当前位置:文档之家› 51单片机延时程序的设计方法

51单片机延时程序的设计方法

51单片机延时程序的设计方法

51单片机延时程序的设计方法

应用单片机的时候,经常会遇到需要短时间延时的情况。需要的延时时间

很短,一般都是几十到几百微妙(us)。有时候还需要很高的精度,比如用单片

机驱动DS18B20 的时候,误差容许的范围在十几us 以内,不然很容易出错。

这种情况下,用计时器往往有点小题大做。而在极端的情况下,计时器甚至已

经全部派上了别的用途。这时就需要我们另想别的办法了。以前用汇编语言

写单片机程序的时候,这个问题还是相对容易解决的。比如用的是12MHz 晶

振的51,打算延时20us,只要用下面的代码,就可以满足一般的需要:mov

r0, #09h loop: djnz r0, loop 51 单片机的指令周期是晶振频率的1/12,也就是1us

一个周期。mov r0, #09h 需要2 个极其周期,djnz 也需要2 个极其周期。那么

存在r0 里的数就是(20-2)/2。用这种方法,可以非常方便的实现256us 以下时

间的延时。如果需要更长时间,可以使用两层嵌套。而且精度可以达到2us,

一般来说,这已经足够了。现在,应用更广泛的毫无疑问是Keil 的C 编译器。

相对汇编来说,C 固然有很多优点,比如程序易维护,便于理解,适合大的项

目。但缺点(我觉得这是C 的唯一一个缺点了)就是实时性没有保证,无法预

测代码执行的指令周期。因而在实时性要求高的场合,还需要汇编和C 的联合

应用。但是是不是这样一个延时程序,也需要用汇编来实现呢?为了找到这个

答案,我做了一个实验。用C 语言实现延时程序,首先想到的就是C 常用的

循环语句。下面这段代码是我经常在网上看到的:void delay2(unsigned char i) { for(; i != 0; i--); } 到底这段代码能达到多高的精度呢?为了直接衡量这段代码

的效果,我把Keil C 根据这段代码产生的汇编代码找了出来:; FUNCTION

_delay2 (BEGIN) ; SOURCE LINE # 18 ;---- Variable i assigned to Register R7 ---- ; SOURCE LINE # 19 ; SOURCE LINE # 20 0000 ?C0007: 0000 EF MOV A,R7

基于51单片机的精确延时(微秒级)

声明: *此文章是基于51单片机的微秒级延时函数,采用12MHz晶振。 *此文章共包含4个方面,分别是延时1us,5us,10us和任意微秒。前三个方面是作者学习过程中从书本或网络上面总结的,并非本人所作。但是延时任意微秒函数乃作者原创且亲测无误。欢迎转载。 *此篇文章是作者为方便初学者使用而写的,水平有限,有误之处还望大家多多指正。 *作者:Qtel *2012.4.14 *QQ:97642651 ----------------------------------------------------------------------------------------------------------------------序: 对于某些对时间精度要求较高的程序,用c写延时显得有些力不从心,故需用到汇编程序。本人通过测试,总结了51的精确延时函数(在c语言中嵌入汇编)分享给大家。至于如何在c 中嵌入汇编大家可以去网上查查,这方面的资料很多,且很简单。以12MHz晶振为例,12MHz 晶振的机器周期为1us,所以,执行一条单周期指令所用时间就是1us,如NOP指令。下面具体阐述一下。 ----------------------------------------------------------------------------------------------------------------------1.若要延时1us,则可以调用_nop_();函数,此函数是一个c函数,其相当于一个NOP指令,使用时必须包含头文件“intrins.h”。例如: #include #include void main(void){ P1=0x0; _nop_();//延时1us P1=0xff; } ----------------------------------------------------------------------------------------------------------------------2.延时5us,则可以写一个delay_5us()函数: delay_5us(){ #pragma asm nop #pragma endasm } 这就是一个延时5us的函数,只需要在需要延时5us时调用此函数即可。或许有人会问,只有一个NOP指令,怎么是延时5us呢? 答案是:在调用此函数时,需要一个调用指令,此指令消耗2个周期(即2us);函数执行完毕时要返回主调函数,需要一个返回指令,此指令消耗2个周期(2us)。调用和返回消耗了2us+2us=4us。然后再加上一个NOP指令消耗1us,不就是5us吗。

51单片机课程设计

课程设计说明书
课程设计名称






学生姓名
指导教师
单片机原理及应用课程设计 电子信息工程 140405 20141329 李延琦 胡黄水
2016 年 12 月 26 日

课程设计任务书
课程设计 题目
酒精测试仪
起止日期
2016 年 12 月 26 日— 2017 年 1 月 6 日
设计地点
计算机科学与工程学 院单片机实验室 3409
设计任务及日程安排: 设计任务:分两部分: (一)、设计实现类:进行软、硬件设计,并上机编程、联线、调试、 实现; 1.电子钟的设计 2.交通灯的设计 3.温度计的设计 4.点阵显示 5.电机调速 6.电子音乐发声(自己选曲) 7.键盘液晶显示系统 (二)、应用系统设计类:不须上机,查资料完成软、硬件设计画图。 查资料选定题目。 说明:第 1--7 题任选其二即可。(二)里题目自拟。 日程安排: 本次设计共二周时间,日程安排如下: 第 1 天:查阅资料,确定题目。 第 2--4 天:进实验室做实验,连接硬件并编写程序作相关的模块实验。 第 5--7 天:编写程序,并调试通过。观察及总结硬件实验现象和结果。 第 8--9 天:整理资料,撰写课程设计报告,准备答辩。 第 10 天:上交课程设计报告,答辩。 设计报告要求:
1. 设计报告里有两个内容,自选题目内容+附录(实验内容),每 位同学独立完成。 2. 自选题目不须上机实现,要求能正确完成硬件电路和软件程序 设计。内容包括: 1) 设计题目、任务与要求 2)硬件框图与电路图 3) 软件及流程图 (a)主要模块流程图 (b)源程序清单与注释 4) 总结 5) 参考资料 6)附录 实验上机调试内容
注:此任务书由指导教师在课程设计前填写,发给学生做为本门课程设计 的依据。

MCS-51系列单片机程序的设计论文一

MCS-51系列单片机程序的设计论文 程序设计是单片机开发最重要的工作,程序设计就是利用单片机的指令系统,根据应用系统(即目标产品)的要求编写单片机的应用程序,其实我们前面已经开始这样做过了,这一课我们不是讲如何来设计具体的程序,而是教您设计单片机程序的基本方法。不过在讲解程序设计是单片机开发最重要的工作,程序设计就是利用单片机的指令系统,根据应用系统(即 目标产品)的要求编写单片机的应用程序,其实我们前面已经开始这样做过了,这一课我们不是讲如何 来设计具体的程序,而是教您设计单片机程序的基本方法。不过在讲解之前还是有必要先了解一下单片 机的程序设计语言。 一.程序设计语言 这里的语言与我们通常理解的语言是有区别的,它指的是为开发单片机而设计的程序语言,如果 您没有学过程序设计可能不太明白,我给大家简单解释一下,您知道微软的VB,VC 吗?VB,VC 就是为 某些工程应用而设计的计算机程序语言,通俗地讲,它是一种设计工具,只不过这种工具是用来设计计 算机程序的。要想设计单片机的程序当然也要有这样一种工具(说设计语言更确切些),单片机的设计 语言基本上有三类: 1.完全面向机器的机器语言 机器语言就是能被单片机直接识别和执行的语言,计算机能识别什么?以前我们讲过--是数字“0” 或“1”,所以机器语言就是用一连串的“0”或“1”来表示的数字。比如:MOV A,40H;用机器语言 来表示就是11100101 0100000,很显然,用机器语言来编写单片机的程序不太方便,也不好记忆,我 们必须想办法用更好的语言来编写单片机的程序,于是就有了专门为单片机开发而设计的语言: 2.汇编语言 汇编语言也叫符号化语言,它使用助记符来代替二进制的“0”和“1”,比如:刚才的MOV A, 40H 就是汇编语言指令,显然用汇编语言写成的程序比机器语言好学也好记,所以单片机的指令普遍采 用汇编指令来编写,用汇编语言写成的程序我们就叫它源程序或源代码。可是计算机不能识别和执行用 汇编语言写成的程序啊?怎么办?当然有办法,我们可以通过“翻译”把源代码译成机器语言,这个过 程就叫做汇编,汇编工作现在都是由计算机借助汇编程序自动完成的,不过在以前,都是靠手工来做的。 值得注意的是,汇编语言也是面向机器的,它仍是一种低级语言。每一类计算机

单片机一些常用的延时与中断问题及解决方法

单片机一些常用的延时与中断问题及解决方法 延时与中断出错,是单片机新手在单片机开发应用过程中,经常会遇到的问题,本文汇总整理了包含了MCS-51系列单片机、MSP430单片机、C51单片机、8051F的单片机、avr单片机、STC89C52、PIC单片机…..在内的各种单片机常见的延时与中断问题及解决方法,希望对单片机新手们,有所帮助! 一、单片机延时问题20问 1、单片机延时程序的延时时间怎么算的? 答:如果用循环语句实现的循环,没法计算,但是可以通过软件仿真看到具体时间,但是一般精精确延时是没法用循环语句实现的。 如果想精确延时,一般需要用到定时器,延时时间与晶振有关系,单片机系统一般常选用 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 2、求个单片机89S51 12M晶振用定时器延时10分钟,控制1个灯就可以 答:可以设50ms中断一次,定时初值,TH0=0x3c、TL0=0xb0。中断20次为1S,10分钟的话,需中断12000次。计12000次后,给一IO口一个低电平(如功率不够,可再加扩展),就可控制灯了。 而且还要看你用什么语言计算了,汇编延时准确,知道单片机工作周期和循环次数即可算出,但不具有可移植性,在不同种类单片机中,汇编不通用。用c的话,由于各种软件执行效率不一样,不会太准,通常用定时器做延时或做一个不准确的延时,延时短的话,在c中使用汇编的nop做延时 3、51单片机C语言for循环延时程序时间计算,设晶振12MHz,即一个机器周期是1us。for(i=0,i<100;i++) for(j=0,j<100;j++) 我觉得时间是100*100*1us=10ms,怎么会是100ms 答: 不可能的,是不是你的编译有错的啊

51单片机控制LED灯程序设计

51单片机:LED灯亮灯灭程序设计 1.功能说明:控制单片机P1端口输出,使P1.0位所接的LED点亮,其他7只灯熄灭。 程序: 01: MOV A , #11111110B ; 存入欲显示灯的位置数据 02: MOV P1,A ; 点亮第一只灯 03: JMP $ ; 保持当前的输出状态 04: END ; 程序结束 2.功能说明:单片机P1端口接8只LED,点亮第1、3、4、6、7、8只灯。 程序:

01:START: MOV A , #00010010B ; 存入欲显示灯的位置数据 02:MOV P1,A ; 点亮灯 03:JMP START ; 重新设定显示值 04:END ; 程序结束 3.功能说明:单片机P1端口接8只LED,每次点亮一只,向左移动点亮,重复循环。 程序: 01:START: MOV R0, #8 ;设左移8次 02:MOV A, #11111110B ;存入开始点亮灯位置

03:LOOP: MOV P1, A ;传送到P1并输出 04:RL A ;左移一位 05:DJNZ R0, LOOP ;判断移动次数 06:JMP START ;重新设定显示值 07:END ;程序结束 4.功能说明:单片机P1端口接8只LED,每次点亮一只,向右移动点亮,重复循环。 程序: 01:START: MOV R0, #8 ;设右移8次

02:MOV A, #01111111B ;存入开始点亮灯位置03: LOOP: MOV P1, A ;传送到P1并输出 04: ACALL DELAY ;调延时子程序05: RR A ;右移一位 06: DJNZ R0, LOOP ;判断移动次数07: JMP START ;重新设定显示值08: DELAY: MOV R5,#50 ; 09:DLY1: MOV R6,#100 ; 10: DLY2: MOV R7,#100 ;

51单片机DIY做PLC编程精编版

51单片机DIY做PLC编程 有朋友想定制一个净水机控制器,有一些独特的功能要增加,但是商品控制板没有这样的功能,问我能否做一个,我觉得单片机完全能满足这种简单的控制需要,上手开始编程序时候突然感到,用PLC逻辑编这种功能是非常简单轻松的,而如果用汇编或C编却感觉有点棘手,编程效率不高,所以想为何不在单片机上实现PLC的逻辑呢? 上网搜索尝试看能否找到合适的程序下载来稍微改改就能用的呢?方案几年前就有了,实际上是利用三菱的低档PLC编程软件编辑好梯形图,存盘后用专用的格式转换工具转换成HEX单片机烧写文件烧进去,尝试下载三菱PLC工具软件,但是在我的WIN7-64位系统上不能正常工作,好容易换了系统装好开发工具,但是初次上手这款开发工具,界面挺复杂的,懒得研究各个按钮的使用,由于是单片机的硬件,对于程序的编制和转换有很多限制条件,否则是转换不成功的,嫌麻烦,放弃! 某宝倒是有百元PLC板出售,但是为了这么个简单的东西专门买个全功能板子有点浪费,而且其编程软件仍然是三菱的盗版软件,算了,再想办法把。 由于工作中经常接触PLC程序,对其工作原理也略知一二,网上也有相关的说明介绍,其实就是三个主要步骤,第一步扫描IO输入,第二步执行逻辑,第三步输出逻辑到IO,很简单的,最早PLC也是用单片机实现的,我为何不用汇编在51上搭建一个架构,简单的逻辑编制进去就能运转呢? 其中逻辑执行步骤还是有点意思的,需要把PLC逻辑翻译成单片机的汇编语言执行,这块开始也没有把握,后来搜索到一篇百度文章,介绍了一下三菱PLC逻辑是如何翻译成汇编的,我看了下估计其实是利用反汇编工具把HEX反编译成的ASM代码,并不清晰明了,而且还带着反汇编时候的行号,仅供参考了。 搜索结果中也有几篇论文,涉及到在51单片机上实现PLC逻辑的内容,但是那些论文都是充数的,仅仅几个IO逻辑,没有什么定时器,计数器功能的体现,哎!仅供参考! 看来这个PLC系统还是需要自己写了!OK!既然决定自己重写,那就开工吧!利用春节休假时间,编制了如下ASM51汇编PLC代码: 代码主要架构如下: 1、IO定义部分:根据所使用的单片机IO口数量,任意指定多少个I多少个O,那几个脚是I,哪几个是O都可以任意指定,在这个51系统里面设计了最大32个I,32个O,占用64个位寻址区域,其实用不到那么多,也可以分配给其它需要的标志位用,因为51系统总可位寻址地址只有128位,需要仔细分配.

51单片机的几种精确延时

51单片机的几种精确延时实现延时 51单片机的几种精确延时实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC 语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); } Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 μs。主函数调用Delay10us( )时,先执行一个LCALL指令(2 μs),然后执行6个_NOP_( )语句(6 μs),最后执行了一个RET指令(2 μs),所以执行上述函数时共需要10 μs。可以把这一函数

单片机一些常用的延时与中断问题及解决方法

延时与中断出错,是单片机新手在单片机开发应用过程中,经常会遇到的问题,本文汇总整理了包含了MCS-51系列单片机、MSP430单片机、C51单片机、8051F的单片机、avr单片机、STC89C52、PIC单片机…..在内的各种单片机常见的延时与中断问题及解决方法,希望对单片机新手们,有所帮助! 一、单片机延时问题20问 1、单片机延时程序的延时时间怎么算的? 答:如果用循环语句实现的循环,没法计算,但是可以通过软件仿真看到具体时间,但是一般精精确延时是没法用循环语句实现的。 如果想精确延时,一般需要用到定时器,延时时间与晶振有关系,单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 2、求个单片机89S51 12M晶振用定时器延时10分钟,控制1个灯就可以 答:可以设50ms中断一次,定时初值,TH0=0x3c、TL0=0xb0。中断20次为1S,10分钟的话,需中断12000次。计12000次后,给一IO口一个低电平(如功率不够,可再加扩展),就可控制灯了。 而且还要看你用什么语言计算了,汇编延时准确,知道单片机工作周期和循环次数即可算出,但不具有可移植性,在不同种类单片机中,汇编不通用。用c的话,由于各种软件执行效率不一样,不会太准,通常用定时器做延时或做一个不准确的延时,延时短的话,在c中使用汇编的nop做延时 3、51单片机C语言for循环延时程序时间计算,设晶振12MHz,即一个机器周期是1us。for(i=0,i<100;i++) for(j=0,j<100;j++) 我觉得时间是100*100*1us=10ms,怎么会是100ms 答: 不可能的,是不是你的编译有错的啊 我改的晶振12M,在KEIL 4.0 里面编译的,为你得出的结果最大也就是40ms,这是软件的原因, 不可能出现100ms那么大的差距,是你的软件的原因。 不信你实际编写一个秒钟,利用原理计算编写一个烧进单片机和利用软件测试的秒程序烧进单片机,你会发现原理计算的程序是正确的

C51精确延时

C51中精确延时 C语言最大的缺点就是实时性差,我在网上到看了一些关于延时的讨论,其中有篇文章51单片机Keil C 延时程序的简单研究,作者:InfiniteSpace Studio/isjfk,写得不错,他是用while(--i);产生DJNZ 来实现精确延时,后来有人说如果while里面不能放其它语句,否则也不行,用do-while就可以,具体怎样我没有去试.所有这些都没有给出具体的实例程序来.还看到一些延时的例子多多少少总有点延时差.为此我用for循环写了几个延时的子程序贴上来,希望能对初学者有所帮助.(晶振12MHz,一个机器周期1us.) 在精确延时的计算当中,最容易让人忽略的是计算循环外的那部分延时,在对时间要求不高的场合,这部分对程序不会造成影响. 一. 500ms延时子程序 程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0;j--) for(k=81;k>0;k--); } 产生的汇编: C:0x0800 7F0F MOV R7,#0x0F C:0x0802 7ECA MOV R6,#0xCA C:0x0804 7D51 MOV R5,#0x51 C:0x0806 DDFE DJNZ R5,C:0806 C:0x0808 DEFA DJNZ R6,C:0804 C:0x080A DFF6 DJNZ R7,C:0802 C:0x080C 22 RET 计算分析: 程序共有三层循环 一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us 循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us 延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms 计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序 程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--)

51单片机延时时间计算和延时程序设计

一、关于单片机周期的几个概念 ●时钟周期 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12MHz的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。 ●机器周期 完成一个基本操作所需要的时间称为机器周期。 以51为例,晶振12M,时钟周期(晶振周期)就是(1/12)μs,一个机器周期包 执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 1.指令含义 DJNZ:减1条件转移指令 这是一组把减1与条件转移两种功能结合在一起的指令,共2条。 DJNZ Rn,rel ;Rn←(Rn)-1 ;若(Rn)=0,则PC←(PC)+2 ;顺序执行 ;若(Rn)≠0,则PC←(PC)+2+rel,转移到rel所在位置DJNZ direct,rel ;direct←(direct)-1 ;若(direct)= 0,则PC←(PC)+3;顺序执行 ;若(direct)≠0,则PC←(PC)+3+rel,转移到rel 所在位置 2.DJNZ Rn,rel指令详解 例:

MOV R7,#5 DEL:DJNZ R7,DEL; rel在本例中指标号DEL 1.单层循环 由上例可知,当Rn赋值为几,循环就执行几次,上例执行5次,因此本例执行的机器周期个数=1(MOV R7,#5)+2(DJNZ R7,DEL)×5=11,以12MHz的晶振为例,执行时间(延时时间)=机器周期个数×1μs=11μs,当设定立即数为0时,循环程序最多执行256次,即延时时间最多256μs。 2.双层循环 1)格式: DELL:MOV R7,#bb DELL1:MOV R6,#aa DELL2:DJNZ R6,DELL2; rel在本句中指标号DELL2 DJNZ R7,DELL1; rel在本句中指标号DELL1 注意:循环的格式,写错很容易变成死循环,格式中的Rn和标号可随意指定。 2)执行过程

51单片机精确延时源程序

51单片机精确延时源程序 一、晶振为 11.0592MHz,12T 1、延时 1ms: (1)汇编语言: 代码如下: DELAY1MS: ;误差 -0.651041666667us MOV R6,#04H DL0: MOV R5,#71H DJNZ R5,$ DJNZ R6,DL0 RET (2)C语言: void delay1ms(void) //误差 -0.651041666667us { unsigned char a,b; for(b=4;b>0;b--) for(a=113;a>0;a--); } 2、延时 10MS: (1)汇编语言: DELAY10MS: ;误差 -0.000000000002us MOV R6,#97H DL0: MOV R5,#1DH DJNZ R5,$ DJNZ R6,DL0

RET (2)C语言: void delay10ms(void) //误差 -0.000000000002us { unsigned char a,b; for(b=151;b>0;b--) for(a=29;a>0;a--); } 3、延时 100MS: (1)汇编语言: DELAY100MS: ;误差 -0.000000000021us MOV R7,#23H DL1: MOV R6,#0AH I

棋影淘宝店:https://www.doczj.com/doc/6e1822398.html,QQ:149034219 DL0: MOV R5,#82H DJNZ R5,$ DJNZ R6,DL0 DJNZ R7,DL1 RET (2)C语言: void delay100ms(void) //误差 -0.000000000021us { unsigned char a,b,c; for(c=35;c>0;c--) for(b=10;b>0;b--) for(a=130;a>0;a--); } 4、延时 1S: (1)汇编语言: DELAY1S: ;误差 -0.00000000024us MOV R7,#5FH DL1: MOV R6,#1AH DL0: MOV R5,#0B9H DJNZ R5,$ DJNZ R6,DL0 DJNZ R7,DL1 RET (2)C语言: void delay1s(void) //误差 -0.00000000024us { unsigned char a,b,c; for(c=95;c>0;c--) for(b=26;b>0;b--)

51单片机C语言程序设计复习资料

2013-2014学年上期51单片机C语言程序设计重修复习提纲考试方式:闭卷考试。 考试题型: 填空题(每空1分,共18分);单项选择题(每空2分,共18分);问答及计算题(每题4分,共16分);编程及程序阅读题(5小题,共48分)。 考试分数: 卷面成绩70%+平时成绩15%+实验成绩15%,未缺席、无课堂违纪、作业全交且认真完成的同学平时成绩可获得满分,缺席一次平时成绩扣30分,实验好评次数3次以上且实验报告全优的同学实验成绩可得满分,实验缺席一次扣30分。缺席实验和旷课共3次以上者,无考试资格。 考试时间: 18周周一(12月30日)下午14:00:16:00,考试地点:具体考室另行通知希望大家认真复习,认真听讲,不懂就问,考试成绩不及格允许查卷,如查卷卷面批阅无误成绩不做更改。 编程题为实验或实验类似的题目有3题,其余2题也取自课堂讲授例题,请务必认真复习。第一章单片机概述及单片机知识回顾 掌握什么是单片机、单片机的应用、常见单片机类型、十进制、十六进制、二进制数制转换知识。掌握单片机的硬件组成、CPU的结构、程序计数器PC的功能、存储器结构、机器周期的计算、会画出单片机的最小系统电路图及回答单片机最小系统的组成。 第二章C51语言程序设计基础(本章填空题和选择题比重较大请务必认真复习)掌握C51语言进行软件开发与汇编语言相比的优点、掌握C51的数据类型、特殊功能位的定义、C51的基本运算(位运算重点复习)、数组的定义、C51的结构及函数。 第三章AT89S51片内并行端口及编程(本章有编程题) 掌握P0-P3并行端口的特点,会开关量检测及流水灯程序的编程。 第四章AT89S51单片机的中断系统(本章有编程题) 掌握中断系统的结构、中断请求响应被满足的条件、外部中断的触发选择方式、外部中断的使用与编程。 第五章AT89S51单片机的定时器/计数器(本章有编程器) 掌握定时器的结构,TOMD及TCON的使用,定时器方式0和方式1的特点、会计算定时器初值,会用定时器中断产生PWM波形,会用定时器对外部事件进行计数。 第六章AT89S51单片机的串行口(本章有计算题) 掌握串行通信的基础知识(课本没有的内容请参照课堂讲授笔记或PPT)、串行口的四种工作方式的特点、会计算奇偶校验码、会根据波特率计算T1的初值。 第七章AT89S51单片机与输入/输出外设接口(本章有编程题) 掌握数码管动态显示的原理、掌握矩阵式键盘的原理与编程(矩阵键盘编程必考,但不会考4X4键盘)。 第八章AT89S51单片机与D/A与A/D转换器的接口(本章有编程题) 掌握AD与DA转换的接口、ADC和DAC的技术指标、常用AD和DA转换器。掌握ADC0809和TLC2543的使用与编程(2器件其中之一有编程题)。 第九章AT89S51单片机应用系统与调试(本章有编程题) 掌握单片机应用系统的软件抗干扰方法。

基于51单片机秒表的程序设计[1]

基于51单片机秒表的程序设计 1.设计目的: (1)利用单片机定时器中断和定时器计数方式实现秒、分定时。 (2)通过LED显示程序的调整,熟悉8155与8051,8155与LED的接口技术,熟悉LED动态显示的控制过程。 (3)通过键盘程序的调整,熟悉8155与矩阵式键盘的接口技术,熟悉键盘扫描原理。 (4)通过阅读和调试简易秒表整体程序,学会如何编制含LED动态显示、键盘扫描和定时器中断等多种功能的综合程序,初步体会大型程序的编制和调试技巧。 2.设计步骤与要求 (1)要求:以8位LED右边2位显示秒,左边6位显示0,实现秒表计时显示。以4×4矩阵键盘的KE0、KE1、KE2等3键分别实现启动、停止、清零等功能。 (2)方法:用单片机定时器T0中断方式,实现1秒定时;利用单片机定时器1方式3计数,实现60秒计数。用动态显示方式实现秒表计时显示,用键盘扫描方式取得KE0、KE1、KE2的键值,用键盘处理程序实现秒表的启动、停止、清零等功能。 (3)软件设计:软件整体设计思路是以键盘扫描和键盘处理作为主程序,LED动态显示作为子程序。二者间的联系是:主程序查询有无按键,无按键时,调用二次LED动态显示子程序(约延时8ms)后再回到按键查询状态,不断循环;有按键时,LED动态显示子程序作为按键防抖延时被连续调用二次(约延时16ms),待按键处理程序执行完后,再回到按键查询状态,同时兼顾了按键扫描取值的准确性和LED动态显示的稳定性。秒定时采用定时器T0中断方式进行,60秒计数由定时器1采用方式3完成,中断及计数的开启与关闭受控于按键处理程序。由上述设计思路可设计出软件流程图如图1.1所示。 (5)程序编制:编程时置KE0键为“启动”,置KE1键为“停止”,置KE2键为“清零”,因按键较少,在处理按键值时未采用散转指令“JMP”,而是采用条件转移指令“CJNE”,每条指令后紧跟着一条无条件跳转指令“AJMP”,转至相应的按键处理程序,如不是上述3个按键值则

51单片机延时模块程序

51单片机独立模块 一、延时模块 1、for循环延时 void delayms(UINT8 ms) { UINT8 x,y; for(x=ms;x>0;x--) for(y=112;y>0;y--); } 2、while循环延时 void delayms(UINT8 ms) { UINT8 x; while(ms--) for(x=112;x>0;x--); } 3、精确的单片机常用延时函数:(c代码误差0us 12M)(1)、延时0.5ms void delay0.5ms(void) //误差 0us { unsigned char a,b; for(b=71;b>0;b--) for(a=2;a>0;a--); } (2)、延时1ms void delay1ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=142;b>0;b--) for(a=2;a>0;a--); } (3)、延时2ms void delay2ms(void) //误差 0us { unsigned char a,b; for(b=4;b>0;b--) for(a=248;a>0;a--); _nop_; //if Keil,require use intrins.h } (4)、延时3ms void delay3ms(void) //误差 0us

{ unsigned char a,b; for(b=111;b>0;b--) for(a=12;a>0;a--); } (5)、延时4ms void delay4ms(void) //误差 0us { unsigned char a,b,c; for(c=7;c>0;c--) for(b=8;b>0;b--) for(a=34;a>0;a--); } (6)、延时5ms void delay5ms(void) //误差 0us { unsigned char a,b; for(b=19;b>0;b--) for(a=130;a>0;a--); } (7)、延时10ms void delay10ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=38;b>0;b--) for(a=130;a>0;a--); } (8)、延时15ms void delay15ms(void) //误差 0us { unsigned char a,b,c; for(c=1;c>0;c--) for(b=238;b>0;b--) for(a=30;a>0;a--); } (9)、延时20ms void delay20ms(void) //误差 0us { unsigned char a,b; for(b=215;b>0;b--) for(a=45;a>0;a--); _nop_; //if Keil,require use intrins.h

单片机C 延时时间怎样计算

C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时 应该使用unsigned char作为延时变量。以某晶振为12MHz的单片 机为例,晶振为12M H z即一个机器周期为1u s。一. 500ms延时子程序 程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0;j--) for(k=81;k>0;k--); } 计算分析: 程序共有三层循环 一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值 1us = 3us

循环外: 5us 子程序调用 2us + 子程序返回2us + R7赋值 1us = 5us 延时总时间 = 三层循环 + 循环外 = 499995+5 = 500000us =500ms 计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序 程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--) for(k=150;k>0;k--); } 三. 10ms延时子程序 程序: void delay10ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=4;j>0;j--) for(k=248;k>0;k--);

Keilc51程序中几种精确延时的方法

Keilc51程序中几种精确延时的方法 单片机因具有体积小、功能强、成本低以及便于实现分布式控制而有非常广泛的应用领域[1]。单片机开发者在编制各种应用程序时经常会遇到实现精确延时的问题,比如按键去抖、数据传输等操作都要在程序中插入一段或几段延时,时间从几十微秒到几秒。有时还要求有很高的精度,如使用单总线芯片DS18B20时,允许误差范围在十几微秒以内[2],否则,芯片无法工作。用51汇编语言写程序时,这种问题很容易得到解决,而目前开发嵌入式系统软件的主流工具为C语言,用C51写延时程序时需要一些技巧[3]。因此,在多年单片机开发经验的基础上,介绍几种实用的编制精确延时程序和计算程序执行时间的方法。 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( );

51单片机C语言学习知识编程基础学习知识及其实例

基础知识:51单片机编程基础 第一节:单数码管按键显示 第二节:双数码管可调秒表 第三节:十字路口交通灯 第四节:数码管驱动 第五节:键盘驱动 第六节:低频频率计 第七节:电子表 第八节:串行口应用 基础知识:51单片机编程基础 单片机的外部结构: 1. DIP40双列直插; 2. P0,P1,P2,P3四个8位准双向I/O引脚;(作为I/O输入时,要先输出高电平) 3. 电源VCC(PIN40)和地线GND(PIN20); 4. 高电平复位RESET(PIN9);(10uF电容接VCC与RESET,即可实现上电复位) 5. 内置振荡电路,外部只要接晶体至X1(PIN18)和X0(PIN19);(频率为主频的12倍) 6. 程序配置EA(PIN31)接高电平VCC;(运行单片机内部ROM中的程序) 7. P3支持第二功能:RXD、TXD、INT0、INT1、T0、T1 单片机内部I/O部件:(所为学习单片机,实际上就是编程控制以下I/O部件,完成指定任务) 1. 四个8位通用I/O端口,对应引脚P0、P1、P2和P3; 2. 两个16位定时计数器;(TMOD,TCON,TL0,TH0,TL1,TH1) 3. 一个串行通信接口;(SCON,SBUF) 4. 一个中断控制器;(IE,IP) 针对AT89C52单片机,头文件AT89x52.h给出了SFR特殊功能寄存器所有端口的定义。 C语言编程基础: 1. 十六进制表示字节0x5a:二进制为01011010B;0x6E为01101110。 2. 如果将一个16位二进数赋给一个8位的字节变量,则自动截断为低8位,而丢掉高8位。 3. ++var表示对变量var先增一;var—表示对变量后减一。 4. x |= 0x0f;表示为x = x | 0x0f; 5. TMOD = ( TMOD & 0xf0 ) | 0x05;表示给变量TMOD的低四位赋值0x5,而不改变TMOD的高 四位。 6. While( 1 ); 表示无限执行该语句,即死循环。语句后的分号表示空循环体,也就是{;}

51单片机精确延时

Keil C51中几种精确延时程序设计方法更新于 2009-02-03 01:37:21 文章出处:与非网 Keil C51 定时器精确延时程序执行时间 引言 单片机因具有体积小、功能强、成本低以及便于实现分布式控制而有非常广泛的应用领域[1]。单片机开发者在编制各种应用程序时经常会遇到实现精确延时的问题,比如按键去抖、数据传输等操作都要在程序中插入一段或几段延时,时间从几十微秒到几秒。有时还要求有很高的精度,如使用单总线芯片DS18B20时,允许误差范围在十几微秒以内[2],否则,芯片无法工作。用51汇编语言写程序时,这种问题很容易得到解决,而目前开发嵌入式系统软件的主流工具为C语言,用C51写延时程序时需要一些技巧[3]。因此,在多年单片机开发经验的基础上,介绍几种实用的编制精确延时程序和计算程序执行时间的方法。 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。

基于51单片机的C语言程序设计资料

基于51单片机的C语言程序设计实训100例 第01 篇基础程序设计 01 闪烁的LED /* 名称:闪烁的LED 说明:LED按设定的时间间隔闪烁 */ #include #define uchar unsigned char #define uint unsigned int sbit LED=P1^0; //延时 void DelayMS(uint x) { uchar i; while(x--) { for(i=0;i<120;i++); } } //主程序 void main() { while(1) { LED=~LED; DelayMS(150); } } 02 从左到右的流水灯 /* 名称:从左到右的流水灯 说明:接在P0口的8个LED 从左到右循环依次点亮,产生走 马灯效果 */ #include #include #define uchar unsigned char #define uint unsigned int

//延时 void DelayMS(uint x) { uchar i; while(x--) { for(i=0;i<120;i++); } } //主程序 void main() { P0=0xfe; while(1) { P0=_crol_(P0,1); //P0的值向左循环移动 DelayMS(150); } } 03 8只LED左右来回点亮 /* 名称:8只LED左右来回点亮 说明:程序利用循环移位函数_crol_和_cror_形成来回滚动的效果*/ #include #include #define uchar unsigned char #define uint unsigned int //延时 void DelayMS(uint x) { uchar i; while(x--) { for(i=0;i<120;i++); } } //主程序 void main() { uchar i; P2=0x01; while(1) {

相关主题
文本预览
相关文档 最新文档