2018年秋高中数学第一章集合与函数概念1.1集合1.1.1集合的含义与表示第2课时集合的表示学案新人教A版必修1
- 格式:doc
- 大小:165.50 KB
- 文档页数:5
第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x∈R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集 Z有理数集 Q实数集 R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的A⊆(或B⊇A)子集。
记作:BA⊆有两种可能(1)A是B的一部分;注意:B(2)A与B是同一集合。
⊆/B或B⊇/A反之: 集合A不包含于集合B,或集合B不包含集合A,记作A(2).“包含”关系(2)—真子集A⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果集合B如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B “元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高中数学 必修1知识点总结第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示● 什么是集合集合中的元素具有确定性、互异性和无序性。
● 常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集。
集合的表示法①自然语言法:用文字叙述的形式来描述集合。
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合。
③描述法:{x |x 具有的性质},其中x 为集合的代表元素。
④图示法:用数轴或韦恩图来表示集合。
● 集合的分类①含有有限个元素的集合叫做有限集。
②含有无限个元素的集合叫做无限集。
③不含有任何元素的集合叫做空集(∅)。
【1.1.2】集合间的基本关系● 已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集。
交集、并集、补集 名称 记号 意义性质 示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集UA {|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>12{|}x x x x <<∅ ∅()()()UU U A B A B =()()()UU U A B A B =〖1.2〗函数及其表示 【1.2.1】函数的概念● 函数、区间的概念及其表示方法:函数:①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.区间及表示法:①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.● 求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. ● 求函数的值域或最值:求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法● 函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. ● 映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值● 函数的单调性①定义及判定方法函数的 性 质定义 图象 判定方法函数的 单调性 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.● 打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数. ● 最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.yxo【1。
2018-2019学年高中数学开学第一周第一章集合与函数概念1.1.1 集合的含义与表示第二课时集合的表示法教案新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学开学第一周第一章集合与函数概念1.1.1 集合的含义与表示第二课时集合的表示法教案新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学开学第一周第一章集合与函数概念1.1.1 集合的含义与表示第二课时集合的表示法教案新人教A版必修1的全部内容。
1。
1.1 集合的表示(第二课时)●三维目标1.知识与技能(1)掌握集合的表示方法-—列举法和描述法;(2)能进行自然语言与集合语言间的相互转换.2.过程与方法(1)教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养;(2)教学过程中应努力培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力.3.情感、态度与价值观培养数学的特有文化--简洁精练,体会从感性到理性的思维过程.●重点难点重点:用集合语言(描述法)表达数学对象或数学内容.难点:集合表示法的恰当选择.(1)重点的突破:以教材中的思考为切入点,让学生感知列举法表示集合不足的同时,顺其自然的引出集合的另一种方法--描述法,然后通过具体实例说明描述法的特点及书写形式,必要时可通过题组训练,让学生充分暴露用描述法表示集合时出现的各种疑点,教师给予适当点拨,从而化难为易;(2)难点的解决:本节课不仅要让学生学习两种表示法,同时还要让学生体会如何恰当选择表示法表示集合.为此,可通过实例多角度启发学生关注知识间的联系与区别,并借助两种方法表示集合的优缺点总结出表示法选择的规律——在元素不太多的情况下,宜采用列举法;在元素较多时,宜采用描述法表示.【问题导思】设集合M是小于5的自然数构成的集合,集合M中的元素能一一列举出来吗?【提示】能。
第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
必修一第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
只要构成两个集合的元素是一样的,我们就成为这两个集合是相等的。
如果a是集合A的元素,就说a属于集合A,记作a;如果a不是集合A中的元素,就说a不属于集合A,记作a。
全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集合称为正整数集,记作N*或N+;全体整数组成的集合称为整数集,记作Z;全体有理数集合的集合称为有理数集,记作Q;全体实数组成的集合称为实数集,记作R。
例举法:把集合的元素一一列举出来,并用花括号“”括起来表示集合的方法叫做例举法。
描述法:用集合所含元素的共同特征表示集合的方法称为描述法。
1.1.2 集合间的基本关系一般地,对于两个集合A,B如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集。
记作AB(或BA)读作“A含于B”(或“B含于A”)。
如果集合A是集合B的子集(AB),且集合B是集合A的子集(BA),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B。
如果集合AB,但存在元素xB,且xA,我们称集合A是集合B的真子集,记作AB(或BA)。
我们把不含任何元素的集合叫做空集,记作,并规定:空集是任何集合的子集。
1.1.3 集合的基本运算并集一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集,记作AB(读作“A并B”),即AB=交集一般地,由属于集合A且属于集合B的所有元素组成的集合,称作A与B的交集,记作A(读作“A交B”),即A若A则A补集一般地,如果一个集合含有我们所研究问题中涉及到所有问题中涉及到所有元素,那么就称这个集合为全集,通常记作U。
对于一个集合A,由于全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作C U A,即C U A= (C U A C U B)=C U(C U A C U B)=C U1.2 函数及其表示1.2.1 函数的概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集合A到集合B的一个函数,记作 y=f(x),x A其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域。
1.1.1 集合的表示(第二课时)●三维目标1.知识与技能(1)掌握集合的表示方法——列举法和描述法;(2)能进行自然语言与集合语言间的相互转换.2.过程与方法(1)教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养;(2)教学过程中应努力培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力.3.情感、态度与价值观培养数学的特有文化——简洁精练,体会从感性到理性的思维过程.●重点难点重点:用集合语言(描述法)表达数学对象或数学内容.难点:集合表示法的恰当选择.(1)重点的突破:以教材中的思考为切入点,让学生感知列举法表示集合不足的同时,顺其自然的引出集合的另一种方法——描述法,然后通过具体实例说明描述法的特点及书写形式,必要时可通过题组训练,让学生充分暴露用描述法表示集合时出现的各种疑点,教师给予适当点拨,从而化难为易;(2)难点的解决:本节课不仅要让学生学习两种表示法,同时还要让学生体会如何恰当选择表示法表示集合.为此,可通过实例多角度启发学生关注知识间的联系与区别,并借助两种方法表示集合的优缺点总结出表示法选择的规律——在元素不太多的情况下,宜采用列举法;在元素较多时,宜采用描述法表示.【问题导思】设集合M是小于5的自然数构成的集合,集合M中的元素能一一列举出来吗?【提示】能.0,1,2,3,4.列举法的定义:把集合的元素一一列举出来,并用花括号“{}”括起来表示集2好教育云平台——教育因你我而变2017年高考“最后三十天”专题透析合的方法叫做列举法.【问题导思】1.“绝对值小于2的实数”构成的集合,能用列举法表示吗?【提示】 不能.2.设x 为该集合的元素,x 有何特征?【提示】 |x |<2.3.如何表示该集合? 【提示】 {x ∈R ||x |<2}1.定义:用集合所含元素的共同特征表示集合的方法叫描述法. 2.具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.互动探究:例1 (1)方程x 2-1=0的解构成的集合;(2)由单词“book”的字母构成的集合;(3)由所有正整数构成的集合;(4)直线y =x 与y =2x -1的交点组成的集合.【思路探究】 先分别求出满足要求的所有元素,然后用列举法表示集合.【自主解答】 (1)方程x 2-1=0的解为-1,1,所求集合为{-1,1};(2)单词“book”有三个互不相同的字母,分别为“b”、“o”、“k”,所求集合为{b ,o ,k};(3)正整数有1,2,3,…,所求集合为{1,2,3,…};(4)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧ x =1,y =1,所求集合为{},.规律方法1.用列举法表示集合,要分清是数集还是点集,如本例(1)是数集,本例(4)是点集.2.使用列举法表示集合时应注意以下几点:(1)在元素个数较少或有(无)限但有规律时用列举法表示集合,如集合:{1,2,3},{1,2,3,…,100},{1,2,3,…}等.(2)“{}”表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;元素无顺序,满足无序性.变式训练用列举法表示下列集合.3(1)我国现有直辖市的全体.(2)绝对值小于3的整数集合.(3)方程组⎩⎪⎨⎪⎧y =x -1y =-23x +43的解集. 【解】 (1){北京,上海,天津,重庆}; (2){-2,-1,0,1,2};(3)方程组⎩⎪⎨⎪⎧ y =x -1,y =-23x +43的解是⎩⎪⎨⎪⎧ x =75,y =25, 所求集合为72,55⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭.例2 (1)不等式3x -2≥0的解构成的集合;(2)偶数集;(3)平面直角坐标系中,第一象限内的点的集合.【思路探究】 找准集合的代表元素→说明元素满足的条件→用描述法表示相应集合【自主解答】 (1)A ={x |3x -2≥0}或A =⎩⎨⎧⎭⎬⎫x |x ≥23; (2)B ={x |x =2k ,k ∈Z };(3){(x ,y )|x >0,y >0,且x ,y ∈R }.规律方法1.用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.2.若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围,如本例(2).互动探究把本例(2)换成“{2,4,6,8,10}”如何求解?【解】 该集合用描述法表示为B ={x |x =2k,1≤k ≤5且k ∈Z }.例3 (1)方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8的解集;(2)1000以内被3除余2的正整数所组成的集合;4好教育云平台——教育因你我而变2017年高考“最后三十天”专题透析(3)所有的正方形;(4)抛物线y =x 2上的所有点组成的集合.【思路探究】 依据集合中元素的个数,选择适当的方法表示集合.【自主解答】 (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧ x =4,y =-2,故解集为{(4,-2)};(2)集合的代表元素是数x ,集合用描述法表示为{x |x =3k +2,k ∈N 且x <1000};(3)集合用描述法表示为{x |x 是正方形},简写为{正方形};(4)集合用描述法表示为{(x ,y )|y =x 2}.规律方法1.本例(1)在集合的表示时,常因不明白方程组解的含义,导致出现以下两种错误表示:{4,-2}和{x =4,y =-2}.2.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示.对一些元素有规律的无限集,也可以用列举法表示,如正偶数集也可写成{2,4,6,8,10,…}.变式训练有下面六种表示方法: ①{x =-1,y =2};②⎩⎨⎧⎭⎬⎫x ,y ⎩⎪⎨⎪⎧ x =-1y =2; ③{-1,2};④(-1,2); ⑤{(-1,2)};⑥{x ,y |x =-1或y =2}.其中能正确表示方程组⎩⎪⎨⎪⎧ 2x +y =0,x -y +3=0的解集的是________,(把所有正确的序号都填在横线上) 【解析】 ∵方程组⎩⎪⎨⎪⎧ 2x +y =0,x -y +3=0的解为⎩⎪⎨⎪⎧ x =-1,y =2,∴该方程组的解集应为点集,其正确形式是②⑤.【答案】 ②⑤思想方法技巧分类讨论思想在集合表示法中的应用典例 (12分)集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .【思路点拨】 明确集合A 的含义→对k 加以讨论→求出k 值→写出集合A【规范解答】 (1)当k =0时,原方程变为-8x +16=0, x =2.2分此时集合A ={2}.4分(2)当k≠0时,要使一元二次方程kx2-8x+16=0有两个相等实根.6分只需Δ=64-64k=0,即k=1.8分此时方程的解为x1=x2=4,集合A={4},满足题意.10分综上所述,实数k的值为0或1.当k=0时,A={2};当k=1时,A={4}.12分1.解答与描述法有关的问题时,明确集合中代表元素及其共同特征是解题的切入点.2.本题因kx2-8x+16=0是否为一元二次方程而分k=0和k≠0而展开讨论,从而做到不重不漏.3.集合与方程的综合问题,一般要求对方程中最高次项的系数的取值进行分类讨论,确定方程的根的情况,进而求得结果.需特别关注判别式在一元二次方程的实数根个数的讨论中的作用.小结:1.表示一个集合可以用列举法,也可以用描述法,一般地,若集合元素为有限个,常用列举法,集合元素为无限个多用描述法.2.处理描述法给出的集合问题时,首先要明确集合的代表元素,特别要分清数集和点集;其次要确定元素满足的条件是什么.5。
第2课时集合的表示学习目标:1.初步掌握集合的两种表示方法——列举法、描述法,感受集合语言的意义和作用.(重点)2.会用集合的两种表示方法表示一些简单集合.(重点、难点)[自主预习·探新知]1.列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为描述法.一般形式为A={x∈I|p},其中x叫做代表元素,I是代表元素x的取值范围,p是各元素的共同特征.思考:(1)不等式x-2<3的解集中的元素有什么共同特征?(2)如何用描述法表示不等式x-2<3的解集?[提示](1)元素的共同特征为x∈R,且x<5.(2){x|x<5,x∈R}.[基础自测]1.思考辨析(1)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( )(2)集合{(1,2)}中的元素是1和2.( )(3)集合A={x|x-1=0}与集合B={1}表示同一个集合.( )[答案](1)×(2)×(3)√2.方程x2=4的解集用列举法表示为( )A.{(-2,2)} B.{-2,2}C.{-2} D.{2}B[由x2=4得x=±2,故用列举法可表示为{-2,2}.]3.用描述法表示函数y=3x+1图象上的所有点的是( )【导学号:37102022】A.{x|y=3x+1} B.{y|y=3x+1}C.{(x,y)|y=3x+1} D.{y=3x+1}C[该集合是点集,故可表示为{(x,y)|y=3x+1},选C.]4.不等式4x-5<7的解集为________.{x|4x-5<7} [用描述法可表示为{x|4x-5<7}.][合作探究·攻重难]用列举法表示集合用列举法表示下列给定的集合:(1)不大于10的非负偶数组成的集合A.(2)小于8的质数组成的集合B.(3)方程2x 2-x -3=0的实数根组成的集合C .(4)一次函数y =x +3与y =-2x +6的图象的交点组成的集合D .[解] (1)不大于10的非负偶数有0,2,4,6,8,10,所以A ={0,2,4,6,8,10}. (2)小于8的质数有2,3,5,7, 所以B ={2,3,5,7}.(3)方程2x 2-x -3=0的实数根为-1,32.所以C =⎩⎨⎧⎭⎬⎫-1,32.(4)由⎩⎪⎨⎪⎧y =x +3,y =-2x +6,得⎩⎪⎨⎪⎧x =1,y =4.所以一次函数y =x +3与y =-2x +6的交点为(1,4), 所以D ={(1,4)}.[规律方法] 用列举法表示集合的个步骤求出集合的元素把元素一一列举出来,且相同元素只能列举一次 用花括号括起来提醒:二元方程组的解集,函数的图象点形成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“,”隔开.如{2,3,5,-1}.[跟踪训练]1.用列举法表示下列集合:(1)方程组⎩⎪⎨⎪⎧x +y =2,x -y =0的解集;(2)A ={(x ,y )|x +y =3,x ∈N ,y ∈N }.【导学号:37102023】[解] (1)由⎩⎪⎨⎪⎧x +y =2,x -y =0,解得⎩⎪⎨⎪⎧x =1,y =1,故该方程组的解集为{(1,1)}. (2)因为x ∈N ,y ∈N ,x +y =3,所以⎩⎪⎨⎪⎧x =0,y =3或⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =2,y =1或⎩⎪⎨⎪⎧x =3,y =0.故A ={(0,3),(1,2),(2,1),(3,0)}.用描述法表示集合用描述法表示下列集合: (1)比1大又比10小的实数的集合;(2)平面直角坐标系中第二象限内的点组成的集合;(3)被3除余数等于1的正整数组成的集合. [解] (1){x ∈R |1<x <10}.(2)集合的代表元素是点,用描述法可表示为{(x ,y )|x <0,且y >0}. (3){x |x =3n +1,n ∈N }. [规律方法]描述法表示集合的个步骤[跟踪训练]2.用描述法表示下列集合:图111(1)函数y =-2x 2+x 图象上的所有点组成的集合; (2)不等式2x -3<5的解组成的集合;(3)如图111中阴影部分的点(含边界)的集合; (4)3和4的所有正的公倍数构成的集合.【导学号:37102024】[解] (1)函数y =-2x 2+x 的图象上的所有点组成的集合可表示为{(x ,y )|y =-2x 2+x }. (2)不等式2x -3<5的解组成的集合可表示为{x |2x -3<5},即{x |x <4}.(3)图中阴影部分的点(含边界)的集合可表示为{(x ,y )|-1≤x ≤32,-12≤y ≤1,xy ≥0}.(4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x |x =12n ,n ∈N *}.集合表示方法的综合应用 [探究问题] 1.下面三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x ,y )|y =x 2+1}. (1)它们各自的含义是什么? (2)它们是不是相同的集合?提示:(1)集合①{x |y =x 2+1}的代表元素是x ,满足条件y =x 2+1中的x ∈R ,所以实质上{x |y =x 2+1}=R ;集合②的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以实质上{y |y =x 2+1}={y |y ≥1};集合③{(x ,y )|y =x 2+1}的代表元素是(x ,y ),可以认为是满足y =x 2+1的数对(x ,y )的集合,也可以认为是坐标平面内的点(x ,y )构成的集合,且这些点的坐标满足y =x 2+1,所以{(x ,y )|y =x 2+1}={P |P 是抛物线y =x 2+1上的点}.(2)由(1)中三个集合各自的含义知,它们是不同的集合. 2.设集合A ={x |ax 2+x +1=0}. (1)构成集合A 的元素是什么?(2)方程ax 2+x +1=0是关于x 的一元二次方程吗,为什么? 提示:(1)构成集合A 的元素是方程ax 2+x +1=0的根.(2)不一定.当a =0时,方程是关于x 的一元一次方程;当a ≠0时,方程是关于x 的一元二次方程.集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合. 思路探究:A 中只有一个元素――→等价转化方程kx 2-8x +16=0只有一解――→分类讨论求实数k 的值[解] (1)当k =0时,方程kx 2-8x +16=0变为-8x +16=0,解得x =2,满足题意; (2)当k ≠0时,要使集合A ={x |kx 2-8x +16=0}中只有一个元素,则方程kx 2-8x +16=0只有一个实数根,所以Δ=64-64k =0,解得k =1,此时集合A ={4},满足题意. 综上所述,k =0或k =1,故实数k 的值组成的集合为{0,1}.母题探究:1.(变条件)本例若将条件“只有一个元素”改为“有两个元素”其他条件不变,求实数k 的值组成的集合.[解] 由题意可知,方程kx 2-8x +16=0有两个不等实根. 故Δ=64-64k >0,即k <1. 所以实数k 组成的集合为{k |k <1}.2.(变条件)本例若将条件“只有一个元素”改为“至少有一个元素”,其他条件不变,求实数k 的取值范围.[解] 由题意可知,方程kx 2-8x +16=0至少有一个实数根. ①当k =0时,由-8x +16=0得x =2,合题意;②当k ≠0时,要使方程kx 2-8x +16=0至少有一个实数根,则Δ=64-64k ≤0,即k ≥1.综合①②可知,实数k 的取值集合为{k |k =0或k ≥1}.[规律方法] 1.若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如例3中集合A 中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.2.在学习过程中要注意数学素养的培养,如本例中用到了等价转化思想和分类讨论的思想.[当 堂 达 标·固 双 基]1.不等式x -3<2且x ∈N *的解集用列举法可表示为( )【导学号:37102025】A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}B [由x -3<2可知x <5,又x ∈N *,故x 可以为1,2,3,4,故选B.] 2.若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4B [集合A 中有两个元素:(1,2),(3,4).] 3.如果A ={x |x >-1},那么( )【导学号:37102026】A .-2∈AB .{0}∈AC .-3∈AD .0∈AD [∵0>-1,故0∈A ,选D.]4.设集合A ={x |x 2-3x +a =0},若4∈A ,则集合A 用列举法表示为________. {-1,4} [∵4∈A ,∴16-12+a =0,∴a =-4, ∴A ={x |x 2-3x -4=0}={-1,4}.] 5.用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解集;(2)所有的正方形;(3)抛物线y =x 2上的所有点组成的集合.【导学号:37102027】[解] (1)解方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故解集为{(4,-2)}.(2)集合用描述法表示为{x |x 是正方形},简写为{正方形}. (3)集合用描述法表示为{(x ,y )|y =x 2}.。
第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集∅【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(20)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →. ②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:yxo(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 【2.2.2】对数函数及其性质(5)对数函数(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a =-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2⇔②x 1≤x 2<k ⇔③x 1<k <x 2⇔af (k )<0④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k2⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q=②02x a->,则()M f p =xxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m f q =②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高中数学 知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念 集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法 N 表示自然数集,N* 或N + 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B {x A A =∅=∅B A ⊆ B B ⊆B {x A A = A ∅=B A ⊇ B B ⊇A ð{x ()U A =∅ð ()U A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法()()()U U A B A B =痧?()()()U U A B A B =痧?(2)一元二次不等式的解法〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由yxo于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)a f xx a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈, 都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在处有定义,则.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图: ①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位 0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换 01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸 ③对称变换 ()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
第2课时集合的表示
学习目标:1.初步掌握集合的两种表示方法——列举法、描述法,感受集合语言的意义和作用.(重点)2.会用集合的两种表示方法表示一些简单集合.(重点、难点)
[自主预习·探新知]
1.列举法
把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.
2.描述法
用集合所含元素的共同特征表示集合的方法称为描述法.一般形式为A={x∈I|p},其中x叫做代表元素,I是代表元素x的取值范围,p是各元素的共同特征.
思考:(1)不等式x-2<3的解集中的元素有什么共同特征?
(2)如何用描述法表示不等式x-2<3的解集?
[提示](1)元素的共同特征为x∈R,且x<5.
(2){x|x<5,x∈R}.
[基础自测]
1.思考辨析
(1)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( )
(2)集合{(1,2)}中的元素是1和2.( )
(3)集合A={x|x-1=0}与集合B={1}表示同一个集合.( )
[答案](1)×(2)×(3)√
2.方程x2=4的解集用列举法表示为( )
A.{(-2,2)} B.{-2,2}
C.{-2} D.{2}
B[由x2=4得x=±2,故用列举法可表示为{-2,2}.]
3.用描述法表示函数y=3x+1图象上的所有点的是( )
【导学号:37102022】A.{x|y=3x+1} B.{y|y=3x+1}
C.{(x,y)|y=3x+1} D.{y=3x+1}
C[该集合是点集,故可表示为{(x,y)|y=3x+1},选C.]
4.不等式4x-5<7的解集为________.
{x|4x-5<7} [用描述法可表示为{x|4x-5<7}.]
[合作探究·攻重难]
用列举法表示集合
用列举法表示下列给定的集合:
(1)不大于10的非负偶数组成的集合A.
(2)小于8的质数组成的集合B.
(3)方程2x 2
-x -3=0的实数根组成的集合C .
(4)一次函数y =x +3与y =-2x +6的图象的交点组成的集合D .
[解] (1)不大于10的非负偶数有0,2,4,6,8,10,所以A ={0,2,4,6,8,10}. (2)小于8的质数有2,3,5,7, 所以B ={2,3,5,7}.
(3)方程2x 2
-x -3=0的实数根为-1,32.所以C =⎩⎨⎧⎭⎬⎫-1,32.
(4)由⎩
⎪⎨
⎪⎧
y =x +3,
y =-2x +6,得⎩
⎪⎨
⎪⎧
x =1,
y =4.
所以一次函数y =x +3与y =-2x +6的交点为(1,4), 所以D ={(1,4)}.
[跟踪训练]
1.用列举法表示下列集合:
(1)方程组⎩
⎪⎨
⎪⎧
x +y =2,
x -y =0的解集;
(2)A ={(x ,y )|x +y =3,x ∈N ,y ∈N }.
【导学号:37102023】
[解] (1)由⎩
⎪⎨
⎪⎧
x +y =2,
x -y =0,解得⎩
⎪⎨
⎪⎧
x =1,
y =1,
故该方程组的解集为{(1,1)}. (2)因为x ∈N ,y ∈N ,x +y =3,
所以⎩
⎪⎨
⎪⎧
x =0,
y =3或⎩
⎪⎨
⎪⎧
x =1,
y =2或⎩
⎪⎨
⎪⎧
x =2,
y =1或⎩
⎪⎨
⎪⎧
x =3,
y =0.
故A ={(0,3),(1,2),(2,1),(3,0)}.
用描述法表示集合
用描述法表示下列集合: (1)比1大又比10小的实数的集合;
(2)平面直角坐标系中第二象限内的点组成的集合;
(3)被3除余数等于1的正整数组成的集合. [解] (1){x ∈R |1<x <10}.
(2)集合的代表元素是点,用描述法可表示为{(x ,y )|x <0,且y >0}. (3){x |x =3n +1,n ∈N }.
[跟踪训练]
2.用描述法表示下列集合:
图111
(1)函数y =-2x 2
+x 图象上的所有点组成的集合; (2)不等式2x -3<5的解组成的集合;
(3)如图111中阴影部分的点(含边界)的集合; (4)3和4的所有正的公倍数构成的集合.
【导学号:37102024】
[解] (1)函数y =-2x 2
+x 的图象上的所有点组成的集合可表示为{(x ,y )|y =-2x 2
+x }. (2)不等式2x -3<5的解组成的集合可表示为{x |2x -3<5},即{x |x <4}.
(3)图中阴影部分的点(含边界)的集合可表示为{(x ,y )|-1≤x ≤32,-1
2≤y ≤1,xy ≥0}.
(4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x |x =12n ,n ∈N *
}.
集合表示方法的综合应用 [探究问题] 1.下面三个集合:
①{x |y =x 2
+1};②{y |y =x 2
+1};③{(x ,y )|y =x 2
+1}. (1)它们各自的含义是什么? (2)它们是不是相同的集合?
提示:(1)集合①{x |y =x 2
+1}的代表元素是x ,满足条件y =x 2
+1中的x ∈R ,所以实质上{x |y =x 2
+1}=R ;
集合②的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以实质上{y |y =x 2
+1}={y |y ≥1};
集合③{(x ,y )|y =x 2
+1}的代表元素是(x ,y ),可以认为是满足y =x 2
+1的数对(x ,y )的集合,也可以认为是坐标平面内的点(x ,y )构成的集合,且这些点的坐标满足y =x 2
+1,所以{(x ,y )|y =x 2
+1}={P |P 是抛物线y =x 2
+1上的点}.
(2)由(1)中三个集合各自的含义知,它们是不同的集合. 2.设集合A ={x |ax 2
+x +1=0}. (1)构成集合A 的元素是什么?
(2)方程ax 2
+x +1=0是关于x 的一元二次方程吗,为什么? 提示:(1)构成集合A 的元素是方程ax 2
+x +1=0的根.
(2)不一定.当a =0时,方程是关于x 的一元一次方程;当a ≠0时,方程是关于x 的一元二次方程.
集合A ={x |kx 2
-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合. 思路探究:A 中只有一个元素――→等价转化
方程kx 2
-8x +16=0只有一解――→分类讨论求实数k 的值
[解] (1)当k =0时,方程kx 2
-8x +16=0变为-8x +16=0,解得x =2,满足题意; (2)当k ≠0时,要使集合A ={x |kx 2
-8x +16=0}中只有一个元素,则方程kx 2
-8x +16=0只有一个实数根,所以Δ=64-64k =0,解得k =1,此时集合A ={4},满足题意. 综上所述,k =0或k =1,故实数k 的值组成的集合为{0,1}.
[当 堂 达 标·固 双 基]
1.不等式x -3<2且x ∈N *
的解集用列举法可表示为( )
【导学号:37102025】
A .{0,1,2,3,4}
B .{1,2,3,4}
C .{0,1,2,3,4,5}
D .{1,2,3,4,5}
B [由x -3<2可知x <5,又x ∈N *
,故x 可以为1,2,3,4,故选B.] 2.若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3
D .4
B [集合A 中有两个元素:(1,2),(3,4).] 3.如果A ={x |x >-1},那么( )
【导学号:37102026】
A .-2∈A
B .{0}∈A
C .-3∈A
D .0∈A
D [∵0>-1,故0∈A ,选D.]
4.设集合A ={x |x 2
-3x +a =0},若4∈A ,则集合A 用列举法表示为________. {-1,4} [∵4∈A ,∴16-12+a =0,∴a =-4, ∴A ={x |x 2
-3x -4=0}={-1,4}.] 5.用适当的方法表示下列集合:
(1)方程组⎩
⎪⎨
⎪⎧
2x -3y =14,
3x +2y =8的解集;
(2)所有的正方形;
(3)抛物线y =x 2
上的所有点组成的集合.
【导学号:37102027】
[解] (1)解方程组⎩
⎪⎨
⎪⎧
2x -3y =14,
3x +2y =8,得⎩
⎪⎨
⎪⎧
x =4,
y =-2,
故解集为{(4,-2)}.
(2)集合用描述法表示为{x |x 是正方形},简写为{正方形}. (3)集合用描述法表示为{(x ,y )|y =x 2
}.。