知x1,x2是关于x的一元二次方程x2﹣2(t﹣1)x+t2+3=0的两个实数根.(1)求t的取值范围;(2)若,求t的值.20.(8分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.21.(8分)在如图所示的网格中建立平面直角坐标系,已知△ABC的顶点坐标分别为A(1,7)、B(8,6)、C(6,2),点D是AB上一点.仅用无刻度的直尺在给定的网格中画图,画图过程用虚线表示,画图结果用实线表示,并完成下列问题:(1)直接写出△ABC的形状;(2)作线段AB关于AC的对称线段AE;(3)在线段AE上找点F,使AF=AD;(4)在AB上画点G,使∠BCG=∠BAC.22.(10分)如图1,为美化校园环境,某校计划在一块长为100米,宽为60米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;(3)已知某园林公司修建通道的单价是50元/米2,修建花圃的造价y(元)与花圃的修建面积S(m2)之间的函数关系如图2所示,并且通道宽a(米)的值能使关于x的方程x2﹣ax+25a﹣150=0有两个相等的实根,并要求修建的通道的宽度不少于5米且不超过12米,如果学校决定由该公司承建此项目,请求出修建的通道和花圃的造价和为多少元?23.(10分)已知:如图,正方形ABCD中,过点A作直线AE,作DG⊥AE于点G,且AG=GE,连接DE.(1)求证:DE=DC;(2)若∠CDE的平分线交直线AE于F点,连接BF,求证:DF﹣FB=FA;(3)在(2)的条件下,当正方形边长为2时,求CF的最大值为.24.(12分)已知:如图1,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),点B(﹣1,0),与y 轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)点P为抛物线第三象限上的一点,若∠PBA=2∠BCO,求点P的坐标;(3)如图2,点M为抛物线在点A左侧上的一点,点M与点N关于抛物线的对称轴对称,直线BN、BM分别交y轴于点E、D,求OE﹣OD的值.2024-2025学年湖北省武汉市部分学校九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题.(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号涂黑。
2024年(下)九年级10月份数学“独立作业”考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用闭卷形式.2.全卷分为卷I (选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷I 的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹的钢笔或签字笔写在答题纸的相应位置上.3.请用黑色字迹的钢笔或签字笔在答题纸上先填写姓名和准考证号.4.本次考试不得使用计算器.卷Ⅰ一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线22y x =−−的顶点坐标是( ) A.()2,0−B.()2,0C.()0,2D.()0,2−2.要得到抛物线()2423y x =−−,可以将抛物线24y x =( ) A.向右平移2个单位,再向下平移3个单位 B.向左平移2个单位,再向下平移3个单位 C.向左平移2个单位,再向上平移3个单位 D.向右平移2个单位,再向上平移3个单位3.小明观察某个路口的红绿灯,发现该红绿灯的时间设置为:红灯20秒,黄灯5秒,绿灯15秒.当他下次到达该路口时,遇到绿灯的概率是( ) A.13B.12C.38D.234.已知抛物线2y x bx c =−+与x 轴交于点()1,0A −,()3,0B ,则关于x 的方程20x bx c −+=的解是( )A.11x =−,23x =−B.11x =−,23x =C.11x =,23x =−D.11x =,23x =5.如果二次函数24y x x c =−+的最小值为0,那么c 的值等于( ) A.2B.4C.-2D.06.在同一坐标系中,一次函数2y mx n =+与二次函数2y x m =−的图象可能是( )A. B. C.D.7.若()10,A y ,()23,B y ,()34,C y 为二次函数()23y x m =−+图象上的三点,则1y ,2y ,3y 的大小关系为( ) A.231y y y <<B.312y y y <<C.213y y y <<D.132y y y <<8.如图,抛物线()20y ax bx c a ++≠与x 轴的两个交点分别为()1,0A −和()2,0B ,当0y <时,x 的取值范围是( )A.1x <−或2x <B.1x <−或2x >C.12x −<<D.1x >−或2x >9.某数学兴趣小组借助数学软件探究函数()2yax x b −的图象,输入了一组a ,b 的值,得到了它的函数图象如图所示,借助学习函数的经验,可以推断输入的a ,b 的值满足( )A. 0a <,0b <B.0a >,0b <C.>0a ,<0bD.0a >,0b >10.如图,正方形OABC 的顶点B 在抛物线2y x =的第一象限的图象上,若点B 的纵坐标是横坐标的2倍,点C 的横坐标为-1,则点A 的横坐标为( )A.3B.4C.3.5D.2卷Ⅱ二、填空题(本大题有6个小题,每小题3分,共18分)11.欢欢抛一枚质地均匀的硬币14次,有9次正面朝上,当他抛第15次时,正面朝上的概率为________. 12.抛物线2421y x x =−−+的对称轴为________.13.从-2,0,1三个数中随机抽取一个数记为a ,不放回,再抽取一个数记为b ,则抽出的数(),a b 是二次函数22y x =−图象上的点的概率为_______.14.将抛物线()221y x =−+绕原点O 旋转180,则得到的抛物线的函数表达式为______.15.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线,摇绳的两名同学拿绳的手的间距为6米,到地面的距离AO 与BD 均为1.1米,绳子甩到最高点C 处时,最高点距地面的垂直距离为2.0米.身高为1.6米的小吉站在距点O 水平距离为m 米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m 的取值范围是__________.16.已知抛物线241y x x =−−上有且只有三个点到x 轴的距离等于k ,点(),A a b 在抛物线上,且点A 到y 轴的距离小于3.(1)k =__________.(2)b 的取值范围是__________.三、解答题(本大题有8个小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本题8分)一个不透明的布袋里只有2个红球和2个白球(仅颜色不同). (1)若从中任意摸出一个球,是红球的概率为多少?(2)若从中任意摸出一个球,记下颜色后放回,再摸出一个球,两个都是红球的概率为多少?(请用列表或画树状图的方法来表示)18.(本题8分)已知二次函数的图象经过点()0,6−,且当2x =时,有最大值-2. (1)求该二次函数的表达式.(2)判断点()1,2P −是否在抛物线上,并说明理由.19.(本题8分)已知二次函数()226y x k x k +++−与x 轴只有一个交点. (1)求k 的值.(2)从3k +,3k −中任选一个数记做a ,求使二次函数2y ax =的图象开口方向向上的概率.20.(本题8分)如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光.(1)求任意闭合其中一个开关小灯泡发光的概率. (2)求任意闭合其中两个开关小灯泡发光的概率.21.(本题8分)第33届夏季奥运会在法国巴黎举行,北京时间8月3日中国女篮对阵波多黎各女篮,以80比58收获小组赛首胜.如图,一名中国运动员在距离篮球框中心A 点4m (水平距离)远处跳起投篮,篮球准确落入篮框,已知篮球运行的路线为抛物线,当篮球运行的水平距离为2.5m 时,篮球到达最大高度B 点处,且最大高度为3.5m .以地面水平线为x 轴,过最高点B 且垂直地面的直线为y 轴建立平面直角坐标系,如果篮框中心A 距离地面3.05m .(1)求该篮球运行路线(抛物线)的函数表达式. (2)求出篮球在该运动员出手时(点C )的高度.22.(本题10分)设二次函数22y ax bx ++(0a ≠,b 是实数),已知函数值y 和自变量x 的部分对应取值如表所示:x 1−0 2 4 5 ym2n2p(1)若4m =,求二次函数的表达式.(2)在(1)的条件下,写出一个符合条件的x 的取值范围,使得y 随x 的增大而增大. (3)若在m ,n ,p 这三个实数中,只有一个是负数,求a 的取值范围.23.(本题10分)某款网红产品很受消费者喜爱,每个产品的进价为40元,规定销售单价不低于44元,且不高于52元.某商户在销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天的销量减少10个.现商家决定提价销售,设每天销售量为y 个,销售单价为x 元. (1)直接写出y 与x 之间的函数关系式和自变量x 的取值范围.(2)将产品的销售单价定为多少元时,商家每天销售产品获得的利润w (元)最大?最大利润是多少元?(3)该商户从每天的利润中捐出200元做慈善,为了保证捐款后每天剩余利润等于2200元,求销售单价x 的值.24.(本题12分)如图,已知二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,其中()3,0A −,()0,3C −.(1)求二次函数的表达式.(2)若P 是二次函数图象上的一点,直线PC 交x 轴于点D ,PDB △的面积是CDB △面积的2倍,求点P 的坐标.(3)对于一个二次函数()()20y a x m k a =−+≠中存在一点(),Q x y ′′,使得0x m y k ′−=−≠′,则称2x m ′−为该抛物线的“开口大小”,求(1)中抛物线关于x 轴对称的抛物线的“开口大小”.2024年(下)九年级10月份数学“独立作业”参考答案一、选择题(本大题有10个小题,每小题3分,共30分) 1-5:DACBB 6-10:DABDA二、填空题(本大题有6个小题,每小题3分,共18分) 11.12 12.14x =− 13.1614.()221y x =−+− 15.15m <<. 16.(1)5 (2) 520b −≤< 三、解答题(本大题有8个小题,共72分) 17.解:(1)摸出红球的概率为12P =. (2)列表得:∴两个都是红球的概率为14P =. 18.解:(1)由题意得顶点为()2,2−,∴设()222y a x =−−,把()0,6−代入,得()26022a −=−−, 解得1a =−.∴该二次函数的表达式为()222y x =−−−. (2)不在,理由如下:把1x =−代入()222y x =−−−, 得()2122112y =−−−−=−≠,∴点()0,6P −不在该抛物线上.(3分)19.解:(1)由题意可知()2260x k x k +++−=有两个相等的实数根,()()2242460b ac k k ∴=−=+−−=△,10k ∴=−或2k =.(2)由(1)可知10k =−或2k =,3k ∴+,3k −对应的所有值为-7,-13,5,-1.∴二次函数2y ax =的图象开口方向向上的概率为14.20.解:(1)14P =. (2)12P =. 21.解:(1)根据题意,得()0,3.5B ,()1.5,3.05A ,点C 的横坐标为-2.5. 设该篮球运行路线的函数表达式为23.5y ax =+,把点()1.5,3.05A 代入,得23.051.5 3.5a =+, 解得0.2a =−.∴该篮球运行路线的函数表达式为20.2 3.5y x =−+. (2)由(1)知20.2 3.5y x =−+令 2.5x =−,则()20.2 2.5 3.5 2.25y =−×−+=.∴篮球在该运动员出手时(点C )的高度是2.25m .22.解:(1)由题意得42,21642,a b a b =−+=++解得2,58,5a b= =−∴二次函数的表达式是228255y x x −+. (2)()222822225555yx x x =−+=−+ ,∴抛物线开口向上,对称轴为直线2x =,∴当2x >时,y 随x 的增大而增大.(答案不唯一)(3)0x = 和4x =时的函数值都是2,∴抛物线的对称轴为直线22b x a=−=, ()2,n ∴是顶点,()1,m −和()5,p 关于对称轴对称,m p ∴=. 在m ,n ,p 这三个实数中,只有一个是负数,则抛物线必须开口向上,且<0n ,>2m p =.22ba−= , 4b a ∴=−,∴二次函数为242y ax ax =−+,482<0n a a ∴=−+,42>2m a a =++,12a ∴>. 23.解:(1)根据题意,得()300104410740y x x =−−=−+,y ∴与x 之间的函数关系式为()107404452y x x =−+≤≤.(2)根据题意,得()()()2104010572890w x x x =−+−=−−+. 100−< ,又对称轴57x =,且4452x ≤≤,∴当52x =时,w 有最大值,最大值为2640,∴将产品的销售单价定为52元时,商家每天销售产品获得的利润w (元)最大,最大利润是2640元.(3)依题意可得剩余利润为()200w −元.捐款后每天剩余利润等于2200元,2002200w ∴−=,即()2105728902002200x −−+−=,解得50x =或64x =(舍去),∴为了保证捐款后每天剩余利润等于2200元,销售单价为50元.24.解:(1)由题意,将()()3,0,0,3A C −−代入2y x bx c =++,得093,3,b c c =−+=−解得2,3,b c ==−∴二次函数的表达式为223y x x =+−.(2)由题意,设(),P m n .PDB △与CDB 同底,且PDB △的面积是CDB △面积的2倍,26n CO ∴==.当2236m m +−=时,11m =−,21m −此时点P 的坐标为)1,6−或()1,6−;当2236m m +−=−时,m 无解.综上所述,点P 的坐标为)1,6或()1,6−.(3) 抛物线()222314y x x x =+−=+−,∴抛物线()222314y x x x =+−=+−关于x 轴对称的抛物线为()214y x =−++. 0x m y k ′′−=−≠ ,()211440x x ∴+=−++−′≠′,解得11x ′+=−.∴抛物线223y x x =+−关于x 轴对称的抛物线的“开口大小”为21212x +′×−.。
2024-2025学年山东省潍坊市高密市九年级上学期月考数学试卷(10月份)时间:120分钟,满分150分一、单选题(本题共8小题,每小题选对得4分,共32分.)1.下一元二次方程2650x x −+=配方后可化为( ) A.()234x −=−B.()2314x +=−C.()234x −=D.()2314x +=2.在ABC ∆中,A ∠、B ∠均为锐角,且(2tan 2sin 0B A +=,则ABC ∆是( )A.钝角三角形B.等边三角形C.直角三角形D.等腰直角三角形3.如图,已知点B ,D ,C 在同一直线的水平地面上,在点C 处测得建筑物AB 的顶端A 的仰角为α,在点D 处测得建筑物AB 的顶端A 的仰角为β,若CD α=,则建筑物AB 的高度为( )A.tan tan ααβ− B.tan tan αβα− C.tan tan tan tan ααβαβ⋅−D.tan tan tan tan ααββα⋅−4.如图,在ABC ∆中,1sin 3B =,tan 2C =,3AB =,则AC 的长为( )B.2C.2D.25.已知关于x 的方程()()212110k x k x k +−++−=有实数根,则k 的取值范围是( ) A.5k 4≥−B.k 1≠−C.5k 4>−且k 1≠− D.5k 4≥−且k 1≠− 6.阅读材料:如果a ,b 是一元二次方程2x 10x +−=的两个实数根,则有210a a +−=,210b b +−=.创新应用:如果m ,n 是两个不相等的实数,且满足23m m −=,23n n −=,那么代数式2222009n mn m −++的值为( ) A.2019B.2020C.2021D.20227.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,该公司5,6月份的营业额的月平均增长率为x ,根据题意列方程正确的是( ) A.()2250019100x +=B.()225001%9100x +=C.()()225001250019100x x +++=D.()()2250025001250019100x x ++++=8.如图,一艘船由A 港沿北偏东60方向航行10km 至B 港,然后再沿北偏西30方向航行10km 至C 港.则A ,C 两港之间的距离( )A.B.C.10kmD.5km二、多选题(本题共4小题,每小题5分,共20分.)9.如图,在Rt ABC ∆中,90A ∠=,AD 是BC 边上的高,则下列选项中可以表示tan B 的是( )A.AC ABB.AD BDC.CD ADD.AB BC10.如图,点A 、B 、C 在边长为1的正方形网格格点上,下列结论正确的是( )A.1sin 3B =B.sin C =C.1tan 2B =D.22sin sin 1B C +=11.若等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k −+=的两个根,则k 的值可能为( ) A.3B.4C.6D.712.某商场将进货价为20元的玩具以30元售出,平均每天可售出300件.经调查发现,该玩具的单价每上涨1元,平均每天就少售出10件.若商场要想平均每天获得3750元利润,则每件玩具应涨价多少元?设每件玩具应涨价x 元,则下列说法正确的是( ) A.涨价后每件玩具的售价是30x +()元 B.涨价后平均每天销售玩具30010x −()件C.涨价后平均每天少售出玩具10x 件D.根据题意可列方程为30300103750x x +−=()()三、填空题:(每小题5分,共20分)13.若关于x 的一元二次方程()2210a x a x a −+−=有一个根是1x =,则a 的值为__________14.如图,某小区要在长为16m ,宽为12m 的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为__________m.15.如果三角形有一边上的中线长等于这边的长,那么称这个三角形为“好玩三角形”,若Rt ABC ∆是“好玩三角形”,且A 90∠=,则tan ABC ∠=__________16.如图,要在宽AB 为20米的瓯海大道两边安装路灯,路灯的灯臂CD 与灯柱BC 成120角,灯罩的轴线OD 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线(即O 为AB 的中点)时照明效果最佳,若CD =米,则路灯的灯柱BC 高度应该设计为__________米(计算结果保留根号).四、解答题:(共78分)17.计算题阅读材料:数学课上,老师在求代数式245x x −+的最小值时,利用公式()2222a ab b a b ±+=±,对式子作如下变化()2224544121x x x x x −+=−++=−+,因为()220x −≥,所以()2211x −+≥,当2x =时,()2211x −+=, 因此()221x −+有最小值1,即245x x −+的最小值为1. 通过阅读,解下列问题:(1)代数式2x 612x ++的最小值为__________; (2)求代数式229x x −++的最大或最小值;(3)试比较代数式232x x −与2237x x +−的大小,并说明理由. 18.计算题(每题5分,共20分) (1)()2921210x −−=(2)24630x x −−=(配方法)(3)()235210x x ++=(公式法)(4()33tan3064−19.已知关于x 的一元二次方程()22110mx m x m +++−=有两个实数根. (1)求m 的取值范围;(2)若该方程的两个实数根分别为1x ,2x ,且22128x x +=,求m 的值.20.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同. (1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元个,测算在市场中,当售价为40元个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元个?21.如图,在绿化工程中,要修建一个中间隔有一道篱笆的长方形花圃,该花圃一面利用墙(墙的最大可用长度为16米),其余部分由篱笆围成.为了出入方便,在建造花圃时,在长边上用其他材料建造了宽为1米的两个小门,其余部分刚好用完长为28米的篱笆.(1)设花圃的一边AB 为x ,请你用含有x 的式子表示另一边BC 的长为__________ 并求出x 的取值范围为__________(2)若此时花圃的面积为72平方米,求此时花圃的长和宽.22.某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一端固定在量角器圆心O 处,另一端系小重物G 测量时,使支杆OM 、量角器90刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点A 、B 共线(如图②),此时目标P 的仰角是图②中的∠_____。
广东省深圳市百合外国语学校2024—2025学年九年级上学期10月月考数学试卷一、单选题1.下列方程中,属于一元二次方程的是( ) A .2356x x -= B .120x-=C .224x y +=D .610x +=2.若34a b =,则下列等式错误的是( ) A .43a b = B .:4:3a b =C .34a b =D .74a b b += 3.如图,在正方形ABCD 外侧作等边ADE V ,则AEB ∠的度数为( )A .15°B .22.5°C .20°D .10°4.菱形具有而矩形不具有的性质是( ) A .四边相等B .对角线相等C .对角相等D .邻角互补5.一元二次方程2430x x +-=中一次项系数、常数项分别是( ) A .2,3-B .0,3-C .1,3-D .1,06.如图,点D 是ABC V 的边AB 上的一点,连接DC ,则下列条件中不能判定ABC ACD V V ∽的是( )A .B ACD ∠=∠ B .ADC ACB ∠=∠ C .AC ABCD BC= D .AC ABAD AC=7.在一次九年级学生数学交流会上,每两名学生握手一次,所有学生共握手231次.若设参加此会的学生为x 名,据题意可列方程为( )A .1(1)2312x x +=B .2(1)231x x -=C .(1)2312x x -=⨯D .(1)231x x -=8.如图,已知E ,F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M .则下列结论:①90AME ∠=︒,②BAF EDB ∠=∠,③23AM MF =,④ME MF +.其中正确结论的有( )A .4个B .3个C .2个D .1个二、填空题9.若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则实数c 的值为. 10.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球若干,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,如表是活动进行中的一组统计数据:任意摸出一个球,则“摸到白球”的概率约是(结果精确到0.1). 11.如图,直线a ∥b ∥c ,则图中x 的值为 .12.如图,四边形ABCD 是菱形,对角线AC 与BD 相交于点O ,8AC =,6BD =,DE AB ⊥于点E ,则DE 的长为.13.如图,在矩形ABCD 中,6,8AB AD ==,点E 为直线BC 下方一点,且以BC 为斜边在矩形的外部作直角三角形BEC ,点F 是CD 的中点,则EF 的最大值为.三、解答题 14.解下列方程: (1)2210x x --=; (2)()()3121x x x -=-15.数学社团开展“讲数学家故事”的活动.下面是印有四位中国数学家纪念邮票图案的卡片A ,B ,C ,D ,卡片除图案外其他均相同.将四张卡片背面朝上,洗匀后放在桌面上,同学们可以从中随机抽取卡片,讲述卡片上数学家的故事.(1)小安随机抽取了一张卡片,卡片上是数学家刘徽邮票图案的概率是______;(2)小明随机抽取了两张卡片,请用画树状图或列表的方法,求小明抽到的两张卡片中恰好有数学家华罗庚邮票图案的概率.16.已知:关于x 的一元二次方程()2223320x k x k k -++++=.(1)证明无论k 取何值时方程总有两个实数根.(2)ABC V 中,=5BC ,AB 、AC 的长是这个方程的两个实数根,求k 为何值时,ABC V 是等腰三角形?17.如图,矩形ABCD 的对角线相交于点O ,,DE AC CE BD ∥∥,连接BE .(1)求证:四边形OCED 是菱形;(2)若60,4DCA DC ∠=︒=,求EBC V 的面积.18.2023年杭州亚运会吉祥物一开售,就深受大家的喜爱.某商店以每件35元的价格购进某款亚运会吉祥物,以每件58元的价格出售.经统计,4月份的销售量为256件,6月份的销售量为400件.(1)求该款吉祥物4月份到6月份销售量的月平均增长率;(2)从7月份起,商场决定采用降价促销的方式回馈顾客,经试验,发现该吉祥物每降价1元,月销售量就会增加20件.当该吉祥物售价为多少元时,月销售利润达8400元? 19.问题引入: 如图①,AB CD ∥,AB CD >,90ABD??,E 是线段AC 的中点,连接DE 并延长交AB 于点F ,连接BE .则BE 与DE 之间的数量关系是______;问题延伸:如图②,在正方形ABCD 和正方形BEFG 中,点A 、B 、E 在同一条直线上,点G 在BC 上,P 是线段DF 的中点,连接PC 、PG .(1)判断PC 与PG 之间的数量关系,并说明理由;(2)连接CF ,若3AB =,PC =CF 的长为 .20.【阅读理解】配方法是中学数学的重要方法,用配方法可求最大(小)值.对于任意正实数a ,b ,可作如下变形: ∵a b +22=+22=+-2=+又∵20≥∴20++即a b +≥根据上述内容,回答问题:23+______143+______66+______(用“=”“>”“<”填空) 【思考验证】如图1,ABC V 中,90ACB ∠=︒,CD AB ⊥于点D ,CO 为AB 边上中线,2AD a =,2DB b =,试根据图形验证a b +≥【探索应用】(1)请利用上述结论解决下面问题,某园林设计师要对园林的一个区域进行设计改造,一面利用墙体将该区域用篱笆围成中间隔有一道篱笆的矩形花圃,如图2所示,为了围成面积为2300m 的花圃,所用的篱笆至少为多少米?(2)如图3,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB V ,COD V 的面积分别是5和16.试问四边形ABCD的面积是否存在最小值?若存在,请直接写出....四边形ABCD面积的最小值;若不存在,请说明理由.。
辽宁省大连市甘井子区汇文中学2024-—2025学年上学期九年级10月月考数学试卷一、单选题1.方程213x x +=二次项系数,一次项系数和常数项分别是( ) A .1,3-,1B .1-,3-,1C .1,3,1-D .1,3,12.一元二次方程210x -=的根的情况( ) A .有两个不相等的实数根 B .有两个相等的实数根C .只有一个实数根D .没有实数根3.若二次函数2y ax =的图象经过点()3,6A -,则该图象必经过点( ) A .()3,6-B .()3,6--C .()6,3-D .()6,34.关于x 的一元二次方程210ax x -+=有实数根,则a 的取值范围是() A .14a ≤且0a ≠ B .14a ≤ C .1a 4≥且0a ≠ D .1a 4≥5.将抛物线23y x =先向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是( ) A .23(1)2y x =++ B .23(1)2y x =-+ C .23(2)1y x =-+D .23(2)1y x =--6.用配方法解一元二次方程28100x x -+=配方后得到的方程是( ) A .()2854x += B .()2854x -= C .()246x +=D .()246x -=7.若二次函数()221y x =+-的图象经过点1(1,)A y -,2(2,)B y -,3(3,)C y ,则1y ,2y ,3y 的大小关系为( ) A .132y y y >>B .231y y y >>C .123y y y >>D .312y y y >>8.下列关于二次函数231y x =-的图象说法中,错误的是( ) A .它的对称轴是直线0x =B .在对称轴的左侧,y 随着x 的增大而增大C .它的顶点坐标是()0,1-D .它的图象有最低点9.参加足球联赛的每两队之间都进行一场比赛,共要比赛90场,设共有x 个队参加比赛,则下列方程符合题意的是( ) A .1(1)902x x +=B .(1)90x x +=C .1(1)902x x -=D .(1)90x x -=10.抛物线2(0)y ax bx c a =++≠中,y 与x 的部分对应值如下表:下列结论中,正确的是( )A .抛物线开口向上B .对称轴是直线4x =C .当>4x 时,y 随x 的增大而减小D .当 4.5x <时,y 随x 的增大而增大二、填空题11.一元二次方程240x x a -+=的一个解为1x =,则a =. 12.设1x 、2x 是方程2320x x -+=的两个根,则12x x +=.13.根据物理学规律,如果把一物体从地面以7m /s 的速度竖直上抛,那么经过x 秒物体离地面的高度(单位:m )约为27 4.9x x -.根据上述规律,则物体经过秒落回地面. 14.有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元.则平均每次降价的百分率为.15.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A 点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m 处达到最高,高度为5m ,水柱落地处离池中心距离为6m ,则水管的长度OA 是m .16.如图,在平面直角坐标系中,抛物线23y ax bx =++与x 与相交于点A ,B ,点B 的坐标为(3,0),若点(2,3)C 在抛物线上,则AB 的长为.三、解答题 17.解下列方程: (1)247x x -= (2)2352x x -=18.已知抛物线2y x bx c =++经过点(3,0)A ,(0,3)B -. (1)求抛物线表达式并写出顶点坐标;(2)联结AB ,与该抛物线的对称轴交于点P ,求点P 的坐标. 19.阅读材料,解答问题.解方程:2411041240x x ---+=()(),解:把41x -视为一个整体,设41x y -=, 则原方程可化为:210240y y -+=, 解得:16y =,24y =,416x ∴-= 或414x -=,∴174x =,154x =, 以上方法就叫换元法,达到了降次的目的,体现了转化的思想. 请仿照上例,请用换元法解答问题:已知2222(1)(3)5x y x y +++-=,求22x y +的值. 20.已知2924A a a =-+,21B a =+.(1)当a 为何值时?2A B =.(2)对于任意实数a ,试比较A 与B 的大小.21.某商贸公司以每千克60元的价格购进一种干果,原计划以每千克100元的价格销售,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(040)x <<之间的关系如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利5250元,则这种干果每千克应降价多少元?22.如图,抛物线214y x mx n =-++与x 轴相交于B ,C 两点(点B 在点C 的左边),与y 轴相交于点A ,直线AC 的函数解析式为122y x =-+.(1)求点A ,C 的坐标; (2)求抛物线的解析式;(3)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标. 23.【提出问题】如图,在平面直角坐标系中,点A 的坐标是()1,2--,在x 轴上任取一点M ,完成以下操作步骤:①连接AM ,作线段AM 的垂直平分线1l ,过点M 作x 轴的垂线2l ,记12,l l 的交点为P . ②在x 轴上多次改变点M 的位置,用①的方法得到相应的点P ,把这些点用平滑的曲线连接起来.观察画出的曲线L ,猜想它是我们学过的哪种曲线. 【观察实验】某数学兴趣小组在探究时发现在x 轴上取几个特殊位置的点M ,可以求出相对应的点P 的坐标;例如:取点()1,0M -,则点P 的坐标为______; 取点()4,0M ,过P 作直线1x =-的垂线,垂足为点B .()4,,P y PM y ∴∴=-,在Rt PAB △中,根据勾股定理得:()2222252PA PB AB y =+=+--(用含y 的代数式表示)P Q 在AM 的垂直平分线上,22,PA PM PM PA ∴=∴=, 由此可列关于y 的方程:()()22252,y y -=+--解得:294y =-. 294,4P ⎛⎫∴- ⎪⎝⎭.【解决问题】(1)请帮忙完成以上填空;(2)在x 轴上多次改变点M 的位置,按上述作图方法得到相应点P 的坐标,并完成下列表格;(3)请你帮该数学兴趣小组求出点P x ,y 所在曲线L 的解析式;(,x y 满足的函数关系式)(4)兴趣小组在建立平面直角坐标系时受纸张大小的限制,若M 点只能在76x -<<的范围内移动,则y 的取值范围是______; 【结论应用】(5)过点A 任作直线y =kx +b k ≠0 交曲线L 于点,D E (点D 在点E 的左侧),分别过点,D E 作x 轴的垂线,垂足分别为点,F G ,取FG 的中点K ,连接,DK EK ,求DKE ∠的度数;【拓展提升】(6)若点()(),0A m d d <,猜想曲线L 的最高点的坐标为______,说明理由.。
山东省泰安第六中学2024-2025学年九年级上学期10月月考数学试卷一、单选题1.如果函数()21m y m x -=-反比例函数,那么m 的值是( )A .2B .1-C .1D .02.如图,在Rt ABC △中,90C ∠=︒,tan 3B =,则sin B 的值为( )A B C .13D .33.二次函数y =12-(x-3)2 +4的图象的开口方向、对称轴、顶点坐标分别是( )A .向上,直线x=3,(3,4)B .向上,直线x=-3,(3,4)C .向上,直线x=3,(3,-4)D .向下,直线x=3,(3,4)4.如图,在Rt ABC △中,1036AB B =∠=︒,, 则AC 的长度为( )A .10tan36︒B .10cos36︒C .10sin36︒D .10sin 36︒5.反比例函数ky x=与二次函数2(0)y kx k k =-+≠在同一平面直角坐标系中的大致图像是( ) A .B .C .D .6.已知直线123l l l ∥∥,且相邻的两条平行直线间的距离均等,将一个含45︒的直角三角板按图示放置,使其三个顶点分别在三条平行线上,则cos α的值是( )A B C D .127.如图,在平面直角坐标系中,直线4y kx =+与y 轴交于点C ,与反比例函数my x=,在第一象限内的图像交于点B ,连接OB ,若4OBC S =V ,1tan 3BOC ∠=,则m 的值是( )A .6B .8C .10D .128.函数y =24k x--(k 为常数)的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),函数值y 1,y 2,y 3的大小为( ) A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 2>y 3>y 1D .y 2>y 1>y 39.如图,在反比例函数()0ky x x=>的图像上,有点1P ,2P ,3P ,4P ,它们的横坐标依次为1,2,3,4.分别过这些点作垂直于x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,若1233S S S ++=,则k 的值为( )A .2.5B .3C .4D .无法确定10.抛物线()20y ax bx c a =++≠上部分点的坐标如下表,下列说法错误的是( )A .对称轴是直线2x =-B .当4x =-时,11y =-C .当2x >-时,y 随x 的增大而减小D .抛物线开口向下11.已知点A 与点B 分别在反比例函数()10y x x =>与()40y x x=->的图像上,且OA OB ⊥,则tan BAO ∠的值为( )A .12B .14C .2D .412.二次函数()20y ax bx c a =++≠的部分图象如图,图象过点()1,0-,下列结论:①24b ac >;②40a b +=;③42a c b +>,④30b c -+>,⑤若顶点坐标为()2,4,则方程25ax bx c ++=没有实数根.其中正确的结论有( )A .2个B .3个C .4个D .5个二、填空题13.在ABC V 中,若2sin 1cos 0A B --=,则C ∠=. 14.如图,在平面直角坐标系中,反比例函数1y =2x的图象与一次函数2y =kx +b 的图象交于A 、B 两点.若1y <2y ,则x 的取值范围是.15.若抛物线经过点()2,0A - 和点()4,0B ,则这条抛物线的对称轴是直线.16.一座堤坝的横截面是梯形ABCD ,各部分的数据如图所示,坝底AD 长为m .(结果保留根号)17.已知二次函数2y x bx c =-++的部分图象如图所示,则bc =.18.个反比例函数3y x=,6y x=在第一象限内的图象如图所示,点12342023,,,,,P P P P P L 在反比例函数6y x=的图象上,它们的横坐标分别是1232023,,,,x x x x L ,纵坐标分别是1,3,5,…,共2023个连续奇数,过点12342023,,,,,P P P P P L 分别作y 轴的平行线,与3y x=的图象的交点依次为()()()()111222333202320232023,,,,,,,,Q x y Q x y Q x y Q x y L ,20232023P Q 的长为.三、解答题 19.计算: (1)()2023tan45tan60cos30︒︒--÷︒(2)tan60sin302cos601⋅︒︒-︒.20.已知抛物线213222y x x =-+-.(1)用配方法将213222y x x =-+-化成()2y a x h k =-+的形式;(2)写出抛物线的开口方向、对称轴和顶点坐标,并写出y 随x 的增大而减小时x 的取值范围. 21.如图,利用函数243y x x =-+的图象,解决下列问题:(1)当y 随x 的增大而减小时,x 的取值范围是_______; (2)当14x -<<时,y 的取值范围是_______; (3)当3y ≥时,x 的取值范围是_______.22.综合与实践活动中,要利用测角仪测量塔的高度.如图,塔AB 前有一座高为DE 的观景台,已知6m,30CD DCE =∠=︒,点E ,C ,A 在同一条水平直线上.某学习小组在观景台C 处测得塔顶部B 的仰角为45︒,在观景台D 处测得塔顶部B 的仰角为27︒. (1)求DE 的长;(2)设塔AB 的高度为h (单位:m ).①用含有h 的式子表示线段EA 的长(结果保留根号); ②求塔AB 的高度(tan 27︒取0.51.7,结果取整数).23.如图,Rt ABC △的直角边AB 在x 轴上,90ABC ∠=︒,边AC 交y 轴于点D ,点C 在反比例函数ky x=第一象限的图象上,AC 所在直线的解析式为4y ax =+,其中点A −2,0 ,()1,0B .(1)求反比例函数和AC 所在直线的解析式;(2)将Rt ABC △的边直角边BC 沿着x 轴正方向平移m 个单位长度得到线段B C '',线段B C ''与反比例函数的图象交于点E ,问当m 为何值时,四边形ODC E '是平行四边形? 24.如图,一次函数12y k x =+的图象与反比例函数2k y x=的图象相交于(),4A m ,B 两点,与x ,y 轴分别相交于点C ,D .且tan 2ACO ∠=.(1)分别求这两个函数的表达式;(2)以点D 为圆心,线段DB 的长为半径作弧与x 轴正半轴相交于点E ,连接AE ,BE .求ABE V 的面积;(3)根据函数的图象直接写出关于x 的不等式212k k x x+>的解集. 25.如图①,已知抛物线()230y ax bx a =++≠与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求该抛物线的表达式;(2)若点D 是抛物线对称轴上的一个动点,连接,,,CD BD BC AC .当BCD △的面积等于AOC △面积的2倍时,求点D 的坐标;(3)抛物线对称轴上是否存在点P ,使得PCB ABC ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.。
河北省邯郸市临漳县2024-—2025学年上学期10月月考九年级数学试题一、单选题1.根据表格,判断关于x 的方程()230ax bx c a ++=≠的一个解的范围是()x1.1 1.2 1.3 1.42ax bx c ++0.59-0.842.293.76A .1.1 1.2x <<B .1.2 1.3x <<C .1.3 1.4x <<D .0.590.84x <<2.利用公式法解一元二次方程22510x x +-=可得两根为1x 、2x ,且12x x <,则1x 的值为()A B C D 3.若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为()A .﹣3B .0C .3D .94.若实数k 、b 是一元二次方程(3)(1)0x x +-=的两个根,且k b >,则一次函数y kx b =+的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.已知a ,b ,c 为常数,点(,)P a c 在第四象限,则关于x 的一元二次方程20ax bx c ++=的根的情况为()A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判定6.如图,F 是正方形ABCD 对角线B 上一点,连接AF ,C ,并延长C 交B 于点E ,若150AFC ∠=︒,则DEC ∠的度数为()A .60︒B .75︒C .70︒D .65︒7.如图,剪两张等宽且对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD ,其中一张纸条在转动过程中,下列结论一定成立的是()A .四边形ABCD 周长不变B .AB BC =C .四边形ABCD 面积不变D .AC BD=8.某儿童乐园摩天轮的正面示意图如图所示,若每个舱看作一个点,任意选择四个点,则以这四个点为顶点的四边形是矩形的有()A .1个B .2个C .3个D .4个9.如图,在Rt ABC △中,6AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若36AMEF S =正方形,则ABC S = ()A .B .18C .D .1210.如图,在正方形ABCD 中,点E ,F 分别在边AB ,CD 上,∠EFC =120°,若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则AEB '∠为()A .70°B .65°C .30°D .60°11.如图,在MON ∠的边上分别截取OA 、OB ,使OA OB =;分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、B 、OC .若6cm =AB ,四边形AOBC 的面积为215cm ,则OC 的长为()A .4cmB .8cmC .5cmD .10cm12.如图,三个边长为6cm 的正方形按如图所示的方式重叠在一起,点O 是其中一个正方形的中心,则重叠部分(阴影)的面积为()A .29cmB .218cmC .212cmD .224cm 13.如图,四边形ABCD 是边长为5的菱形,对角线AC ,B 的长度分别是一元二次方程2120x mx ++=的两个实数根,DH 是B 边上的高,则DH 的长为()A .4.8B .3.6C .2.4D .1.214.如图,在菱形ABCD 中,AC BD 、交于O 点,8,6AC BD ==,点P 为线段AC 上的一个动点.过点P 分别作PM AD ⊥于点M ,作PN DC ⊥于点N ,则PM PN +的值为()A .485B .15C .245D .2315.“立身以立学为先,立学以读书为本”为了鼓励全民阅读,某校图书馆开展阅读活动,自阅读活动开展以来,进馆阅读人次逐月增加,第一个月进馆200人次,前三个月累计进馆728人次,若进馆人次的月增长率相同,求进馆人次的月增长率.设进馆人次的月增长率为x ,依题意可列方程()A .()22001728x +=B .()()220012001728x x +++=C .()22001728x x ++=D .()()220020012001728x x ++++=16.定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“同伴方程”.例如24x =和()()230x x -+=有且仅有一个相同的实数根2x =.所以这两个方程为“同伴方程”,若关于x 的方程20(a 0)++=≠ax bx c 的参数同时满足0a b c ++=和0a b c -+=.且该方程与()()20x x n +-=互为“同伴方程”,则n 的值为()A .1或1-B .1-C .1D .2二、填空题17.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,动点E 以每秒1个单位长度的速度从点A 出发沿AC 方向运动,点F 同时以每秒1个单位长度的速度从点C 出发沿CA 方向运动,若AC =12,BD =8,则经过秒后,四边形BEDF 是矩形.18.20世纪70年代,数学家罗杰·彭罗斯使用两种不同的菱形,完成了非周期性密铺,如下图,使用了A ,B 两种菱形进行了密铺,则菱形B 的锐角的度数为°.19.《代数学》中记载,形如21039x x +=的方程,求正数解的几何方法是:“如图①,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为392564+=,则该方程的正数解为853-=.”小聪按此方法解关于x 的方程2140x x m ++=,构造图②,已知阴影部分的面积为72,则该方程的正数解为.三、解答题20.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BG AE ⊥,垂足为点G ,延长BG 交CD 于点F ,连接AF .(1)求证:BE CF =.(2)若正方形边长是5,2BE =,求AF 的长.21.如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为6402m 的羊圈?(2)羊圈的面积能达到6502m 吗?如果能,请你给出设计方案;如果不能,请说明理由.22.阅读理解题:定义:如果一个数的平方等于-1,记为2i 1=-①,这个数i 叫做虚数单位,那么和我们所学的实数对应起来就叫做复数,复数一般表示为i a b +(a ,b 为实数),a 叫做这个复数的实部,b 叫做这个复数的虚部,它与整式的加法,减法,乘法运算类似.例如:解方程21x =-,解得:1i x =,2i x =-.2i ===.读完这段文字,请你解答以下问题:(1)填空:3i =______,4i =______,2342021i i i i +++⋅⋅⋅+=______.(2)已知()()i i 13i a b ++=-,写出一个以a ,b 的值为解的一元二次方程.(3)在复数范围内解方程:2480x x -+=.23.【操作感知】如图1,在矩形纸片ABCD 的AD 边上取一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接60PM BM DPM ∠=︒、.,则MBC ∠的大小为______度.【迁移探究】如图2,将矩形纸片换成正方形纸片,将正方形纸片ABCD 按照【操作感知】进行折叠,并延长PM 交CD 于点Q ,连接BQ .(1)判断MBQ V 与CBQ △的关系并证明;(2)若正方形ABCD 的边长为4,点P 为AD 中点,则CQ 的长为______.24.如图,在矩形ABCD 中,6cm =AB ,12cm BC =,点P 从点A 开始以1cm/s 的速度沿B 边向点B 移动,点Q 从点B 开始以2cm/s 的速度沿BC 向点C 移动.如果P ,Q 分别从A ,B 同时出发,设移动的时间为s t .求:(1)当t 为多少时,PBQ 的面积等于28cm ?(2)当t 为多少时,PQD △是以PD 为斜边的直角三角形?25.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,每件工艺品售价应为多少元?(3)公司每天销售这种工艺品获利能否达到2000元?请说明理由.。
四川省成都市双流中学2024-2025学年九年级上学期10月月考数学试卷一、单选题1.方程()10x x -=的根是()A .0x =B .1x =C .10x =,21x =D .10x =,21x =-2.已知23a b=(a ≠0,b ≠0),下列变形错误的是()A .23a b =B .2a =3b C .32b a =D .3a =2b3.在探究关于x 的二次三项式21215x x +-的值时,小明计算了如下四组值:x 1.1 1.2 1.3 1.421215x x +-0.59-0.842.293.76则方程212150x x +-=的其中一个解满足的范围是()A .1.1 1.2x <<B .1.2 1.3x <<C .1.3 1.4x <<D .无法确定4.如图,在ABC V 中,点D ,E 分别是AB ,AC 的中点,若ADE V 的面积为3,则ABC V 的面积为()A .6B .9C .12D .155.下列说法正确的是()A .对角线互相垂直的四边形是菱形B .四条边都相等的四边形是正方形C .一组对边平行,另一组对边相等的四边形是平行四边形D .四个角相等的四边形是矩形6.如图,已知12∠=∠,那么添加下列一个条件后,仍无法判定ABC ADE △△∽的是()A .B ADE ∠=∠B .AC BCAE DE=C .AB ACAD AE=D .C E∠=∠7.《九章算术》是我国古代数学的重要著作,“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何.”大意是说:已知矩形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?(1丈10=尺,尺、寸、丈不是法定计量单位)若设高是x 尺,则可列方程为()A .222( 6.8)10x x --=B .222( 6.8)10x x ++=C .222( 6.8)10x x +-=D .222( 6.8)10x x -+=8.如图,将一张两边长分别为24cm 和cm x 的矩形纸片两次对折后展开,得到四个全等的小矩形,若小矩形和原矩形相似,则x 的值为()A .9B .12C .15D .18二、填空题9.32a b =,则a bb a+=-.10.秋天红透的枫叶,总能牵动人们无尽的思绪,所以诗人杜牧说:“停车坐爱枫林晚,霜叶红于二月花”如图是两片形状相同的枫叶图案,则x 的值为.11.关于x 的一元二次方程()22160k x x k k --+=-的一个根是0,则k 的值是.12.如图,某小区有一块长为30m ,宽为24m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为2600m ,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为x 米,则可列方程.13.如图,菱形ABCD 的边长为4,45A ︒∠=,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,M N 两点,直线MN 交AD 于点E ,连接CE ,则CE 的长为.三、解答题14.(1()121233-⎛⎫--- ⎪⎝⎭;(2)解方程:23100x x --=;(3)解方程:21212x x =+.15.已知关于x 的方程()220x mx m -+=-.(1)求证:不论m 为何值,该方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值以及方程的另一个根.16.如图,嘉嘉同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜.手电筒的灯泡在点G 处,手电筒的光从平面镜上点B 处反射后,恰好经过木板的边缘点F ,落在墙上的点E 处,点E 到地面的高度 3.5m DE =,点F 到地面的高度 1.5m CF =,灯泡到木板的水平距离 5.4m AC =,墙到木板的水平距离为4m CD =.已知光在镜面反射中的入射角等于反射角,图中点A 、B 、C 、D 在同一水平面上.求灯泡到地面的高度AG .17.如图,在平行四边形ABCD 中,点О是对角线AC 中点,过点О作EF ⊥AC 分别交边AB ,CD 于点E ,F .(1)求证:四边形AECF 是菱形;(2)当AF 平分CAD ∠时,且CF =5,DF =2,求AD 的值.18.如图,在矩形OABC 中,点O 为坐标原点,点A 的坐标为0,3,点C 的坐标为()4,0,点P 在BC 边上,直线l 的解析式为23y x =-,直线l 交AB 于点D ,交OC 于点E .(1)如图1,连接AE ,求D ,E 的坐标;(2)如图2,若以AE 和EP 为邻边作矩形AEPQ ,求点Q 的坐标;(3)如图3,在第一象限内,直线l 上是否存在点M ,使APM △是等腰直角三角形?若存在,求出M 的坐标;若不存在,说明理由.四、填空题19.关于x 的一元二次方程(k -1)x 2-2x +1=0有两个不相等的实数根,则实数k 的取值范围是.20.若1x 、2x 是方程2620240x x --=的两个实数根,则代数式211242x x x -+的值等于.21.如图,一次函数23y x =-+的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合),过点P 分别作OA 和OB 的垂线,垂足为C 、D .当矩形OCPD 的面积最大时,P 点的坐标是.22.如图,在矩形ABCD 中,点O 为对角线BD 上一点,过点O 作EF BC ∥交,AB CD 于点E ,F ,作GH CD ∥交,AD BC 于点,G H ,连接EG ,已知4GD EB ==,则AEG △的面积等于.23.如图,M 是正方形ABCD 边C 的中点,P 是正方形内一点,连接BP ,线段BP 以B 为中心逆时针旋转90︒得到线段BQ ,连接MQ .若4AB =,1MP =,则MQ 的最小值为.五、解答题24.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植.某葡萄种植基地2019年种植“阳光玫瑰”葡萄100亩,到2021年“阳光玫瑰”葡萄的种植面积达到256亩.(1)求该基地这两年“阳光玫瑰”葡萄种植面积的年平均增长率;(2)市场调查发现,当“阳光玫瑰”葡萄的售价为20元/千克时,每天能售出200千克,售价每降低1元,每天可多售出45千克.为了推广宣传,基地决定降价促销,同时尽量减少库存.已知该基地“阳光玫瑰”葡萄的平均成本价为10元/千克,若要销售“阳光玫瑰”葡萄每天获利2125元.设降价x (0≤x <10)元,求出符合题意的x 值.25.在平面直角坐标系中,如图1,已知点()06A ,,点B 在线段AO 上,且2AB BO =,若点P 在x 轴的正半轴上,连接BP ,过点P 作PQ PB ⊥,点E 是射线PQ 上一点,过点E 作EC x⊥轴,垂足为点C .(1)求证:BOP PCE ∽△△;(2)如图2,连接BE ,若60BPO PEC ∠=︒,△与BPE 相似,请直接写出点E 的坐标;(3)如图3,若点C 坐标为()80,.过点A 作DA y ⊥轴,且和CE 的延长线交于点D ,若点C 关于直线PQ 的对称点C '正好落在线段AD 上.求点P 的坐标.26.(1)问题探究;如图1,在正方形ABCD 中,点E ,Q 分别在边BC AB 、上,DQ AE ⊥于点O ,点G ,F 分别在边CD AB 、上,GF AE ⊥.①判断DQ 与AE 的数量关系:DQ ______AE ;②推断:GFAE的值为________;(2)类比探究,如图(2),在矩形ABCD 中,BCk AB=(k 为常数),将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG EP ,交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用.如图3,四边形ABCD 中,90,10,5,ABC AB AD BC CD AM DN ∠=︒====⊥,点M 、N 分别在边BC AB 、上,求DNAM的值.。