材料力学(II)第二章-材料力学-孙训方
- 格式:ppt
- 大小:26.59 MB
- 文档页数:38
材料力学孙训方
材料力学是研究材料中力学行为和性能的一门学科。
它研究物体在外力作用下的受力、变形和破坏规律,对于材料的设计、制备和应用具有重要意义。
材料力学的研究对象主要包括金属、塑料、陶瓷、复合材料等各种材料。
通过对材料的载荷作用、应变和应力的关系研究,可以分析和预测材料在不同工况下的力学行为,从而为材料的设计和应用提供理论基础和指导。
材料力学的研究内容主要包括弹性力学、塑性力学、疲劳力学和断裂力学等。
弹性力学研究材料在小应力作用下的弹性变形规律,通过弹性模量、泊松比和剪切模量等参数来描述材料的弹性性能。
塑性力学研究材料在大应力作用下的塑性变形规律,探讨材料的变形硬化、屈服和流变行为。
疲劳力学研究材料在交变应力作用下的疲劳寿命,分析材料的疲劳断裂机制和寿命预测方法。
断裂力学研究材料在应力超过其强度极限时的断裂行为,研究材料的断裂韧性和断裂机制。
材料力学的应用领域广泛,包括工程结构设计、材料加工、材料选型等。
在工程结构设计方面,材料力学可以用于预测和优化结构在不同载荷下的应力和变形,提高结构的安全性和可靠性。
在材料加工方面,材料力学可以指导材料的成形和加工过程,控制材料的变形和应力分布,提高材料的加工性能和工艺效率。
在材料选型方面,材料力学可以评估材料的力学性能和耐久性能,为不同工程应用提供合适的材料选择依据。
总之,材料力学是研究材料力学行为和性能的重要学科,在工程设计和材料加工中具有重要的应用价值。
通过材料力学的研究,可以深入了解材料的力学特性,为材料的设计和应用提供科学的理论支持。
[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F kF l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
第二章轴向拉伸和压缩2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
试求C点的水平位移和铅垂位移。
解:(1)受力图(a)(2)变形协调图(b)因,故=(向下)(向下)为保证,点A移至,由图中几何关系知;第三章扭转3-1 一传动轴作匀速转动,转速,轴上装有五个轮子,主动轮Ⅱ输入的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。
[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
材料力学课后习题答案(孙训方版)1. 弹簧的力学性质1.1 弹簧的刚度计算弹簧的刚度(k)是描述弹簧力学性质的重要指标,它代表了单位位移产生的恢复力大小。
弹簧的刚度可以通过以下公式计算:k = (F - F₀) / Δx其中,k为弹簧的刚度,F为施加在弹簧上的力,F₀为弹簧未受力时的长度恢复力,Δx为弹簧的位移。
1.2 弹簧势能的计算当弹簧发生位移时,由于其具有弹性而储存了一定的势能。
弹簧势能可以通过以下公式计算:Ep = (1/2) * k * Δx²其中,Ep为弹簧的势能,k为弹簧的刚度,Δx为弹簧的位移。
2. 常见材料的力学性质2.1 钢材的力学性质钢材是一种常见的工程材料,具有优良的力学性质。
以下是一些钢材的力学性质参数:钢材种类弹性模量(E)屈服强度(σy)抗拉强度(σu)延伸率(ε)铁石炭钢200 GPa250 MPa400 MPa20%不锈钢190 GPa210 MPa400 MPa15%高速钢235 GPa250 MPa500 MPa10%钢材的弹性模量决定了其在受力时的变形程度,屈服强度代表着材料开始发生可见整体变形的临界点,抗拉强度则反映了材料能够承受的最大应力。
延伸率则描述了材料可以在破坏之前发生高强度塑性变形的能力。
2.2 铝材的力学性质铝材是一种轻质金属材料,在航空航天、交通运输等领域有着广泛的应用。
以下是一些铝材的力学性质参数:铝材种类弹性模量(E)屈服强度(σy)抗拉强度(σu)延伸率(ε)6061-T669 GPa240 MPa260 MPa12%7075-T671 GPa470 MPa510 MPa9%2024-T673 GPa450 MPa500 MPa10%铝材相较于钢材,具有更轻的密度和较好的耐腐蚀性能。
弹性模量较低导致了铝材的刚度较小,而抗拉强度较高则提供了较好的耐久性能。
3. 弯曲应变的计算当受力物体发生弯曲时,会导致内部产生应变。
弯曲应变的计算可以使用公式:ε = (M * h) / (E * I)其中,ε为弯曲应变,M为弯矩,h为截面到受力轴的距离,E为弹性模量,I为截面的惯性矩。