高等数学课后习题答案第六章(可编辑修改word版)
- 格式:docx
- 大小:100.51 KB
- 文档页数:20
高等数学课后习题(完整版)及答案高等数学课后答案习题1 11设A ( 5) (5 ) B [10 3)写出A BA B A\B及A\(A\B)的表达式解 A B ( 3) (5 )A B [105)A\B ( 10) (5 )A\(A\B) [105)2设A、B是任意两个集合证明对偶律 (A B)C AC BC 证明因为x (A B)C x A B x A或x B x AC或x BC x ACBC所以 (A B)C AC BC3设映射f X Y A X B X 证明(1)f(A B) f(A) f(B)(2)f(A B) f(A) f(B)证明因为y f(A B) x A B使f(x) y(因为x A或x B) y f(A)或y f(B)y f(A) f(B)所以 f(A B) f(A) f(B)(2)因为y f(A B) x A B使f(x) y (因为x A且x B) y f(A)且y f(B) y f(A) f(B)所以 f(A B) f(A) f(B)4设映射f X Y若存在一个映射g Y X使g f IXf g IY其中IX、IY分别是X、Y上的恒等映射即对于每一个x X有IX x x 对于每一个y Y有IY y y证明 f是双射且g是f的逆映射 g f 1证明因为对于任意的y Y有x g(y) X且f(x) f[g(y)] Iy y y即Y中任意元素都是X中某元素的像所以f为X到Y的满射又因为对于任意的x1 x2必有f(x1) f(x2)否则若f(x1) f(x2) g[ f(x1)] g[f(x2)] x1 x2因此f既是单射又是满射即f是双射对于映射g Y X因为对每个y Y有g(y) x X且满足f(x) f[g(y)] Iy y y按逆映射的定义 g是f的逆映射5设映射f X Y A X 证明(1)f 1(f(A)) A(2)当f是单射时有f 1(f(A)) A证明 (1)因为x A f(x) y f(A) f 1(y) x f 1(f(A))所以 f 1(f(A)) A(2)由(1)知f 1(f(A)) A另一方面对于任意的x f 1(f(A)) 存在y f(A)使f1(y) x f(x) y 因为y f(A)且f是单射所以x A这就证明了f 1(f(A)) A因此f 1(f(A)) A6求下列函数的自然定义域(1)y x233 解由3x2 0得x 2函数的定义域为[2, )(2)y 1 1x2解由1x2 0得x 1函数的定义域为( 1) (11) (1 )(3)y 1x x2解由x 0且1x2 0得函数的定义域D [1 0) (0 1](4)y 14x2解由4x2 0得 |x| 2函数的定义域为(2 2)(5)y sinx解由x 0得函数的定义D [0 )(6) y tan(x1)2 解由x1 (k 0 1 2 )得函数的定义域为x k 1 (k 0 1 2 2)(7) y arcsin(x3)解由|x3| 1得函数的定义域D [2 4](8)y x1 x解由3x 0且x 0得函数的定义域D ( 0) (0 3)(9) y ln(x1)解由x1 0得函数的定义域D (1 )(10)y ex解由x 0得函数的定义域D ( 0) (0 )7下列各题中函数f(x)和g(x)是否相同?为什么?(1)f(x) lg x2 g(x) 2lg x(2) f(x) x g(x) x2(3)f(x) x4x3g(x) xx1(4)f(x) 1 g(x) sec2x tan2x解 (1)不同因为定义域不同(2)不同因为对应法则不同 x 0时 g(x) x(3)相同因为定义域、对应法则均相相同(4)不同因为定义域不同8 |sinx| |x|3设 (x) |x| 0 3 求 ( ) ( ) ( ) (2)并作出函数y (x)644的图形) |sin | 解 ( ) |sin | 1 (446622) |sin( )| (442 (2) 09试证下列函数在指定区间内的单调性(1)y x ( 1) 1x(2)y x ln x (0 )证明 (1)对于任意的x1 x2 ( 1)有1x1 0 1x2 0因为当x1 x2时y1y2 xxx x 0 1x11x2(1x1)(1x2) 所以函数y x在区间( 1)内是单调增加的 1x(2)对于任意的x1 x2 (0 )当x1 x2时有y1y2 (x1lnx1)(x2lnx2) (x1x2)lnx 0 x2所以函数y x ln x在区间(0 )内是单调增加的10设 f(x)为定义在(l l)内的奇函数若f(x)在(0 l)内单调增加证明f(x)在(l 0)内也单调增加证明对于x1 x2 (l 0)且x1 x2有x1x2 (0 l)且x1 x2因为f(x)在(0 l)内单调增加且为奇函数所以f(x2) f(x1)f(x2) f(x1) f(x2) f(x1)这就证明了对于x1 x2 (l 0)有f(x1) f(x2)所以f(x)在(l 0)内也单调增加11设下面所考虑的函数都是定义在对称区间(l l)上的证明(1)两个偶函数的和是偶函数两个奇函数的和是奇函数(2)两个偶函数的乘积是偶函数两个奇函数的乘积是偶函数偶函数与奇函数的乘积是奇函数证明 (1)设F(x) f(x)g(x)如果f(x)和g(x)都是偶函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为偶函数即两个偶函数的和是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为奇函数即两个奇函数的和是奇函数(2)设F(x) f(x) g(x)如果f(x)和g(x)都是偶函数则F(x) f(x) g(x) f(x) g(x) F(x)所以F(x)为偶函数即两个偶函数的积是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x) g(x) [f(x)][g(x)] f(x) g(x) F(x)所以F(x)为偶函数即两个奇函数的积是偶函数如果f(x)是偶函数而g(x)是奇函数则F(x) f(x) g(x) f(x)[g(x)] f(x) g(x) F(x)所以F(x)为奇函数即偶函数与奇函数的积是奇函数12下列函数中哪些是偶函数哪些是奇函数哪些既非奇函数又非偶函数?(1)y x2(1x2)(2)y 3x2x3(3)y 1x2 1x2(4)y x(x1)(x1)(5)y sin x cos x1(6)y ax a x2解 (1)因为f(x) (x)2[1(x)2] x2(1x2) f(x)所以f(x)是偶函数(2)由f(x) 3(x)2(x)3 3x2x3可见f(x)既非奇函数又非偶函数(3)因为1(x)21x2f(x) f(x) 221x1x所以f(x)是偶函数(4)因为f(x) (x)(x1)(x1) x(x1)(x1) f(x)所以f(x)是奇函数(5)由f(x) sin(x)cos(x)1 sin x cos x1可见f(x)既非奇函数又非偶函数(6)因为(x)(x)xxa aa af(x) f(x) 22所以f(x)是偶函数13下列各函数中哪些是周期函数?对于周期函数指出其周期(1)y cos(x2)解是周期函数周期为l 2(2)y cos 4x解是周期函数周期为l 2(3)y 1sin x解是周期函数周期为l 2(4)y xcos x解不是周期函数(5)y sin2x解是周期函数周期为l14求下列函数的反函数(1)y x1解由y x1得x y31所以y x1的反函数为y x31(2)y 1x 1x解由y 1x得x 1y所以y 1x的反函数为y 1x1x1y1x1x(3)y ax b(ad bc 0) cx d解由y ax b得x dy b所以y ax b的反函数为y dx b cx dcy acx dcx a(4) y 2sin3xyarcsin所以y 2sin3x的反函数为y 1arcsinx解由y 2sin 3x 得x 13232(5) y 1ln(x2)x2(6)y 2 1 解由y 1ln(x2)得x ey12所以y 1ln(x2)的反函数为y ex122xx y 所以的反函数为y log2211x 解 y2xy x log由得21y2 115设函数f(x)在数集X上有定义试证 函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界证明先证必要性设函数f(x)在X上有界则存在正数M使|f(x)| M即M f(x) M这就证明了f(x)在X上有下界M和上界M再证充分性设函数f(x)在X上有下界K1和上界K2即K1 f(x) K2 取M max{|K1| |K2|}则M K1 f(x)K2 M即 |f(x)| M这就证明了f(x)在X上有界16在下列各题中求由所给函数复合而成的函数并求这函数分别对应于给定自变量值x1和x2的函数值(1) y u2 u sin x解 y sin2x x1 6x2 33y1 sin2 12 1y2 sin2 ()2 324624x1 x2 84 (2) y sin u u 2x解 y sin2x(3)y解 y1 sin(2 ) sin y2 sin(2 sin 1 842422u 1x x1 1 x2 2 y x2 y1 12 y2 22(4) y eu u x2 x1 0 x2 1解 y ex2 y1 e0 1 y2 e1 e 22(5) y u2 u ex x1 1 x2 1解 y e2x y1 e2 1 e2 y2 e2 (1) e217设f(x)的定义域D [0 1]求下列各函数的定义域(1) f(x2)解由0 x2 1得|x| 1所以函数f(x2)的定义域为[1 1](2) f(sinx)解由0 sin x 1得2n x (2n1) (n 0 1 2 )所以函数f(sin x)的定义域为[2n (2n1) ] (n 0 1 2 )(3) f(x a)(a>0)解由0 x a 1得a x 1a所以函数f(x a)的定义域为[a 1a](4) f(x a)f(x a)(a 0)22 解由0 x a 1且0 x a 1得 当0 a 1时 a x 1a 当a 1时无解因此当0 a 1时函数的定义域为[a 1a]当a 1时函数无意义2218设的图形解 |x| 1 1 x f(x) 0 |x| 1 g(x) e |x| 1 1 求f[g(x)]和g[f(x)]并作出这两个函数 1 |ex| 1 f[g(x)] 0|ex| 11 |ex| 1 即 1 x 0 f[g(x)] 0 x 0 1 x 0e1 |x| 1 g[f(x)] ef(x) e0 |x| 1e 1 |x| 1 e |x| 1 |x| 1即g[f(x)] 11 |x| 1 e19已知水渠的横断面为等腰梯形斜角 40 (图137)当过水断面ABCD的面积为定值S0周L(L AB BC CD)与水的函数关系式并指明其图137解 AB DC hsin40 0cot40 h所以又从1h[BC(BC2cot40 h)] S0得BC Sh时求湿深h之间定义域 2S2cos40L h hsin40自变量h的取值范围应由不等式组h 0确定定义域为0 h 0cot40S0 cot40 h 0 h20收敛音机每台售价为90元成本为60元厂方为鼓励销售商大量采购决定凡是订购量超过100台以上的每多订购1台售价就降低1分但最低价为每台75元(1)将每台的实际售价p表示为订购量x的函数(2)将厂方所获的利润P表示成订购量x的函数(3)某一商行订购了1000台厂方可获利润多少?解 (1)当0 x 100时 p 90令001(x0100) 9075得x0 1600因此当x 1600时p 75当100 x 1600时p 90(x100) 001 910 01x综合上述结果得到0 x 100 90 p 910.01x 100 x 1600 75 x 1600 30x 0 x 1002100 x 1600 (2)P (p60)x 31x0.01x 15x x 1600(3) P 31 1000001 10002 21000(元)习题1 21观察一般项xn如下的数列{xn}的变化趋势写出它们的极限 (1)xn 1 2n解当n 时(2)xn (1)n1 n1 0 0 xn 1limn 22 解当n 时(3)xn 2 12 nxn (1)n1 0 lim(1)n1 0 n nn解当n 时(4)xn n1 n1xn 21 2 lim(21) 2 n nn2解当n 时(5) xn n(1)n xn n1 12 0 limn1 1n n1n1n 1解当n 时 xn n(1)n没有极限2 cos设数列{xn}的一般项xn nx ? 求出N使当n N时 xn问nlim n与其极限之差的绝对值小于正数 当 0001时求出数N解limx 0n n要使|x n0| 只要1 也就是n 1取n|cos|1 0 |xn0| nnN [1]则n N有|xn0|当 0001时 N [1] 10003根据数列极限的定义证明1 0 (1)nlim 2n分析要使|120| 12 只须n2 1即nnn1nn证明因为 0N [3n1 3 (2)nlim1]1 0当n N时有|120| 所以nlim 2分析2n12n13| 1 1要使|3 2n122(2n1)4n4只须证明因为 0N [1]当n N (3)nlim 分析 n2a2 1 n1 即n 14 4n3n1 3时有|3n13| 所以nlim 2n122n12只须2an222222a a naa要使|1| 22nnn a n)n2aN []证明因为 022n alim 1 n n当n N时有|n2a21|n所以(4)nlim0. 999 9 1n个分析要使|099 91|110n 1只须1 10即n 1lg1证明因为 0N [1lg1]当n N时有|099 91| 所以n n个lim0.999 9 1|u| |a|并举例说明 如果数列{|xn|}有极限但数证明nlimn4limu an n列{xn}未必有极限u a所以 0N N当n N时有|un a| 从而证明因为nlim n||un||a|| |un a||un| |a|这就证明了nlim|(1)n| 1但lim(1)n 数列{|xn|}有极限但数列{xn}未必有极限例如nlimn不存在y 0证明 5设数列{xn}有界又nlim nn limxnyn 0证明因为数列{xn}有界所以存在M使n Z有|xn| Myn 0所以 0N N当n N时有|yn| 从而当n N时又nlim M有xy 0所以nlim nn|xnyn0| |xnyn| M|yn| M M6对于数列{xn}若x2k1 a(k ) x2k a(k )证明 xn a(n )证明因为x2k1 a(k ) x2k a(k )所以 0K1当2k1 2K11时有| x2k1a| K2当2k 2K2时有|x2k a| 取N max{2K11 2K2}只要n N就有|xn a| 因此xn a (n )习题1 31根据函数极限的定义证明(3x1) 8 (1)limx 3分析因为|(3x1)8| |3x9| 3|x3|所以要使|(3x1)8| 只须|x3| 1 3 证明因为 0 1 当0 |x3| 时有 3|(3x1)8|(3x1) 8所以limx 3(5x2) 12 (2)limx 2分析因为|(5x2)12| |5x10| 5|x2|所以要使|(5x2)12| 只须|x2| 1 5 证明因为 0 1 当0 |x2| 时有 5|(5x2)12|(5x2) 12所以limx 22x4 4(3)xlim 2x 2分析因为x24(4) x24x4 |x2| |x(2)| x2x 2所以要使x24(4) x2只须|x(2)| 证明因为 0 当0 |x(2)| 时有x24(4) x2x24 4lim所以x 2x2314x(4)lim 2 2x1x分析因为所以要使14x32 |12x2| 2|x(1)| 2x1214x32 2x1只须|x(1)| 1 2222 证明因为 0 1 当0 |x(1)| 时有 14x32 2x1 314x所以lim 2 2x1x 22根据函数极限的定义证明1x (1)xlim 1 22x3分析因为所以要使1x31 1x3x3 1 2x322x32|x|3 1x312x2只须1 2|x|即|x| 1证明因为 0X 1当|x| X时有 1x312x3231x 1所以xlim3 2x2sinx 0 (2)xlim x 分析因为所以要使证明sinx0 |sinx| 1 xxxsinx0 只须1 即x 12x x因为 0X 1当x X时有 2sinx0 xsinx 0所以xlim x 3当x 2时 y x2 4问 等于多少使当|x2|< 时 |y4|<0001?解由于当x 2时 |x2| 0故可设|x2| 1即1 x 3要使|x24| |x2||x2| 5|x2| 0001只要|x2| 0.001 0.0002 5取 00002则当0 |x2| 时就有|x24| 0 0014当x 时解要使y x21 1 x32问X等于多少使当|x| X时|y1| 001? 只要|x| 43 0.01x211 4 0.01x23x23故X5证明函数f(x) |x|当x 0时极限为零证明因为|f(x)0| ||x|0| |x| |x0|所以要使|f(x)0| 只须|x|因为对 0 使当0 |x0| 时有|f(x)0| ||x|0||x| 0所以limx 06求f(x) x, x (x) |x|当xx 0时的左﹑右极限并说明它们在x 0时的极限是否存在证明因为lim f(x) lim x lim1 1x 0x 0xx 0lim f(x) lim x lim1 1 x 0x 0xx 0x 0limf(x) lim f(x) x 0f(x)存在所以极限limx 0因为|x| lim x 1 x 0x 0xx 0x|x|x 1lim (x) lim limx 0x 0xx 0xlim (x) limx 0 lim (x) lim (x) x 0(x)不存在所以极限limx 07证明 若x 及x 时函数f(x)的极限都存在且都等于Af(x) A则xlimf(x) A证明因为xlim x limf(x) A所以 >0X1 0使当x X1时有|f(x)A|X2 0使当x X2时有|f(x)A|f(x) A取X max{X1 X2}则当|x| X时有|f(x)A| 即xlim8根据极限的定义证明 函数f(x)当x x0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性设f(x) A(x x0)则 >0 0使当0<|x x0|< 时有|f(x)A|<因此当x0 <x<x0和x0<x<x0 时都有|f(x)A|<这说明f(x)当x x0时左右极限都存在并且都等于A再证明充分性设f(x00) f(x00) A则 >01>0使当x0 1<x<x0时有| f(x)A<2>0使当x0<x<x0+ 2时有| f(x)A|<取 min{ 1 2}则当0<|x x0|< 时有x0 1<x<x0及x0<x<x0+ 2 从而有| f(x)A|<即f(x) A(x x0)9试给出x 时函数极限的局部有界性的定理并加以证明解 x 时函数极限的局部有界性的定理 如果f(x)当x 时的极限存在则存在X 0及M 0使当|x| X时 |f(x)| M证明设f(x) A(x )则对于 1X 0当|x| X时有|f(x)A| 1所以|f(x)| |f(x)A A| |f(x)A||A| 1|A|这就是说存在X 0及M 0使当|x| X时 |f(x)| M其中M 1|A|习题1 41两个无穷小的商是否一定是无穷小?举例说明之解不一定(x)2 例如当x 0时 (x) 2x (x) 3x都是无穷小但limx 0(x)3 (x)不 (x)是无穷小2根据定义证明2x9(1)y x当x 3时为无穷小; 3(2)y xsin1当x 0时为无穷小x2x9 |x3|时|y| x 3 证明 (1)当x 3有因为 0当0 |x3| 时2|y| x9 |x3| x 32x9所以当x 3时y x为无穷小 3(2)当x 0时|y| |x||sin1| |x0|因为 0 x|y| |x||sin1| |x0| x所以当x 0时y xsin1为无穷小 x当0 |x0| 时有3根据定义证明 函数y 12x为当x 0时的无穷大问x应满足什x么条件能使|y| 104?证明分析|y||x| 1 M212x 21 12 xx|x|2 M即要使|y| M只须|1x|证明因为M 0所以当取1使当0 |x0| 时有12x M xM2x 0时函数y 12x是无穷大 xM 104则 41当0 |x0| 41时|y| 104 10210 2 4求下列极限并说明理由2x1; (1)limx x21x(2)limx 01xxxxx1x2 1所以lim x 01x2x1 2解 (1)因为2x1 21而当x 时1是无穷小所以limx x (2)因为11x2 1x(x 1)而当x 0时x为无穷小5根据函数极限或无穷大定义填写下表解6函数y xcos x在( )内是否有界?这个函数是否为当x 时的无穷大?为什么?解函数y xcos x在( )内无界这是因为M 0在( )内总能找到这样的x使得|y(x)| M例如y(2k ) 2k cos2k 2k (k 0 1 2 )当k充分大时就有| y(2k )| M当x 时函数y xcos x不是无穷大这是因为M 0找不到这样一个时刻N使对一切大于N的x都有|y(x)| M例如y(2k (2k )cos(2k ) 0(k 0 1 2 ) 2222 对任何大的N当k充分大时总有x 2k N但|y(x)| 0 M7证明 函数y 1sin1在区间(0 1]上无界但这函数不是当x 0+时xx的无穷大证明函数y 1sin1在区间(0 1]上无界这是因为 xx M 0在(0 1]中总可以找到点xk使y(xk) M例如当xk2k 1(k 0 1 2 )2时有y(xk) 2k2当k充分大时 y(xk) M当x 0+ 时函数y 1sin1不是无穷大这是因为 xxM 0对所有的 0总可以找到这样的点xk使0 xk但y(xk) M例如可取xk 12k(k 0 1 2 )当k充分大时 xk 但y(xk) 2k sin2k 0 M习题1 51计算下列极限2xlim5 (1)x 2x3x25 225 9lim解 x 2x3232x(2)3 x x 1解 2()23x3 0 2x x1() 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x2 14x32x2xlim(4)x 02 3x2x3224x2x x4x2x1 1 lim解lim x 03x2xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx xxx2x1(7)xlim 2x2x 1 解 1 121 limlimx 1 2x 2x x1x 22xx2(8)xlim解或 x2x 42x3x12xx 0lim42(分子次数低于分母次数x x3x1112x lim23 0lim4x2 x x3x1x 1xx2极限为零) x6x8 (9)limx 4x5x 4解 2(x2)(x4)limx26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 n n 2421 2n 解 123 (n1) (12)nlim(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2nn(n1)(n2)(n3)(13)nlim5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 3n n 5nnn55n(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1x3x 1(1x)(x 1(1x)(1x x2)1x x2) limx 21 x 11x x2计算下列极限32x2x(1)x lim 2(x2)2解 (x2)20lim 0因为x 2x2x162x所以limx 22x2 (x2)23 x (2)xlim 2x 1解 2xlim x 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctanx (2)xlim xarctanx lim1 arctanx 0(当x 时 1是无穷小解xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题1 51计算下列极限2xlim5 (1)x 2x322x52lim 5 9解 x 2x32 3 2x(2)23 x x 1解 2()23x3 0 x x21()2 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x 1 324x2x x(4)limx 03x22x4x32x2x lim4x22x1 1解 limx 03x22xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx x2xx2(7)xlim解x21 22x x1112x1lim2 lim 1x 2x x1x 222xx x2x x x43x212x x 0解xlim(分子次数低于分母次数 x3x1(8)lim极限为零)或112x lim 0lim4x2 x x3x1x 21124xx2 x6x8 (9)limx 42x5x 4解 2(x2)(x4)xlim26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 nn n 2421 2n 解 123 (n1) (12)nlim 2(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2n2n2(n1)(n2)(n3)(13)nlim3 5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 n 5n nnn55n3(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1xx 1(1x)(x 1(1x)(1x x)1x x) limx 22 1 x 11x x2计算下列极限 32x2xlim(1)x 2(x2)2解 (x2)20lim3 0因为x 2x2x21632x2x 所以limx 2(x2)2 x2lim(2)x 2x1 x2 解 xlim 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctan x (2)xlim xarctanx lim1 arctanx 0(当x 时1是无穷小解 xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题 171当x 0时 2x x2 与x2x3相比哪一个是高阶无穷小?解232x xx x lim 0因为limx 02x xx 02x所以当x 0时 x2x3是高阶无穷小即x2x3 o(2x x2)2当x 1时无穷小1x和(1)1x3 (2)1(1x2)是否同阶?是否等2价?解 3(1x)(1x x2)1x lim lim(1x x2) 3 (1)因为limx 11xx 1x 11x所以当x 1时 1x和1x3是同阶的无穷小但不是等价无穷小1(1x2) 1lim(1x) 1 (2)因为limx 11x2x 1所以当x 1时 1x和1(1x2)是同阶的无穷小而且是等价无穷小 23证明 当x 0时有(1) arctan x~x2x(2)secx1~2arctanx lim 证明 (1)因为limx 0y 0xy 1(提示 tany令y arctan x则当x 0时y 0)所以当x 0时 arctanx~x2sin2x2sinxsecx1 2lim1cosx lim lim(2 1 (2)因为limx 02x 0x2cosxx 0x 0x2x2222xsecx1~ 2 所以当x 0时4利用等价无穷小的性质求下列极限tan3x (1)limx 02xsin(xn)(2)limx 0(sinx)m(n m为正整数)tanx sinx (3)limx 0sinx(4)limx 0sinx tanx 2(x1sinx1)tan3x lim3x 3解 (1)limx 0x 02x2x21 n mn sin(xn)x 0 n m lim(2)limx 0(sinx)mx 0xm n m1x2sinx(11)tanx sinx lim lim1cosx lim2 1(3)lim332x 0x 0x 0cosxsinxx 0xcosx2sinxsinx(4)因为sinx tanx tanx(cosx1) 2tanxsin2x~2x x)2 1x3(x 0) 222所以x21 x21x2(x 0) ~1x2)2x213sinx~sinx~x(x 0) sinx1sinx1 1x3sinx tanxlim lim 3x 0(x21sinx1)x 02x x35证明无穷小的等价关系具有下列性质(1) ~ (自反性)(2) 若 ~ 则 ~ (对称性)(3)若 ~ ~ 则 ~ (传递性)证明 (1)lim 1所以 ~1从而lim 1因此 ~ (2) 若 ~ 则lim(3) 若 ~ ~习题18 lim lim lim 1 因此 ~1研究下列函数的连续性并画出函数的图形(1) x2 0 x 1 f(x) 2x 1 x 2解已知多项式函数是连续函数所以函数f(x)在[0 1)和(1 2]内是连续的在x 1处因为f(1) 1并且x 12f(x) lim(2x) 1 limf(x) limx 1lim x 1x 1x 1f(x) 1从而函数f(x)在x 1处是连续的所以limx 1综上所述,函数f(x)在[0 2]上是连续函数x 1 x 1 (2)f(x) 1 |x| 1解只需考察函数在x 1和x 1处的连续性在x 1处因为f(1) 1并且x 1limf(x) lim1 1 f(1) x 1x 1 x 1limf(x) lim x 1 f(1)所以函数在x 1处间断但右连续在x 1处因为f(1) 1并且x 1limf(x) lim x 1 f(1) limf(x) lim1 1 f(1) x 1x 1x 1所以函数在x 1处连续综合上述讨论函数在( 1)和(1 )内连续在x 1处间断但右连续2下列函数在指出的点处间断说明这些间断点属于哪一类如果是可去间断点则补充或改变函数的定义使它连续2x(1)y 21 x 1 x 2 x3x 2解 2(x1)(x1)xy 21 x3x2(x2)(x1)因为函数在x 2和x 1处无定义所以x 2和x 1是函数的间断点2xlimy lim21 因为x 2x 2x3x2所以x 2是函数的第二类间断点(x1)y lim 2所以x 1是函数的第一类间断点并且是可去因为limx 1x 1(x2)间断点在x 1处令y 2则函数在x 1处成为连续的(2)y x x k x k tanx2(k 0 1 2 )2 解函数在点x k (k Z)和x k (k Z)处无定义因而这些点都是函数的间断点因xlim k x (k 0) tanxx 1 tanxlimx k 故x k (k 0)是第二类间断点2 因为limx 0x 0(k Z) tanx所以x 0和x k (k Z) 是第一2类间断点且是可去间断点令y|x 0 1则函数在x 0处成为连续的令x k 时 y 0则函数在x k 处成为连续的2(3)y cos21 x 0 x2xx 解因为函数y cos21在x 0处无定义所以x 0是函数y cos21的间断点又因为limcos21不存在所以x 0是函数的第二类间断点x 0xx 1 x 1 (4)y 3 x x 1 x 1解因为xlim1f(x) lim(x1) 0limf(x) lim(3x) 2x 1x 1x 1所以x 1是函数的第一类不可去间断点 3讨论函数解2n1xf(x) limx的连续性 n 1x2n若有间断点判别其类型x |x| 12n 1xf(x) limx 0 |x| 1 n 1x2nx |x| 1f(x) lim(x) 1 lim f(x) lim x 1x 1x 1x 1lim 在分段点x 1处因为x1所以x 1为函数的第一类不可去间断点在分段点x 1处因为xlim 1f(x) lim x 1 limf(x) lim(x) 1x 1x 1x 1所以x 1为函数的第一类不可去间断点4证明 若函数f(x)在点x0连续且f(x0) 0则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 0证明不妨设f(x0)>0因为f(x)在x0连续所以xlimx的局部保号性定理存在x0的某一去心邻域U(x0)f(x) f(x0) 0由极限f(x)>0使当x U(x0)时从而当x U(x0)时 f(x)>0这就是说则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 05试分别举出具有以下性质的函数f(x)的例子 (1)x 0 12无穷间断点1 n 1 是2nf(x)的所有间断点且它们都是解函数f(x) csc( x)csc 在点x 0 1 2 x 1 n 1 处是间断2n的且这些点是函数的无穷间断点(2)f(x)在R上处处不连续但|f(x)|在R上处处连续1 x Q 解函数f(x) 1 x Q在R上处处不连续但|f(x)| 1在R上处处连续(3)f(x)在R上处处有定义但仅在一点连续x x Q 解函数f(x) 在R上处处有定义它只在x 0处连续x x Q习题191求函数f(x) xlimf(x) x 233x2x3的连续区间 2x x6f(x)并求极限limx 0x 3limf(x)及33x2x3 (x3)(x1)(x1)f(x) x(x3)(x2)x x 6 解函数在( )内除点x 2和x 3外是连续的所以函数f(x)的连续区间为( 3)、(3 2)、(2 )在函数的连续点x 0处 limf(x) f(0) 1 x 02在函数的间断点x 2和x 3处limf(x) limx 2(x1)(x1)(x3)(x1)(x1) 8limf(x) limx 3x 3x 2x25(x3)(x2) 2设函数f(x)与g(x)在点x0连续证明函数(x) max{f(x) g(x)} (x) min{f(x) g(x)} 在点x0也连续证明已知xlim x可以验证(x) 1[f(x)g(x)|f(x)g(x)| ]因此2 (x) 1[f(x)g(x)|f(x)g(x)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ] 20f(x) f(x0)limg(x) g(x0) x x0因为lim (x) lim1[f(x)g(x)|f(x)g(x)| ]x x0x x02 1[limf(x)limg(x)|limf(x)limg(x)| ]x x0x x0x x02x x01[f(x0)g(x0)|f(x0)g(x0)| ] (x0) 2所以 (x)在点x0也连续同理可证明 (x)在点x0也连续3求下列极限(1)limx 0x 4x22x5 (sin2x)3 (2)limln(2cos2x) (3)limx 6(4)limx 0x11 xx4x (5)limx 1x 1(6)xlimsinx sina ax a(7)xlim(x2x x2x)解 (1)因为函数f(x) x 0x22x5是初等函数f(x)在点x 0有定义所以 limx22x5 f(0) 22 054 (2)因为函数f(x) (sin 2x)3是初等函数 f(x)在点x 有定义所以lim(sin2x)3 f( (sin2 3 1 44x 46 (3)因为函数f(x) ln(2cos2x)是初等函数 f(x)在点x 有定义所以limln(2cos2x) f( ) ln(2cos2 0 66x(4)limx 0x11 lim(x11)(x11) limxx 0x 0x(x11xx(x11) )11 111112 limx 0(5)limx 1x4x lim(x4xx4x)x 1x1(x1x4x) lim444x4 lim 2x 1x4xx 1(x1x4x) 142cosx asinx alimsinx sina lim(6)x ax ax ax asinx a cosa a 1 cosalimcosx a limx a2x a2222(x2x x2x)(x2x x2x)(x x x x) lim(7)xlim 22 x (x x x x)lim2x2 lim 1 x (x2x x2x)x (11)xx4求下列极限(1)xlim(2)limlnsinx x 0x1ex(11)2 (3)xlim x2x(13tan2x)cotx (4)limx 0x13x( (5)xlim 6x(6)limx 0tanx sinxx sin2x xlime e1lim1x 解 (1) (2) (3) x e0 1 limlnsinx ln(limsinx) ln1 0x 0x 0xxx1lim(1 2x x limx 11x2(1)x e 12(4)lim(13tan2x)cotx limx 02x 0 1(13tan2x)3tan2x3 e3x13x 3 (5)(6x) (16x)36x2因为3(1)3 e lim3 x1 3 xlim x 6x26x23x2 e2所以xlim 6x(tanx sinx)(sin2x1)tanx sinx lim(6)lim22x 0x 0x sinx xx(sinx1)(tanx sinx)2xtanx 2sin(ta nx sinx sinx1) lim limx 0xsin2x(tanx sinx)x 0xsinx22x (x21 limx 02x应当如何选择数a使得f(x)成为在( 5设函数 ex x 0f(x) a x x 0)内的连续函数?解要使函数f(x)在( )内连续只须f(x)在x 0处连续即只须 x 0limf(x) limf(x) f(0) a x 0x 0 x 0f(x) limex 1因为xlim 0x 0limf(x) lim(a x) a所以只须取a 1习题1101证明方程x53x 1至少有一个根介于1和2之间证明设f(x) x53x1则f(x)是闭区间[1 2]上的连续函数因为f(1) 3 f(2) 25 f(1)f(2) 0所以由零点定理在(1 2)内至少有一点(1 2)使f( ) 0即x 是方程x53x 1的介于1和2之间的根因此方程x53x 1至少有一个根介于1和2之间2证明方程x asinx b其中a 0 b 0至少有一个正根并且它不超过a b证明设f(x) asin x b x则f(x)是[0 a b]上的连续函数f(0) b f(a b) a sin (a b)b(a b) a[sin(a b)1] 0若f(a b) 0则说明x a b就是方程x asinx b的一个不超过a b的根若f(a b) 0则f(0)f(a b) 0由零点定理至少存在一点(0 a b)使f( ) 0这说明x 也是方程x=asinx b的一个不超过a b的根总之方程x asinx b至少有一个正根并且它不超过a b 3设函数f(x)对于闭区间[a b]上的任意两点x、y恒有|f(x)f(y)| L|x y|其中L为正常数且f(a) f(b) 0证明 至少有一点 (a b)使得f( ) 0证明设x0为(a b)内任意一点因为所以 0 lim|f(x)f(x0)| limL|x x0| 0 x x0x x0x x0 lim|f(x)f(x0)| 0即 x x0limf(x) f(x0)因此f(x)在(a b)内连续同理可证f(x)在点a处左连续在点b处右连续所以f(x)在[a b]上连续因为f(x)在[a b]上连续且f(a) f(b) 0由零点定理至少有一点 (a b)使得f( ) 04若f(x)在[a b]上连续 a x1 x2 xn b则在[x1 xn]上至少有一点 使f( ) f(x1)f(x2) f(xn) n证明显然f(x)在[x1 xn]上也连续设M和m分别是f(x)在[x1 xn]上的最大值和最小值因为xi [x1 xn](1 i n)所以有m f(xi) M从而有n m f(x1)f(x2) f(xn) n M m f(x1)f(x2)f(xn) Mn由介值定理推论在[x1 xn]上至少有一点 使f( ) f(x)f(x) f(x) nf(x)存在则f(x)必在( 5证明 若f(x)在( )内连续且xlim)内有界f(x) A则对于给定的 0存在X 0只要|x| X就有证明令xlim|f(x)A| 即A f(x) A又由于f(x)在闭区间[X X]上连续根据有界性定理存在M 0使|f(x)| M x [X X]取N max{M |A | |A |}则|f(x)| N x ()即f(x)在( )内有界6在什么条件下 (a b)内的连续函数f(x)为一致连续?总习题一1在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内(1)数列{xn}有界是数列{xn}收敛的________条件数列{xn}收敛是数列{xn}有界的________的条件(2)f(x)在x0的某一去心邻域内有界是xlim xx x00f(x)存在的________条件 limf(x)存在是f(x)在x0的某一去心邻域内有界的________条件0 (3) f(x)在x0的某一去心邻域内无界是xlim xx x0f(x) 的________条件 limf(x) 是f(x)在x0的某一去心邻域内无界的________条件(4)f(x)当x x0时的右极限f(x0)及左极限f(x0)都存在且相等是x x0limf(x)存在的________条件解 (1) 必要充分(2) 必要充分(3) 必要充分(4) 充分必要2选择以下题中给出的四个结论中一个正确的结论设f(x) 2x3x2则当x 0时有( )(A)f(x)与x是等价无穷小 (B)f(x)与x同阶但非等价无穷小(C)f(x)是比x高阶的无穷小 (D)f(x)是比x低阶的无穷小解xxxxf(x)232213 lim lim lim 1 因为limx 0xx 0x 0xx 0xxxxt ln3limu ln2ln3 ln2lim(令21 t 31 u)t 0ln(1t)u 0ln(1u)所以f(x)与x同阶但非等价无穷小故应选B3设f(x)的定义域是[0 1]求下列函数的定义域(1) f(ex)(2) f(ln x)(3) f(arctan x)(4) f(cos x)解 (1)由0 ex 1得x 0即函数f(ex)的定义域为( 0](2) 由0 ln x 1得1 x e 即函数f(ln x)的定义域为[1 e](3) 由0 arctan x 1得0 x tan 1即函数f(arctan x)的定义域为[0 tan 1](4) 由0 cos x 1得2n x 2n (n 0 1 2) 22即函数f(cos x)的定义域为[2n , n ] (n 0 12 ) 224设x 0 0 0 x 0 f(x) g(x) 2x x 0x x 0求f[f(x)] g[g(x)] f[g(x)] g[f(x)]0 x 0 解因为f(x) 0所以f[f(x)] f(x) x x 0因为g(x) 0所以g[g(x)] 0因为g(x) 0所以f[g(x)] 00 x 0 因为f(x) 0所以g[f(x)] f 2(x) 2 x x 05利用y sin x的图形作出下列函数的图形(1)y |sin x|(2)y sin|x|(3)y 2sinx 26把半径为R的一圆形铁片自中心处剪去中心角为 的一扇形后围成一无底圆锥试将这圆锥的体积表为 的函数解设围成的圆锥的底半径为r高为h依题意有R(2 ) 2 r222r R(2 ) 22R2(2 )24 h R r R R2 4 2圆锥的体积为V 13 R2(2 )2 24 R2R324 2(2 )2 4 a2 (0 2 )7根据函数极限的定义证明limx2x 6x 3x3 5证明对于任意给定的 0要使|x2x 6x35| 只需|x3| 取当0 |x3| 时就有|x3| 即|x2x65| 所以limx2x 6x3x 3x3 58求下列极限(1)limx2x 1x 1(x1)2(2)xlim x(x21x)(3)3xlim (2x2x1x1(4)limtanx sinxx 0x3(5)limxxx 0(a b cx3)(a 0 b 0 c 0)(6)lim(sinx)tanx x 2解 (1)因为lim(x1)2所以limx2x 1x 1x2x1 0 x 1(x1)(2)xlim x(x21x) x(x21x)(x21x)xlim (x21 x) x1xlim x21x xlim 1112x2x322x1x1() lim(1 lim(1)22(3)xlim 2x1x x 2x12x 1222(1)(1 2 xlim 2x12x 122(1) lim(1) e xlim x 2x12x 1sinx(11)sinx(1cosx)tanx sinx lim lim(4)limx 0x 0x 0x3x3x3cosxsinx 2sin2x2x (x)2lim 1 limx 0x 02x3cosxx3(提示 用等价无穷小换)(a (5)limx 0x b3x cx)x lim(1a b c。
高等数学课后答案习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A .6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么? (1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性: (1)x x y -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的.(2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x xx x x x x x y y ,所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数. (2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3;(3)2211x xy +-=;(4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f x x x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2);解 是周期函数, 周期为l =2π. (2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin πx ;解 是周期函数, 周期为l =2. (4)y =x cos x ; 解 不是周期函数. (5)y =sin 2x .解 是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)xx y +-=11;解 由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为xx y +-=11.(3)dcx b ax y ++=(ad -bc ≠0);解 由d cx b ax y ++=得a cy bdy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=.(4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin3x 的反函数为2arcsin 31x y =.(5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x xy .解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; 解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy .(2) y =sin u , u =2x , 81π=x ,42π=x ;解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y . (4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1. 解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域: (1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1]. (2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为 [2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) . (3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ]. (4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1||11||01||1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形. 解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 001)]([x x x x g f .⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g . 19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin hDC AB ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以h h S L 40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.091100090x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 15160010001.0311000 30)60(2x x x x x x x x p P . (3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限: (1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=;解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n .(3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ;解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n .(5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N .解 0lim =∞→n n x .n n n x n 1|2c o s||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ;分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim2=∞→n n .(2)231213lim =++∞→n n n ;分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n .证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n .(3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n .(4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M .又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞),证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε .取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞). 习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析 因为|(3x -1)-8|=|3x -9|=3|x -3|,所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析 因为|(5x +2)-12|=|5x -10|=5|x -2|, 所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)424lim 22-=+--→x x x ; 分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x ,所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x ,所以要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x . 2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x xx ; 分析 因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有 ε<-+212133x x , 所以2121lim 33=+∞→x xx . (2)0sin lim =+∞→xx x .分析 因为x xx x x 1|s i n |0s i n≤=-.所以要使ε<-0sin xx , 只须ε<x1, 即21ε>x . 证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0s i n xx , 所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X . 5. 证明函数f (x )=|x |当x →0时极限为零. 证明 因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε, 只须|x |<ε.因为对∀ε>0, ∃δ=ε, 使当0<|x -0|<δ, 时有 |f (x )-0|=||x |-0|<ε, 所以0||lim 0=→x x .6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x x x f , 11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim||lim )(lim 000===+++→→→x x x x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有 |f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε , 即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |. 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x xy 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x xy 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数x x y 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由:(1)xx x 12lim +∞→;(2)xxx --→11lim 20.解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x x x +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .5. 根据函数极限或无穷大定义, 填写下表:f (x )→Af (x )→∞f (x )→+∞f (x )→-∞x→x 0 ∀ε>0, ∃δ>0, 使 当0<|x -x 0|<δ时,有恒|f (x )-A |<ε.x →x 0+x →x 0-x →∞∀ε>0, ∃X >0, 使当|x |>X 时,有恒|f (x )|>M .x →+∞x →-∞解 f (x )→A f (x )→∞ f (x )→+∞ f (x )→-∞ x →x 0∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ∀M >0, ∃δ>0, 使当∀M >0, ∃δ>0, 使当∀M >0, ∃δ>0, 使当时, 有恒|f (x )-A |<ε.0<|x -x 0|<δ时, 有恒|f (x )|>M .0<|x -x 0|<δ时, 有恒f (x )>M .0<|x -x 0|<δ时, 有恒f (x )<-M .x→x 0+ ∀ε>0, ∃δ>0,使当0<x -x 0<δ时, 有恒|f (x )-A |<ε.∀M >0,∃δ>0, 使当0<x -x 0<δ时, 有恒|f (x )|>M .∀M >0, ∃δ>0, 使当0<x -x 0<δ时, 有恒f (x )>M .∀M >0, ∃δ>0, 使当0<x -x 0<δ时, 有恒f (x )<-M .x →x 0- ∀ε>0, ∃δ>0,使当0<x 0-x <δ时, 有恒|f (x )-A |<ε.∀M >0,∃δ>0, 使当0<x 0-x <δ时, 有恒|f (x )|>M .∀M >0, ∃δ>0, 使当0<x 0-x <δ时, 有恒f (x )>M .∀M >0, ∃δ>0, 使当0<x 0-x <δ时, 有恒f (x )<-M .x →∞∀ε>0, ∃X >0, 使当|x |>X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0, 使当|x |>X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0, 使当|x |>X 时, 有恒f (x )>M .∀ε>0, ∃X >0, 使当|x |>X 时, 有恒f (x )<-M .x →+∞∀ε>0, ∃X >0, 使当x >X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0, 使当x >X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0, 使当x >X 时, 有恒f (x )>M .∀ε>0, ∃X >0, 使当x >X 时, 有恒f (x )<-M .x →-∞∀ε>0, ∃X >0,使当x <-X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0,使当x <-X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0,使当x <-X 时, 有恒f (x )>M .∀ε>0, ∃X >0,使当x <-X 时, 有恒f (x )<-M .6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数x x y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M . 习题1-51. 计算下列极限:(1)35lim22-+→x x x ;解 9325235lim222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x .(5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→;解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x . (8)13lim 242--+∞→x x xx x ;解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零). 或 012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→;解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n .(13)35)3)(2)(1(limnn n n n +++∞→; 解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x .2. 计算下列极限:(1)2232)2(2lim -+→x x x x ;解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x xx ;解 ∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限:(1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-51. 计算下列极限:(1)35lim22-+→x x x ;解 9325235lim222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2xx x +-∞→; 解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x . (8)13lim 242--+∞→x x xx x ;解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零).或 012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x .(9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x . 2. 计算下列极限:(1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2limx x x x .(2)12lim 2+∞→x x x ;解 ∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限:(1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim202320=--=--→→xx x x x x x x x , 所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim212131=++=-++-=--→→→x x x x x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2xx -.证明 (1)因为1tan limarctan lim 00==→→y yxx y x (提示: 令y =arctan x , 则当x →0时, y →0), 所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x , 所以当x →0时, 2~1s e c2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x . 解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2s i n t a n 2)1(c o s t a n t a n s i n x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~s i n ~1s i n 1s i n 1s i n1++=-+(x →0),所以 33121l i m )1s i n 1)(11(tan sin lim 230320-=⋅-=-+-+-→→xx x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x . 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性. 在x =-1处, 因为f (-1)=-1, 并且)1(11l i m )(l i m 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 并且1l i m )(l i m 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x xy , x =1, x =2;解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x xy x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的.(2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim 0=→x x x ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点. (4)⎩⎨⎧>-≤-=1311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim)(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n . 在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点; 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n 1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Q x x x x x f)(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x . 在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim)(lim 33-=-+-=-→-→x x x x f x x . 2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;。
同济大学第六版高等数学上下册课后习题答案5-2 1. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数. 解 x tdt dx d y x sin sin 0=='⎰, 当x =0时, y '=sin0=0; 当4π=x 时, 224sin =='πy . 2. 求由参数表示式⎰=t udu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x 的导数.解 x '(t )=sin t , y '(t )=cos t , t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+x y ttdt dt e 000cos 所决定的隐函数y 对x 的导数dxdy . 解 方程两对x 求导得0cos =+'x y e y ,于是 ye x dx dy cos-=. 4. 当x 为何值时, 函数⎰-=x t dt te x I 02)(有极值? 解 2)(x xe x I -=', 令I '(x )=0, 得x =0. 因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0,所以x =0是函数I (x )的极小值点.5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x xdt t dx d cos sin 2)cos(π. 解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt tdx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ)cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-=)sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分:(1)⎰+-adx x x 02)13(; 解 a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(. (2)⎰+2142)1(dx xx ; 解 852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ; 解 94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰ 6145)421432()921932(223223=+-+=. (4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解 3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+a x a dx 3022; 解 a a a a xa x a dx aa 30arctan 13arctan 1arctan 1303022π=-==+⎰. (7)⎰-1024x dx ; 解 60arcsin 21arcsin 2arcsin 410102π=-==-⎰x x dx . (8)dx x x x ⎰-+++012241133; 解 013012201224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=. (9)⎰---+211e x dx ; 解 1ln 1ln ||1|ln 12121-=-=+=+------⎰e x x dx e e . (10)⎰402tan πθθd ; 解 4144tan )(tan )1(sec tan 40402402πππθθθθθθπππ-=-=-=-=⎰⎰d d . (11)dx x ⎰π20|sin |; 解 ⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx x πππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4.(12)⎰20)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 211 1)(2x x x x x f . 解 38|)61(|)21(21)1()(2131022121020=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ; (2)⎰-=ππ0sin kxdx ; (3)⎰-=πππkxdx 2cos ; (4)⎰-=πππkxdx 2sin . 证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k k k k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k k k k x k k kxdx 0cos 1cos 1=+-=ππk kk k . (3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题:(1)⎰-=ππ0sin cos lxdx kx ; (2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx . 证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k . (2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos 0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k . (3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k . 9. 求下列极限:(1)x dt t x x ⎰→020cos lim;(2)⎰⎰→x t x t x dt te dt e 0220022)(lim .解 (1)11cos lim cos lim 20020==→→⎰x x dt t x x x . (2)22222200002200)(2lim )(lim x xt x t x xt x t x xe dt e dt e dtte dt e '⋅=⎰⎰⎰⎰→→ 22222002002lim 2lim x x t x x x xt x xe dt e xe edt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx ===⎰⎰ϕ; 当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xx ϕ. 因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ. 因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ, 316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ, 所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(00===⎰⎰xx dt dt t f x ϕ; 当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x x xx ϕ; 当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x -=+==⎰⎰⎰ 10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(. 12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x adt t f a x x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f x a -=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=. 由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内 0)]()([1)(≤--='ξf x f ax x F .。
同济六版高等数学课后答案全集第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A\B 及A\(A\B)的表达式.2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B)C =AC ⋃BC . .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f(A ⋃B)=f(A)⋃f(B);(2)f(A ⋂B)⊂f(A)⋂f(B).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中IX 、IY 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有IX x =x ; 对于每一个y ∈Y , 有IY y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f(A))⊃A ;(2)当f 是单射时, 有f -1(f(A))=A .6. 求下列函数的自然定义域:(1)23+=x y ;. (2)211x y -=; (3)211x x y --=;(4)241x y -=;(5)x y sin =; (6) y =tan(x +1);(7) y =arcsin(x -3); (8)x x y 1arctan 3+-=;. (9) y =ln(x +1);(10)x e y 1=.7. 下列各题中, 函数f(x)和g(x)是否相同?为什么?(1)f(x)=lg x2, g(x)=2lg x ;(2) f(x)=x , g(x)=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f(x)=1, g(x)=sec2x -tan2x .8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x)的图形.. 9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).10. 设 f(x)为定义在(-l , l)内的奇函数, 若f(x)在(0, l)内单调增加, 证明f(x)在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l)上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x2(1-x2);(2)y =3x2-x3;(3)2211x xy +-=;(4)y =x(x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+= 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);.(2)y =cos 4x ;(3)y =1+sin πx ;(4)y =xcos x ;(5)y =sin2x .14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学第六版高等数学上下册课后习题答案5-11. 利用定积分定义计算由抛物线y =x 2+1, 两直线x =a 、x =b (b >a )及横轴所围成的图形的面积.解 第一步: 在区间[a , b ]内插入n -1个分点i nab a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 把区间[a , b ]分成n 个长度相等的小区间, 各个小区间的长度为: nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 第二步: 在第i 个小区间[x i -1, x i ] (i =1, 2, ⋅ ⋅ ⋅, n )上取右端点i nab a x i i -+==ξ, 作和 nab i n a b a x f S ni i i ni n -⋅+-+=∆=∑∑==]1)[()(211ξ ∑=+-+-+-=n i i na b i n a b a a n a b 12222]1)()(2[]6)12)(1()(2)1()(2[)(222n n n n na b n n n a b a na n a b +++⋅-++⋅-+-= ]16)12)(1()()1)(()[(222+++-++-+-=nn n a b n n a b a a a b . 第三步: 令λ=max{∆x 1, ∆x 2, ⋅ ⋅ ⋅ , ∆x n }nab -=, 取极限得所求面积 ∑⎰=→∆==ni i i ba x f dx x f S 10)(lim )(ξλ]16)12)(1()()1)(()[(lim 222+++-++-+-=∞→nn n a b n n a b a a a b n a b a b a b a b a a a b -+-=+-+-+-=)(31]1)(31)()[(3322.2. 利用定积分定义计算下列积分:(1)xdx ba ⎰(a <b ); (2)dx e x ⎰10.解 (1)取分点为i n a b a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点i nab a x i i -+==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是∑∑⎰=∞→=∞→-⋅-+=∆=ni n n i i i n ba nab i n a b a x xdx 11)(lim lim ξ )(21]2)1()()([lim )(22222a b n n n a b a b a a b n -=+-+--=∞→. (2)取分点为n i x i =(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nx i 1=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点nix i i ==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是) (1lim 1lim 21110n n n n n n i n i n xe e e nn e dx e +⋅⋅⋅++==∞→=∞→∑⎰1)1(]1[lim1])(1[1lim 11111-=--=--⋅=∞→∞→e e n e e e e e nnn n nn n n n .3. 利用定积分的几何意义 说明下列等式: (1)1210=⎰xdx ; (2)41102π=-⎰dx x ;(3)⎰-=ππ0sin xdx ;(4)⎰⎰=-2022cos 2cos πππxdx xdx .解 (1)⎰102xdx 表示由直线y =2x 、x 轴及直线x =1所围成的面积, 显然面积为1.(2)⎰-1021dx x 表示由曲线21x y -=、x 轴及y 轴所围成的四分之一圆的面积, 即圆x 2+y 2=1的面积的41:41411212ππ=⋅⋅=-⎰dx x . (3)由于y =sin x 为奇函数, 在关于原点的对称区间[-π, π]上与x 轴所夹的面积的代数和为零, 即⎰-=ππ0sin xdx .(4)⎰-22cos ππxdx 表示由曲线y =cos x 与x 轴上]2,2[ππ-一段所围成的图形的面积. 因为cos x为偶函数, 所以此图形关于y 轴对称. 因此图形面积的一半为⎰20cos πxdx , 即⎰⎰=-2022cos 2cos πππxdx xdx .4. 水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p (单位面积上的压力大小)是水深h 的函数, 且有p =9⋅8h (kN/m 2). 若闸门高H =3m , 宽L =2m , 求水面与闸门顶相齐时闸门所受的水压力P .解 建立坐标系如图. 用分点i nHx i =(i =1, 2, ⋅ ⋅ ⋅, n -1)将区间[0, H ]分为n 分个小区间, 各小区间的长为nHx i =∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间[x i -1, x i ]上, 闸门相应部分所受的水压力近似为 ∆P i =9.8x i l ⋅∆x i . 闸门所受的水压力为22118.42)1(lim 8.9lim 8.98.9lim H L nn n H L n Hi n H L x L x P n ni n ni i i n ⋅=+⋅=⋅=∆⋅⋅=∞→=∞→=∞→∑∑.将L =2, H =3代入上式得P =88.2(千牛).5. 证明定积分性质: (1)⎰⎰=ba ba dx x f k dx x kf )()(; (2)ab dx dx ba ba -==⋅⎰⎰1.证明 (1)⎰∑∑⎰=∆=∆==→=→ba ni i i ni i i ba dx x f k x f k x kf dx x kf )()(lim )(lim )(1010ξξλλ.(2)a b a b x x dx ni i ni i ba -=-=∆=∆⋅=⋅→=→=→∑∑⎰)(lim lim 1lim 101010λλλ.6. 估计下列各积分的值: (1)⎰+412)1(dx x ; (2)⎰+ππ4542)sin 1(dx x ;(3)⎰331arctan xdx x ;(4)⎰-022dx e xx.解 (1)因为当1≤x ≤4时, 2≤x 2+1≤17, 所以 )14(17)1()14(2412-⋅≤+≤-⋅⎰dx x , 即 51)1(6412≤+≤⎰dx x . (2)因为当ππ454≤≤x 时, 1≤1+sin 2x ≤2, 所以 )445(2)sin 1()445(14542ππππππ-⋅≤+≤-⋅⎰dx x ,即 ππππ2)sin1(4542≤+≤⎰dx x .(3)先求函数f (x )=x arctan x 在区间]3 ,31[上的最大值M 与最小值m .21arctan )(x x x x f ++='. 因为当331≤≤x 时, f '(x )>0, 所以函数f (x )=x arctan x 在区间]3 ,31[上单调增加. 于是3631arctan31)31(π===f m , 33arctan 3)3(π===f M .因此)313(3arctan )313(36331-≤≤-⎰ππxdx x ,即32arctan 9331ππ≤≤⎰xdx x . (4)先求函数xx e x f -=2)(在区间[0, 2]上的最大值M 与最小值m .)12()(2-='-x e x f xx , 驻点为21=x .比较f (0)=1, f (2)=e 2,41)21(-=e f ,得41-=e m , M =e 2. 于是)02()02(220412-⋅≤≤-⎰--e dx e e xx,即 41022222---≤≤-⎰e dx dx e e xx .7. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上 f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[ab ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f . (3)令F (x )=g (x )-f (x ), 则在[a ,b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).4. 根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大: (1)⎰102dx x 还是⎰103dx x ?(2)⎰212dx x 还是⎰213dx x ? (3)⎰21ln xdx 还是⎰212)(ln dx x ? (4)⎰10xdx 还是⎰+10)1ln(dx x ? (5)⎰10dx e x 还是⎰+10)1(dx x ?解 (1)因为当0≤x ≤1时, x 2≥x 3, 所以⎰⎰≥103102dx x dx x . 又当0<x <1时, x 2>x 3, 所以⎰⎰>103102dx x dx x . (2)因为当1≤x ≤2时, x 2≤x 3, 所以⎰⎰≤213212dx x dx x . 又因为当1<x ≤2时, x 2<x 3, 所以⎰⎰<213212dx x dx x .(3)因为当1≤x ≤2时, 0≤ln x <1, ln x ≥(ln x )2, 所以⎰⎰≥21221)(ln ln dx x xdx . 又因为当1<x ≤2时, 0<ln x <1, ln x >(ln x )2, 所以⎰⎰>21221)(ln ln dx x xdx . (4)因为当0≤x ≤1时, x ≥ln(1+x ), 所以⎰⎰+≥1010)1ln(dx x xdx . 又因为当0<x ≤1时, x >ln(1+x ), 所以⎰⎰+>1010)1ln(dx x xdx .(5)设f (x )=e x -1-x , 则当0≤x ≤1时f '(x ) =e x -1>0, f (x )=e x -1-x 是单调增加的. 因此当0≤x ≤1时, f (x )≥f (0)=0, 即e x ≥1+x , 所以⎰⎰+≥1010)1(dx x dx e x . 又因为当0<x ≤1时, e x >1+x , 所以⎰⎰+>1010)1(dx x dx e x .。
2 ⎪⎨ ⎪1 算了一次)或C 15 1种,故 P 1 2 2 ,其他结果类似 ⎩习 题 二(A )三、解答题1. 一颗骰子抛两次,以 X 表示两次中所得的最小点数(1) 试求 X 的分布律; (2) 写出 X 的分布函数.解: (1)分析:这里的概率均为古典概型下的概率,所有可能性结果共 36 种,如果 X=1,则表明两次中至少有一点数为 1,其余一个 1 至 6 点均可,共有C 1 ⨯ 6 -1(这里C 1 指任选某次点22数为 1,6 为另一次有 6 种结果均可取,减 1 即减去两次均为 1 的情形,因为C 1 ⨯ 6 多⨯ + { = } = C 1 ⨯ 6 -1 = C 1⨯ 5 + 1 =11可得. (2)2⎧ 0 于 x < 136 36 36 ⎪P {X = 1}于1 ≤ x < 2 ⎪P {X = 1} + P {X = 2} 于 2 ≤ x < 3 F (x ) = ⎪P {X = 1} + P {X = 2} + P {X = 3} 于 3 ≤ x < 4⎪P {X = 1} + P {X = 2} + P {X = 3} + P {X= 4}于 4 ≤ x < 5 ⎪P {X = 1} + P {X = 2} + P {X = 3} + P {X = 4} + P {X = 5}于 5 ≤ x < 6 ⎪于 x ≥ 6X⎪ ⎨36 ⎪36 k != 10⎧ 0 于 ⎪11x < 1 ⎪ 于1 ≤ x < 2 ⎪36 ⎪ 20于 2 ≤ x < 3 ⎪36 = ⎪ 27 于⎪ ⎪32 于⎪3 ≤ x <4 4 ≤ x <5 ⎪35 于 5 ≤ x <6 ⎪36 ⎪⎩1 于 x ≥ 62. 某种抽奖活动规则是这样的:袋中放红色球及白色球各 5 只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出 5 只球,若 5 只球同色,则获奖 100 元,否则无奖, 以 X 表示某抽奖者在一次抽取中净赢钱数,求 X 的分布律.解:- 199i注意,这里 X 指的是赢钱数,X 取 0-1 或 100-1,显然 P {X = 99} =2 1 .5 126 3 k.设随机变量 X 的分布律为 P {X = k } = a k ! , k = 0,1,2, ;> 0 为常数,试求常数 a .∞k--解:因为∑ a= ae k =0= 1 ,所以a = e .4.设随机变量 X 的分布律为X -1 2 3 p i1/41/21/4(2) 求 P {X ≤ 1}, P {3 < X ≤ 5}, P {2 ≤ x ≤ 3} .2 2 2 解:C22 222 22i 2 ∞ ⎭ - ⎪ 0于x -10于 1 x -1(1) P { X 1}于 F ( x ) x 2 于 4 x 2 , P { X } P { X 2}于 2 x 33于2 x 3 1于 x 34 1于x 3⎧ ≤ 1 ⎫ = p {X= -1} = 1 、 P ⎧ 3 < X ≤ 5 ⎫ = P {X = 2} = 1 ,(2) P ⎨X ⎬⎩ ⎭ ⎨ ⎬ 4 ⎩ ⎭2 P {2 ≤ X ≤ 3} = P {{X = 2} {X = 3}} = P {X = 2}+ P {X= 3} = 3. 45. 设随机变量 X 的分布律为 P {X = k } =1 , k = 1,2, 求: 2k(1) P {X = 偶数} (2) P {X ≥ 5} (3) P {X = 3 的倍数}解:(1) P {X = 于于} = 1+ 1 + + 1⎛ 1 ⎛ 1 ⎫ ⎫1 ⎪ + = lim ⎝ ⎭ ⎪ = 1 ,22 24 22ii →∞ ⎝1 ⎪ 3 22 ⎪(2) P X 1 X 1 1 11 11 15 1 , 22 1⎡ 23⎛ 1 ⎫i ⎤ 24 16 163 ⎢1 - 3 ⎪ ⎥ (3) P {X = 3于于于}= ∑ 1 = lim 2 ⎢⎣ ⎝ 2 ⎭ ⎥⎦ = 1 . i =1 23i i →∞1 -1 7 236. 某公安局在长度为 t 的时间间隔内收到的紧急呼救的次数 X 服从参数为 0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计)(1) 求某一天中午 12 时至下午 3 时没有收到紧急呼救的概率. (2) 求某一天中午 12 时至下午 5 时至少收到一次紧急呼救的概率. 解:(1) X ~ P (0.5t ) = P (1.5) P {X = 0}= e -1.5 .(2) 0.5t = 2.5P {x ≥ 1}= 1 - P {x = 0}= 1 - e -2.5 .7. 某人进行射击,每次射击的命中率为 0.02,独立射击 400 次,试求至少击中 2 次的概率.1 -4005 ⎪解:设射击的次数为 X ,由题意知 X ~ B (400,0.2),1P {X ≥ 2}= 1- P {X ≤ 1}= 1- ∑C k0.02k 0.98400-k , k =0由于上面二项分布的概率计算比较麻烦,而且 X 近似服从泊松分布 P (λ)(其中λ=400×0.02),所以查表泊松分布函数表得:P {X ≥2}8k e 8k !P {X ≥2} ≈ 1- 0.28 = 0.99728. 设事件 A 在每一次试验中发生的概率为 0.3,当 A 发生不少于 3 次时,指示灯发出信号.现进行 5 次独立试验,试求指示灯发出信号的概率.解:设 X 为事件 A 在 5 次独立重复实验中出现的次数, X ~ B (5于0.3) 则指示灯发出信号的概率p = P {X ≥ 3}= 1 - P {X < 3}= 1 - (C 0 0.300.75 + C 1 0.310.74 + C 2 0.320.73 )555= 1 - 0.8369 = 0.1631 .9. 设顾客在某银行窗口等待服务的时间 X (以分钟计)服从参数为 5 指数分布.某顾客在窗口等待服务,若超过 10 分钟,他就离开.他一个月要到银行 5 次,以 Y 表示他未等到服务而离开窗口的次数.写出 Y 的分布律,并求 P {Y ≥ 1}.- x解:因为 X 服从参数为 5 的指数分布,则 F (x ) = 1 - e5, P {X > 10}= 1 - F (10) = e -2 ,Y ~ B (5 于 e -2 ),则 P {Y = k } = C k (e -2 )k (1 - e -2 )5-k , k = 0,1, 5 . P {Y ≥ 1} = 1- P {Y = 0} = 1-于 1- e -2于5 = 0.5167⎧a cos x , 10.设随机变量 X 的概率密度为 f ( x ) = ⎨ | x |≤ 2 ,试求:(1) 系数 a ;(2) X 落在区间(0,) 内的概率.4⎪ 0, ⎩ | x |> 2解:(1) 由归一性知:1 =+∞f (x )dx -∞ 2a cos xdx = 2a ,所以 a = 1. - 22⎰ ⎰ , =0 ⎨ ⎨ ⎨ ≤ 1 1 2 (2) . P {0 < X < } = 4 4 cos xdx = 0 2sin x | 4 = 2 ⎧0, . 4 x < 0 11. 设连续随机变量 X 的分布函数为 F ( x ) = ⎪ Ax 2, ⎪⎩1, 0 ≤ x < 1x ≥ 1 试求:(1) 系数 A ;(2) X 落在区间(0.3,0.7)内的概率;(3) X 的概率密度.解 (1)由 F (x )在 x =1 的连续性可得lim F (x ) = lim F (x ) = F (1) ,即 A=1.x →1+x →1-(2)P {0.3 < X < 0.7}= F (0.7) - F (0.3) = 0.4 . (3)X 的概率密度 f (x ) = F '(x ) =⎧2x ,0 < x < 1.⎩0,12. 设随机变量 X 服从(0,5)上的均匀分布,求 x 的方程 4x 2 + 4 X x + X + 2 = 0 有实根的概率.⎧1解:因为 X 服从(0,5)上的均匀分布,所以 f (x ) = ⎪5 ⎪⎩0 < x < 5其他 若 方 程 4x 2 + 4 X x 2 + X + 2 = 0 有 实 根 , 则 ∆ = (4 X )2 - 16 X - 32 ≥ 0 , 即(x - 2)( X +1) ≥ 0 ,得 X ≥ 2 或 X ≤ -1,所以有实根的概率为 p = P {X ≥ 2}+ P {X ≤ -1}= 51dx + -1 0dx = 1 x 5 = 313.设 X ~N (3,4)⎰2 5 ⎰-∞5 2 5(1) 求 P {2 < X ≤ 5}, P {-4 < X ≤ 10}, P { X (2) 确定 c 使得 P {X > c } = P {X ≤ c };> 2}, P {X > 3}; (3) 设 d 满足 P {X > d } ≥ 0.9 ,问 d 至多为多少?解: (1) 因为X ~ N (3于4) 所以 P {2 < X ≤ 5} = P {2 -3 < X - 3 5 - 3} = P {-0.5 < X - 3 ≤ 1} 2 2 2 2(1) (0.5) (1) (0.5) 1 0.8413 0.6915 1 0.5328⎰ 0( P {- 4 < X ≤ 10} = = 10 - 3) -( - 4 - 3)2 2P {X =(3.5) -(-3.5) = 2(3.5) - 1 = 2 ⨯ 0.9998 - 1 = 0.9996> 2}= 1 - P {X ≤ 2} = 1 - P {- 2 ≤ X ≤ 2}= 1 - [F (2) - F (-2)] = 1 - [ Φ(-0.5) - Φ(-2.5) ] = 1 - [ Φ(2.5) - Φ(0.5) ] = 1 - 0.3023 = 0.6977P {X > 3} = 1 - P {X ≤ 3} = 1 - F (3) = 1 - Φ(0) = 1- 0.5 = 0.5 .(2)P {X > c }= 1- P {X ≤ c },则 P {X ≤ c } = 1 = F (c ) = Φ( c - 3) = 1,经查表得2 2 2Φ(0) = 1 ,即 c - 3= 0 ,得c = 3 ;由概率密度关于 x=3 对称也容易看出。
第一章函数班级学号姓名第一章函数习题函数一、填空题:略 .二、略.三、图略.四、图略;0,2, 6.五、1.函数f(x)与g(x)不同样;2.函数f(x)与g(x)是同一个函数.六、ylog a(2t)3.七、1.y log au,usinv,v2w,w1;2.y arcsinu,u v,v lgw,w x1;3.y cosu,u v2,v e x1;4.y u2,ucosv,v lnw,w x22x 1.第二章极限与连续习题一极限的观点一、判断题:略.二、图略;lim()=0. x0f x三、(1)f(x)无定义,g(1)2,h(1)3;(2 )lim f()2;lim()2;lim() 2. x1xxg xx1hx1四、左极限lim()0;右极限lim()1;函数在x0处的极限不存在.x0f x x0f x五、(1)lim()2;lim()1;lim()不存在;x1f x x1f x x1f x(2)lim f(x)lim f(x)9;lim f(x)9;x3x34x34222(3lim()4;lim()8;li()不存在.)mx2f x x2f x x2f x 习题二极限的四则运算一、求以下极限1.30;2.17;3.40;4.1.4二、10x2x;1.1第一章函数 班级 学号 姓名三、求以下极限1.12; 2.0; 3.4;4.1.6四、求以下极限1.2;2.2.331五、. 六、1.习题三两个重要极限一、求以下极限 1.1;2.16;3.1;4.1;5.1;6.8.24二、求以下极限1. e 3;2.e 2;3.e 9;4. 12.e习题四 无量小与无量大一、1. x ;2.x0 .二、1. x1及x;2.x.三、1.x 1;2. x 1 .四、求以下极限 0;2.0.五、sin 3x 是比4x 2高阶的无量小.六、提示:由极限运算及等价无量小定义.习题五函数的连续与中断一、选择题:略. 二、a2.三、1. 可去中断点是x 1;2. x7 为函数的第二类中断点; x 1为函数的跳跃中断点.四、求以下极限1.0;2. 1;3.1;4.4.22五、1,4 为函数的定义区间,即为函数的连续区间.2第一章函数 班级 学号 姓名第三章 导数与微分 习题一 导数的定义一、1.f(1)2;2.f(2)3.4二、y a .三、f(0) 0.四、左导数f(0)1,右导数为f _(0)0,函数在x 0处的导数不存在.五、在(1,1)点处切线平行于直线.习题二 导数的四则运算 一、填空题:略.二、求以下函数的导数1.y5x 43 ;xln22. ye x (sinxcosx);3 2 3. y1 x2 5x 3;34.y1 [(2xlnx1 x)cosx(1x 2)lnxsinx];cos 2 xx21x 25. y 3sec x1 x 2;6.y2xarctanx1x 2.三、①定义域R 即为函数的连续区间;dy2x 32② 5sinxx 5 cosx ;dx5③由定义,f(0)0;32④f(x)2x 5 sinxx 5cosx .5习题三 复合函数求导3一、填空题:略 .二、求以下函数的导数1.ysin2x sinx 22xsin 2 xcosx 2;sin2x21112. y e [sec x (x 2)2cos2xtan x ];3.y200(1 x) 99(1x)101 ;yxcos 11sin 1];4. ex[cos 1xxx5.y1 3sin3xx cos3x ;6. y1.2xlnxln(lnx)三、v(t) wsin2(wt );a(t)2w 2cos2(wt).四、ye f(x)[f(e x )e xf(e x )f(x)].习题四隐函数对数函数求导高阶导数一、是非题:略.二、求以下方程所确立的隐函数y f(x)的导数1. yy1e xsinx ;2. yy e x y .e xxe x y x三、用对数求导法求以下函数的导数1. y14(x1)(x1)3(23 4x)(13 4 11)4 (x2)(x3)x1x1234xx2x32.dy x 2x (2lnx2).dx四、切线方程为y0.五、求以下函数的二阶导数 1. y10x 3(9x 54);42.y12e2x2cosx;x23.y360(12x)8;4.y6400sin2x.习题五微分一、填空题:略.二、求以下函数的微分1.dy2(1xcosx)1sinxdx;2.dy e2x(2sin3x3cos3x)dx;3.dy12lnxdx;x33e3x14.dy1e6x2dx.三、求方程所确立的隐函数y f(x)的微分dy1.dye x2xydx; 2.dyb2xx2cosy a2dx.y四、利用微分计算以下各数的近似值1.3;2.e.五、球的体积扩大概为3 1800πcm.第四章微分学的应用习题一洛必达法例一、是非题:略.二、求以下各式的极限1.0;2.1;3.1;4.0.三、求以下各式的极限1.0;2.0.四、求以下极限11.0;2.1;3.1;4.e2;5.3;6.0.5第一章函数 班级 学号 姓名习题二 函数的单一性一、单项选择题:略. 二、求以下函数的单一区间1. 单增区间( ,0) (2,),单减区间(0,2);2. 单增区间( ,0) ,单减区间(0,);3. 单增区间(1,),单减区间(0,1);224.单增区间(, 1) (0,),单减区间(1,0).三、提示:利用函数单一性证明.四、单一递加区间( 1 , ),单一递减区间(, 1 ).22习题三 函数的极值一、单项选择题:略.二、1.f(x);2. f(x);3.极小值;4. f(1) 3.三、最大值为f( 1) 10,最小值为f(3)22.四、极大值为f(0)0,极小值为f(2 ) f( 2)1 .224五、当直径2r 与高h 之比为1∶1时,所用的资料最少.习题四 曲线的凹凸性与拐点一、填空题:略 .二、曲线在(,23)及( 2 3 , )内上凹,在(2 3 , 23 )内下凹,拐点为(23 , 10 )和33 3 33 9(23,10).396第一章函数 班级 学号 姓名三、函数在(0,2)上的极大值为1 23 1;最大值为f(2)1,最小值为f(),极小值为f(1)327f(1) 1;拐点为(2,25).327四、表示图:第五章 不定积分习题一 不定积分的观点与基本公式一、填空题:略 . 二、选择题:略 .三、计算以下不定积分3 131.x 3 C ;132. 3x3x C ;5xln353. 13sinx 2lnxC ;xcosx2arcsinx πxC .四、求解以下各题1.f(x)dx2e 2xC ;2. f(x)e xsec 2 x ;所求函数为yx 33x2.习题二 不定积分的换元积分法7第一章函数 班级 学号 姓名一、填空题:略. 二、选择题:略.三、多步填空题:略. 四、计算以下不定积分1. 1 x 2 C ;2.1arcsinx 2C ;23.1ln(1 x 4)arctanx 2C ;414. tanxtan 3x C ;2335.x 221xC;133arccos36. x 29 C .x习题三 分部积分法 简单有理函数的积分一、填空题:略 .二、多步填空题:略 . 三、求以下不定积分1. 1 xx 1 C ;2e12. (x 2x)lnxx 2xC ;243. (x22x2)e xC ;14. xarcsinx (1x 2)2C ; 5. 2 xcos x2sinx C ;6. (x2)2C .lnx3四、e 2x f(e x )dx e x f(e x )f(e x )C .第六章 定积分习题一 定积分的观点 微积分基本公式8第一章函数 班级 学号 姓名一、选择题:略 .二、求以下定积分1.3343;2.424;3. 2;4.1 π 4;6. 1.;5.4346三、解答以下各题1. f(x)sinx 4 2x ;x f(t)dt3;2.lim2x0 x2723.f(x)dx.16习题二 定积分的换元积分法与分部积分法一、填空题:略.二、求以下定积分21(e 2 31. 2(2e);2.π;3.1);4. π1;32412 25. ln 9 ;6.2 ;7.1(e 21);8.ln2 1 .4 a222 3习题三 定积分的应用2一、S.3二、Vπr 2h .32三、(1)S2π;(2)V.2四、两部分面积比为 (2π4):(8π2π4)=(6π4):(18π4).33五、Wπr 4.49第一章函数班级学号姓名1.六、P 18g.2.3.4.5.6.习题四失常积分7.一、填空题:略.8.9.二、选择题:略.10.11.三、计算以下广义积分12.1;2.π.22四、x dx发散.x21第七章常微分方程习题一常微分方程的基本观点与分别变量法一、判断正误:略.二、填空题:略.三、多步填空题:略.四、求解以下各题1.1y21C(此中C C1为随意常数);3x2.冷却规律为T(t)2030e kt.习题二一阶线性微分方程一、填空题:略.二、多步填空题:略.2三、通解为y 1Ce x(此中C为随意常数).习题三二阶常系数齐次线性微分方程一、填空题:略.二、多步填空题:略.三、求以下微分方程的通解1.y C1e6x C2e x;10第一章函数班级学号姓名2.y(C1C2x)e5x;1x333.y e2(C1cos xC2sinx);224.y Ce25x.四、f(x)y2e x1.习题四二阶常系数非齐次线性微分方程一、填空题:略.二、多步填空题:略.三、y513e4x(4x 8)e x.43639四、求以下微分方程知足初始条件的特解(1)y(xx2)e2x;(2)y sinx.第八章空间分析几何习题一空间直角坐标系与向量的观点一、填空题:略.二、选择题:略.三、求解以下问题1.3AB2AC2ij3k;2.dAB14;3.3,3,3和3,3,3;9999994.C(2,0,0).习题二向量的点积与叉积一、是非题:略.二、填空题:略.11第一章函数班级学号姓名三、选择题:略.三、求解以下各题5371.,,;83 8383b12,6,4;S ABC321.习题三平面和直线一、填空题:略.二、选择题:略.三、求解以下问题1.4x 3y z5;zy2;3.x 1 y 2 z1;1124.①p5;②p7.习题四曲面与空间曲线一、填空题:略.二、选择题:略.三、求解以下问题1.方程为y2z24x,是旋转抛物面;2.y2z5,投影方程为0;x3.x22z40,投影方程为y0.第九章多元函数微分学12习题一多元函数及其极限一、填空题:略.y(x,y)1x 2y 2二、函数的定义域为 4;草图三、lim2xy41.Oxx0xy4y0四、表面积Sπr 2 2πrh ,体积Vπr 2h .五、f(x,y)f(0,0)(x)(y)=(x)2 (y)2.习题二 偏导数及高阶偏导数 一、是非题:略.二、填空题:略. 三、解以下各题1. z4x ,z9y 2;xy2. z4xy 3,z6x 2y 2;x y3. z2xlny ,z0x1x ,xyy y2z2zx 2z1;x 22,y 2,yy 2yx4. fyarctanz ,fxarctanz ,fxy .xyz1z 2四、略.习题三 全微分一、填空题:略. 二、解答以下各题1. dz y(lnx 1)dx xlnxdy ;2. duyx y1dx(x y lnxsinz)dyycoszdz ;3.z ;13dz.三、sin0.01cos0.03 .四、对角线变化约为.五、所需水泥的近似值为3.习题四复合函数的偏导数一、填空题:略.二、多步填空题:略.三、解以下各题1.dz1;dt2.z z,z z(x y);x y y y23.z xycos2y(2sinx xcosx),zx2sinx(cos2yysin2y).x y 习题五偏导数的几何应用一、填空题:略.二、求解以下各题1.2.切线方程为3.4.切平面方程为x1y1z1和x3y9z27;12312272(x 1) 4(y 1) (z3)=0;3.切线方程为x1y1z1,1691法平面方程为16(x1)9(y1)1(z1)0.习题六多元函数的极值一、判断题:略.二、选择题:略.三、计算以下各题1.函数在(2,1)点获得极小值24;当端面半径与半圆柱高知足r:h1:2时,所用资料最省.第十章多元函数积分学14第一章函数 班级 学号 姓名习题一 二重积分及其在直角坐标系下的计算一、判断题:略.二、填空题:略. 三、计算以下各题 1. I 0;①I2 2x 2dy2. dx0y1 y 2xIe ydx3.dy 032;②Idy y y 2dx32 ;423 0231 .2习题二 极坐标下二重积分的计算及二重积分的应用一、填空题:略. 二、多步填空题提示:(x 2y2)xyr 22 θ 1r 2edderdd θdredrrDD2d θ11r 22)2 1 1 1ed(r(1)d θπ(1).0 022ee三、求解以下各题1.cos(x22 )dxdy2 ;(提示:化为极坐标下的二重积分) ; y πD22.V32π;3. 薄片的质量为1.12第十一章 级数习题一 数项级数一、判断题:略. 二、选择题:略.三、判断以下级数的敛散性(1)n 发散;n111 11 发散;2.4 62n23.1 当x0或x2时收敛,当2x0时发散;(1 x)nn 14.1 收敛;n22nn 1155.( 1)n 1n 收敛;n12n 6.2 ( 1)n收敛.3nn1习题二 幂级数一、填空题:略. 二、求解以下各题1. 级数2n x n 的收敛半径为R 1 ;2n2n 12. 级数2nx 2n1 的收敛半径为R202n;n123. 级数(x 1)n 的收敛域为[1,3);n0n2n4. 级数nx n 1的和函数为S(x)(1 1 ;n 01x)2x 3x 2n 1的和函数为S(x)ln(1 15. 级数xx)2.32n 11 x习题三 函数的幂级数睁开 一、填空题:略 .二、求解以下各题x (x )2(x )3(x )n11. 睁开为ln(2x)22 ( 1) n2 ,收敛域为x(2,2];ln223(n1)22.睁开为sin 2x(2x)2 (2x)4 ( 1)n1 (2x)2n,收敛域为x(,);2 2!24!2(2n)!3.2x =1x2x ln2(ln2)22x x 2(ln2)32x x 3(ln2)n 2xx n,收敛区间为2! 3!n!x( , );164.睁开式为21(1)n x n1(1)n(x)n,收敛区间为(1,1).x3x2n02n0217。
《高等数学》专业 年级 学号 姓名一、判断题 . 将√或 ×填入相应的括号内 .(每题 2 分,共 20 分)( ) 1. 收敛的数列必有界 .( ) 2. 无穷大量与有界量之积是无穷大量. ( ) 3. 闭区间上的间断函数必无界 . ( ) 4. 单调函数的导函数也是单调函数.() 5. 若 f (x) 在 x 0 点可导,则 f (x ) 也在 x 0 点可导 . ( )6. 若连续函数 yf ( x) 在 x 0 点不可导,则曲线 yf ( x) 在 ( x 0 , f (x 0 )) 点没有切线 .( ) 7. 若 f (x) 在 [ a, b ] 上可积,则 f (x) 在 [ a,b ] 上连续 .() 8. 若 zf ( x, y) 在( x 0 , y 0 )处的两个一阶偏导数存在,则函数 z f ( x, y) 在( x 0 , y 0 )处可微 . ( ) 9. 微分方程的含有任意常数的解是该微分方程的通解.() 10. 设偶函数 f ( x) 在区间 (1,1 ) 内具有二阶导数,且f (0)f ( 0) 1 , 则f (0) 为 f ( x) 的一个极小值 .(每题 2 分,共 20 分)二、填空题 .1. 设 f (x 1)x 2 ,则 f (x 1) .1若 f (x)2x12. 1 ,则 lim.2 xx 013.设 单 调 可 微 函 数 f ( x) 的 反 函 数 为 g( x) , f (1)3, f(1) 2, f(3)6 则g (3).4. 设 ux , 则 du.xyy5. 曲线 x 26 y y 3 在 ( 2 , 2) 点切线的斜率为.6. 设 f (x) 为可导函数 , f (1)1, F ( x)f ( 1) f ( x 2 ) ,则 F (1).xf (x )x 2(1 x), 则 f (2)7. 若t2dt .8. f ( x) x 2 x 在 [0,4] 上的最大值为.9. 广义积分e 2 x dx.10. 设 D 为圆形区域 x 2y 21, y1 x 5 dxdy.D三、计算题 (每题 5 分,共 40 分)1. 计算 lim ( 121 2 1 2 ) .nn(n 1)(2n)2. 求 y ( x 1)(x2) 2 ( x 3) 3(x 10)10 在( 0,+)内的导数 .1 3. 求不定积分dx .x(1 x)4. 计算定积分sin 3 x sin 5 xdx .5. 求函数 f ( x, y)x 3 4x 2 2xy y 2 的极值 .6. 设平面区域 D 是由 yx, y x 围成,计算sin ydxdy .Dy7. 计算由曲线8. 求微分方程xy 1, xy 2, y x, y3x 围成的平面图形在第一象限的面积 .y2 x 的通解 .yy四、证明题 (每题 10分,共 20 分)1. 证明: arc tan xx (x) .arcsin1 x 22. 设 f (x) 在闭区间 [ a, b] 上连续,且f ( x) 0,xx1F ( x)f (t )dtdtbf (t )证明:方程 F ( x)0 在区间 (a, b) 内有且仅有一个实根 .《高等数学》参考答案一、判断题 . 将√或×填入相应的括号内(每题2 分,共 20 分)1.√ ;2.× ;3.×;4.× ;5.×;6.× ;7.× ;8.× ;9.√ ; 10.√.二、 填空题 . (每题 2 分,共 20 分)1. x 24x 4 ; 2. 1;3. 1/2;4. ( y 1/ y) dx ( x x / y 2 )dy ;5. 2/3 ;6. 1 ;7.336 ;8. 8 ;9.1/2 ; 10. 0.三、计算题(每题 5 分,共 40 分)1.解: 因为n 1 11L1n 1(2n)2n 2(n1)2(2n)2n2且lim n1n 120 , lim2 =0n(2 n)nn由迫敛性定理知:lim (12(n 121 2 )=0n n1)(2n)2.解: 先求对数 ln yln( x 1) 2 ln( x 2) 10ln( x10)1 y 11210 yx x 2 x 10y ( x1)(x 10)(1 210x1x 2x )103.解: 原式 = 21d x1x= 21d x1 ( x )2=2 arcsin x c4.解:原式 =sin 3 x cos2 xdx33=2 cos x sin 2xdx cosxsin 2xdx233=2 sin 2xd sin x sin 2xd sin x22525x] 02[sin2 x]=[sin 2552=4/55.解: f x3x 28x 2 y 0 f y2x 2 y 0故x0或x2 y0y2当x0时 f xx( 0,0)8 , f yy (0,0)2, f xy ( 0,0)2 y0( 8) ( 2) 220 且A=8 0( 0, 0)为极大值点且 f ( 0,0)0当x2时 f xx( 2,2) 4 , f yy (2,2)2, f xy ( 2,2)2 y24(2)220无法判断6.解: D= (x, y) 0y1, y2x ysin y dxdy dy21yD y0ysin y1 sin y ydydx =[ x]y2y y1= (sin y y sin y)dy= [ cos y]11yd cos y=1cos1[ ycos y]11cos ydy= 1 sin17.解: 令 uxy , vy;则 1 u2 , 1 v3xx ux v 1uJ2 uv2v v 1y uy vv u2v2 uvAd2 31 ln31du dvD12v8.解: 令y 2u ,知 (u)2u 4x由微分公式知: uy 22 dx2dxdxc)e ( 4xee 2 x ( 4xe 2 x dx c)e 2 x (2xe 2xe 2xc)四 . 证明题(每题 10 分,共 20 分)1.解: 设f ( x)arctan x x arcsinx 211 1 1 x 2x 2 2f ( x)1 x 1 x2x21x2=011 x2f (x)cx令 x 0f (0) 0 0 0 c0 即:原式成立。
习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ). 由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: =,BM =,∴=+=+BM =与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 22αβγ===-,从而π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模;(2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:oa =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦. 解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b -解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α,22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z x y zij kc a b a a a b b b 324112=--i j k =105+j k,||10==c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=AB C A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=;(8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成 (4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B 0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++c z b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a ==化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l=-.10、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ ∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面;(4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;图6-1 空所流动与飞机飞行速度的关系(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可. 因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪=由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(12=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s ,得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及AB 共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x .。
n →∞⎰ x 高等数学试题一、单项选择题(本大题共 5 小题,每小题 2 分,共 10 分)1.设f ( x) =l nx ,且函数( x) 的反函数-1( x) = 2( x+1),则f [( x)] = ()x- 1A .l n x- 2B .l n x+2C .l n 2- xD .l n x+2x+2x- 2 x+2 2- x⎰0(e t + e -t - 2)dt2. lim xx →01- cos x= () A .0B .1C .-1D . ∞3. 设∆y =f (x 0 + ∆x ) - f (x 0 ) 且函数 f (x ) 在 x = x 0 处可导,则必有()A. lim ∆y = 0∆x →0B. ∆y = 0⎧ 2x 2, x ≤ 1C. dy = 0D. ∆y = dy4. 设函数f ( x) =⎨ ⎩3x -1, x > 1 ,则f ( x) 在点x=1处()A. 不连续B .连续但左、右导数不存在C .连续但不可导D . 可导5.设⎰xf ( x) dx=e - x 2+ C ,则f ( x) = ()A. xe - x 2B. - x e - x 2C. 2e - x 2D. - 2e - x 2二、填空题(本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
1 16.设函数 f(x)在区间[0,1]上有定义,则函数 f(x+ )+f(x- )的定义域是.4 47. lim (a + aq + aq 2 + + aq n )( q < 1) =8. lim arctan x =x →∞ xg29. 已知某产品产量为 g 时,总成本是C( g) =9+800,则生产 100 件产品时的边际成本M C g =100 =10.函数 f (x ) = x 3+ 2x 在区间[0,1]上满足拉格朗日中值定理的点ξ是 .11.函数 y = 2x 3 - 9x 2 +12x - 9 的单调减少区间是 .12.微分方程 xy '- y = 1+ x 3 的通解是.2ln 2dt13. 设 a,则a = .6 14. 设 z = cos x y则 dz= .15.设 D = {(x , y ) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},则⎰⎰ xe -2 y dxdy =.D三、计算题(一)(本大题共 5 小题,每小题 5 分,共 25 分) ⎛ 1 ⎫x16.设 y = ⎪ ⎝ ⎭,求 dy.e t -1 =1+ x 2 ⎰x y x ⎢ ⎥ 17. 求极限 lim ln cot xx →0+ln x18. 求不定积分19. 计算定积分I= aa 2 - x 2 dx ..20.设方程 x 2 y - 2xz + e z= 1确定隐函数 z=z(x,y),求 z ' , z ' 。
习题六1. 指出下列各微分方程的阶数:1一阶 2二阶 3三阶 4一阶2. 指出下列各题中的函数是否为所给微分方程的解:2(1)2,5xy y y x '==;解:由25y x =得10y x '=代入方程得故是方程的解.(2)0,3sin 4cos y y y x x ''+==-;解:3cos 4sin ;3sin 4cos y x x y x x '''=+=-+代入方程得 3sin 4cos 3sin 4cos 0x x x x -++-=.故是方程的解.2(3)20,e x y y y y x '''-+== ;解:2222e e (2)e ,(24)e x x x x y x x x x y x x '''=+=+=++代入方程得 2e 0x ≠.故不是方程的解.解:12122211221122e e ,e e x x x x y C C y C C λλλλλλλλ'''=+=+代入方程得故是方程的解.3. 在下列各题中,验证所给二元方程为所给微分方程的解: 证:方程22x xy y C -+=两端对x 求导: 得22x y y x y -'=-代入微分方程,等式恒成立.故是微分方程的解.证:方程ln()y xy =两端对x 求导: 11y y x y ''=+ 得(1)yy x y '=-. 式两端对x 再求导得将,y y '''代入到微分方程,等式恒成立,故是微分方程的解.4. 从下列各题中的曲线族里,找出满足所给的初始条件的曲线: 解:当0x =时,y =5.故C =-25故所求曲线为:2225y x -= 解: 2212(22)e x y C C C x '=++当x =0时,y =0故有10C =.又当x =0时,1y '=.故有21C =.故所求曲线为:2e x y x =.5. 求下列各微分方程的通解:(1)ln 0xy y y '-=;解:分离变量,得 d 1d ln y xy y x =积分得 11d ln d ln y x y x =⎰⎰得 e cx y =.解:分离变量,得= 积分得=得通解:.c -=-(3)(e e )d (e e )d 0x y x x y y x y ++-++=;解:分离变量,得 e e d d 1e 1e y yy x y x =-+积分得ln(e 1)ln(e 1)ln y x c --=+- 得通解为 (e 1)(e 1)x yc +-=. (4)cos sind sin cos d 0x y x x y y +=;解:分离变量,得 cos cos d d 0sin sin x y x y x y +=积分得 lnsin lnsin ln y x c +=得通解为 sin sin .y x c ⋅=(5)y xy '=;解:分离变量,得 d d y x x y =积分得 211ln 2y x c =+得通解为 2112e (e )x c y c c ==(6)210x y '++=;解: 21y x '=--积分得 (21)d y x x =--⎰得通解为2y x x c =--+. 32(7)4230x x y y '+-=;解:分离变量,得 233d (42)d y y x x x =+积分得 342y x x c =++即为通解.(8)e x y y +'=.解:分离变量,得e d e d y x y x -= 积分得 e d e d y x y x-=⎰⎰ 得通解为: e e y x c --=+.6. 求下列各微分方程满足所给初始条件的特解:20(1)e ,0x y x y y -='== ;解:分离变量,得2e d e d y x y x = 积分得 21e e 2y x c =+.以0,0x y ==代入上式得12c = 故方程特解为 21e (e 1)2y x =+.π2(2)sin ln ,ex y x y y y ='== .解:分离变量,得 d d ln sin y x y y x =积分得 tan 2ex c y ⋅= 将π,e 2x y ==代入上式得1c =故所求特解为 tan 2exy =.7. 求下列齐次方程的通解:(1)0xy y '-=;解:d d y y x x =+令d d d d y y u u u x x x x =⇒=+ 原方程变为d x x = 两端积分得ln(ln ln u x c =+ 即通解为:2y cx += d (2)ln d y y xy x x =; 解:d ln d y y y x xx = 令y u x =, 则d d d d y u u x x x =+原方程变为 d d (ln 1)u x u u x =- 积分得 ln(ln 1)ln ln u x c -=+即方程通解为 1e cx y x +=解: 2221d d y y x y x y x xyx ⎛⎫+ ⎪+⎝⎭== 令y u x =, 则d d d d y u u x x x =+ 原方程变为2d 1d u u u x x u ++= 即 d 1d ,d d u x x u u x ux == 积分得 211ln ln 2u x c =+故方程通解为22221ln()()y x cx c c == 332(4)()d 3d 0x y x xy y +-=;解:333221d d 33y y x y x x xy y x ⎛⎫+ ⎪+⎝⎭==⎛⎫ ⎪⎝⎭ 令y u x =, 则d d d d y u u x x x =+ 原方程变为32d 1d 3u u u x x u ++= 即 233d d 12u x u ux =- 积分得 311ln(21)ln ln 2u x c --=+ 以yx 代替u ,并整理得方程通解为332y x cx -=. d (5)d y x y x x y +=-; 解:1d d 1yy x yx x +=- 令y u x =, 则d d d d y u u x x x =+原方程变为d 1d 1u u u xx u ++=- 分离变量,得 211d d 1u u x ux -=+ 积分得 211arctan ln(1)ln ln 2u u x c -+=+ 以y x 代替u ,并整理得方程通解为到2arctan 22211e .()y x x y c c c +== 解:d d yy x = 即d d x x y y =+令x v y =, 则d d ,d d x v x yv v y y y ==+, 原方程可变为 即d d v yy =分离变量,得d yy =积分得ln(ln ln v y c =-. 即y v c +=以yv x =代入上式,得222c y c x ⎛⎫=+ ⎪⎝⎭ 即方程通解为 222y cx c =+.8. 求下列各齐次方程满足所给初始条件的解:220(1)(3)d 2d 0,1x y x y xy x y =-+== ;解: 22d d 3y y xx y x =-⎛⎫- ⎪⎝⎭令y ux =,则得 2d 2d 3u u u x x u +=-- 分离变量,得 233d d u x u u ux -=- 积分得 3ln ln(1)ln(1)ln u u u cx -+-++=即 231ln ln u c u x -=得方程通解为 223y x cy -=以x =0,y =1代入上式得c =1.故所求特解为 223y x y -=.1(2),2x xyy y y x ='=+= .解:设y ux =, 则d d d d yuu x x x =+原方程可变为 d d x u u x =积分得 21ln ln 2u x c =+.得方程通解为 222(ln ln )y x x c =+以x =1,y =2代入上式得c =e 2.故所求特解为 222(ln 2)y x x =+.9. 利用适当的变换化下列方程为齐次方程,并求出通解:解:设1,1x X y Y =+=+,则原方程化为令 d 25d 24Y u uu u X X X u -=⇒+=+代回并整理得2(43)(23),(y x y x c c --+-==. 解:d 1d 41y x yx y x --=-+-作变量替换,令 1,0x X y Y Y =+=+=原方程化为 1d d 414YY X YX YX X Y X --=-=-++令Y uX =,则得分离变量,得 214d d 14u X u u x +-=+积分得即 22ln ln(14)arctan 2X u u c +++=代回并整理得 222ln[4(1)]arctan .1yy x c x +-+=-(3)()d (334)d 0x y x x y y +++-=;解:作变量替换,v x y =+ 则d d 1d d yvx x =-原方程化为 d 1d 34v v xv -=-- 代回并整理得 32ln(2).x y x y c +++-=d 1(4)1d y x x y =+-.解:令,u x y =-则d d 1d d u y xx =- 原方程可化为 d 1d u xu =- 分离变量,得 d d u u x =-积分得 2112u x c =-+故原方程通解为21()2.(2)x y x c c c -=-+= 10. 求下列线性微分方程的通解:(1)e x y y -'+=;解:由通解公式2(2)32xy y x x '+=++;解:方程可化为123y y x x x '+=++由通解公式得 解: cos d cos d sin sin e e ().e e d x x x x x x y x c x c ---⎰⎡⎤⎰==+⋅+⎢⎥⎣⎦⎰(4)44y xy x '=+;解:22(4)d (4)d 22e e 4e d 4e d x x x x x x y x x c x x c ----⎰⎡⎤⎰⎡⎤==++⎢⎥⎣⎦⎣⎦⎰⎰ ()222222e e e 1x x x c c -=-+=-.3(5)(2)2(2)x y y x '-=+-; 解:方程可化为 2d 12()d 2y y x x x x -=--解:方程可化为2222411x x y y x x '+=++ 11. 求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x =+== ;解: 11d d 11sine sin d [cos ]e d x x x x x y x x c c x x c x x x -⎡⎤⎰⎰⎡⎤==+=-+⎢⎥⎣⎦⎣⎦⎰⎰以π,1x y ==代入上式得π1c =-,故所求特解为 1(π1cos )y x x =--.2311(2)(23)1,0x y x y y x ='+-== . 解:22323d 3ln x x x x c x --=--+⎰ 以x =1,y =0代入上式,得12e c =-. 故所求特解为2311e 22e x y x -⎛⎫=- ⎪⎝⎭. 12. 求下列伯努利方程的通解: 解:令121z y y --==,则有即为原方程通解. 411(2)(12)33y y x y '+=-.解:令3d 21d z z y z x x -=⇒-=-.即为原方程通解.13. 求下列各微分方程的通解:(1)sin y x x ''=+;解:方程两边连续积分两次得(2)e x y x '''=;解:积分得 1e d e e x x x y x x x c ''==-+⎰(3)y y x '''=+;解:令p y '=,则原方程变为故 21121(e 1)d e 2x x y c x x c x x c =--=--+⎰.3(4)()y y y ''''=+;解:设y p '=, 则d d p y py ''= 原方程可化为 3d d p p p py =+即 2d (1)0d p p p y ⎡⎤-+=⎢⎥⎣⎦ 由p =0知y =c ,这是原方程的一个解.当0p ≠时,22d d 1d d 1p p p y y p =+⇒=+解:11d ln y x c x x ''==+⎰(6)y ''=;解:1arcsin y x x c '==+(7)0xy y '''+=; 解:令y p '=,则得1d d 00p x p p x p x '+=⇒+=得1c p x =故 112d ln c y x c c x x ==+⎰.3(8)10y y ''-=. 解:令p y '=,则d d p y py ''=.原方程可化为33d 10,d d d p y p p p y y y --==14.求下列各微分方程满足所给初始条件的特解: 311(1)10,1,0x x y y y y =='''+===;解:令y p '=,则d d p y p y ''=,原方程可化为 33d 11d d d p y p p p y y y ⋅=-⇒=-由1,1,0x y y p '====知,11c =-,从而有由1,1x y ==,得21c =故222x y x += 或y =. 211(2)1,0,1x x x y xy y y ==''''+===;解:令y p '=,则y p '''=.原方程可化为211p p x x '+= 则 11(ln )y x c x '=+以1,1x y '==代入上式得11c = 则1(ln 1)y x x '=+ 当x =1时,y =0代入得20c =故所求特解为 21ln ln 2y x x =+.2001(3),01x x y y y x =='''===+;解:1arctan y x c '=+当0,0x y '==,得10c =以x =0,y =0代入上式得20c =故所求特解为 21arctan ln(1)2y x x x =-+.200(4)1,1,0x x y y y y ==''''=+==;解:令p y '=,则p y '''=.原方程可化为21p p '=+ 以0,0x y '==代入上式得1πc k =.以x =0,y =1代入上式得21c =故所求特解为200(5)e ,0y x x y y y =='''===;解:令y p '=,则d d p y py ''=. 原方程可化为 2d e d yp p y =即 2d e d y p p y =积分得221111e 222y p c =+ 以0,0x y y '===代入上式得11c =-,则p y '==以x =0,y =0代入得2π2c =,故所求特解为 πarcsin e 2y x -=+ 即πe sin cos 2y x x -⎛⎫==± ⎪⎝⎭. 即lnsec y x =.00(6)1,2x x y y y =='''===.解:令d ,d p y p y p y '''== 原方程可化为 12d 3d p p y y =以0,2,1x y p y '====代入得10c = 故 342y p y '==± 由于0y ''=>. 故342y y '=,即 34d 2d yx y =积分得14242y x c =+ 以x =0,y =1代入得24c =故所求特解为4112y x ⎛⎫=+ ⎪⎝⎭. 15. 求下列微分方程的通解:(1)20y y y '''+-=;解:特征方程为 220r r +-=解得 121,2r r ==-故原方程通解为212e e .x x y c c -=+ (2)0y y ''+=;解:特征方程为 210r +=解得 1,2r i =±故原方程通解为 12cos sin y c x c x =+22d d (3)420250d d x x x t t -+=;解:特征方程为 2420250r r -+=解得1252r r == 故原方程通解为 5212()e t x c c t =+.(4)450y y y '''-+=;解:特征方程为 2450r r -+= 解得 1,22r i =±故原方程通解为212e (cos sin )x y c x c x =+. (5)440y y y '''++=;解:特征方程为 2440r r ++=解得 122r r ==-故原方程通解为212e ()x y c c x -=+ (6)320y y y '''-+=.解:特征方程为 2320r r -+=解得 1,2r r ==故原方程通解为 212e e x x y c c =+.16. 求下列微分方程满足所给初始条件的特解:00(1)430,6,10x x y y y y y ==''''-+===;解:特征方程为 2430r r -+=解得 121,3r r ==通解为 312e e x x y c c =+由初始条件得 121122643102c c c c c c +==⎧⎧⇒⎨⎨+==⎩⎩ 故方程所求特解为 34e 2e x xy =+.解:特征方程为 24410r r ++= 解得1212r r ==- 通解为 1212()e x y c c x -=+由初始条件得 11221221102c c c c c =⎧=⎧⎪⇒⎨⎨=-=⎩⎪⎩故方程所求特解为 12(2)e x y x -=+.解:特征方程为 24290r r ++=解得 1,225r i =-±通解为212e (cos5sin 5)x y c x c x -=+ 由初始条件得 112120052153c c c c c ==⎧⎧⇒⎨⎨-==⎩⎩ 故方程所求特解为23e sin 5x y x -=. 00(4)250,2,5x x y y y y =='''+===.解:特征方程为 2250r +=解得 1,25r i =±通解为 12cos5sin 5y c x c x =+由初始条件得 112222551c c c c ==⎧⎧⇒⎨⎨==⎩⎩ 故方程所求特解为 2cos5sin 5y x x =+.17. 求下各微分方程的通解:(1)22e x y y y '''+-=;解: 2210r r +-=得相应齐次方程的通解为令特解为*e x y A =,代入原方程得 2e e e 2e x x x x A A A +-=,解得1A =, 故*e x y =,故原方程通解为 212e e e x x xy c c -=++.2(2)25521y y x x '''+=--;对应齐次方程通解为212e x y c c -=+ 令*2()y x ax bx c =++, 代入原方程得 比较等式两边系数得 则*321373525y x x x =-+ 故方程所求通解为532212137e 3525x y c c x x x -⎛⎫=++-+ ⎪⎝⎭. (3)323e x y y y x -'''++=;解:2320r r ++= 121,2r r =-=-,对应齐次方程通解为 212e e x x y c c --=+令*()e x y x Ax B -=+代入原方程得解得 3,32A B ==-则*23e 32x y x x -⎛⎫=- ⎪⎝⎭ 故所求通解为22123e e e 32x x x y c c x x ---⎛⎫=++- ⎪⎝⎭. (4)25e sin 2x y y y x '''-+=;解:2250r r -+=相应齐次方程的通解为令*e (cos 2sin 2)x y x A x B x =+,代入原方程并整理得 得 1,04A B =-=则 *1e cos 24x y x x =-故所求通解为 121e (cos 2sin 2)e cos 24x x y c x c x x x =+-.(5)2y y y x '''++=;解:2210r r ++=相应齐次方程通解为 12()e x y c c x -=+令*y Ax B =+代入原方程得得 1,2A B ==-则 *2y x =-故所求通解为 12()e 2x y c c x x -=++- 2(6)44e x y y y '''-+=.对应齐次方程通解为 12()e c c x =+令*22e x y Ax =代入原方程得 故原方程通解为222121()e e 2x x y c c x x =++.18. 求下列各微分方程满足已给初始条件的特解: ππ(1)sin 20,1,1x x y y x y y =='''++===; 解:特征方程为 210r +=得 1,2r i =±对应齐次方程通解为 12cos sin y c x c x =+令*cos 2sin 2y A x B x =+代入原方程并整理得得 10,3A B ==故通解为 121cos sin sin 23y c x c x x =++.将初始条件代入上式得11221121133c c c c -==-⎧⎧⎪⎪⇒⎨⎨-+==-⎪⎪⎩⎩ 故所求特解为 11cos sin sin 233y x x x =--+.200633(2)109e ,,77x x x y y y y y ==''''-+===.解: 21090r r -+=对应齐次方程通解为 912e e x x y c c =+令*2e x y A =,代入原方程求得 17A =-则原方程通解为 29121e e e 7x x xy c c =-++由初始条件可求得1211,22c c == 故所求特解为 9211(e e )e 27x x xy =+-.19. 求下列欧拉方程的通解:解:作变换e tx =,即t =ln x ,原方程变为 (1)0D D y Dy y -+-= 即 22d 0d y y t -=特征方程为 210r -=故 12121e e t t y c c c c x x -=+=+.23(2)4x y xy y x '''+-=.解:设e tx =,则原方程化为 232d 4e d ty y t -= ①特征方程为 240r -=故①所对应齐次方程的通解为又设*3e t y A =为①的特解,代入①化简得 15A =, *31e 5t y = 故 223223121211e e e .55t t t y c c c x c x x --=++=++。
高等数学上册第六版课后习题详细答案第六章习题62 1 求图621 中各画斜线部分的面积1 解画斜线部分在x轴上的投影区间为[0 1] 所求的面积为2解法一画斜线部分在x轴上的投影区间为[0 1] 所求的面积为解法二画斜线部分在y轴上的投影区间为[1 e] 所求的面积为3解画斜线部分在x轴上的投影区间为[3 1] 所求的面积为4解画斜线部分在x轴上的投影区间为[1 3] 所求的面积为2. 求由下列各曲线所围成的图形的面积1 与x2y28两部分都要计算解 2与直线yx及x2解所求的面积为3 yex yex与直线x1解所求的面积为4yln x, y轴与直线yln a, yln b ba0解所求的面积为3 求抛物线yx24x3及其在点0 3和3 0处的切线所围成的图形的面积解 y2 x4过点0, 3处的切线的斜率为4 切线方程为y4x3过点3, 0处的切线的斜率为2 切线方程为y2x6两切线的交点为所求的面积为4 求抛物线y22px及其在点处的法线所围成的图形的面积解2yy2p 在点处法线的斜率k1法线的方程为即求得法线与抛物线的两个交点为和法线与抛物线所围成的图形的面积为5 求由下列各曲线?所围成的图形的面积?12acos 解所求的面积为a22xacos3t, yasin3t; 解所求的面积为 32a2+cos 解所求的面积为6 求由摆线xatsin t ya1cos t 的一拱0t2与横轴?所围成的图形的面积解所求的面积为 7 求对数螺线ae及射线所围成的图形面积解所求的面积为8 求下列各曲线所围成图形的公共部分的面积13cos 及1cos 解曲线3cos 与1cos?交点的极坐标为由对称性所求的面积为 2及解曲线与的交点M的极坐标为M 所求的面积为 9 求位于曲线yex下方??该曲线过原点的切线的左方以及x轴上方之间的图形的面积解设直线ykx与曲线yex相切于Ax0 y0点则有求得x01 y0e ke所求面积为10 求由抛物线y24ax与过焦点的弦所围成的图形的面积的最小值解设弦的倾角为由图可以看出抛物线与过焦点的弦所围成的图形的面积为显然当时 A10 当时 A10因此抛物线与过焦点的弦所围成的图形的面积的最小值为11 把抛物线y24ax及直线xx0x00所围成的图形绕x轴旋转计算所得旋转体的体积解所得旋转体的体积为12 由yx3 x2 y0所围成的图形分别绕x轴及y轴旋转计算所得两个旋转体的体积解绕x轴旋转所得旋转体的体积为绕y轴旋转所得旋转体的体积为13 把星形线所围成的图形绕x轴旋转计算所得旋转体的体积解由对称性所求旋转体的体积为14 用积分方法证明图中球缺的体积为证明 15 求下列已知曲线所围成的图形按指定的轴旋转所产生的旋转体的体积1 绕y轴解 2 x0 xa y0 绕x轴解 3 绕x 轴解4摆线xatsin t ya1cos t的一拱 y0 绕直线y2a解 16 求圆盘绕xbba0旋转所成旋转体的体积解17 设有一截锥体其高为h 上、下底均为椭圆椭圆的轴长分别为2a、2b和2A、2B 求这截锥体的体积解建立坐标系如图过y轴上y点作垂直于y轴的平面则平面与截锥体的截面为椭圆易得其长短半轴分别为截面的面积为于是截锥体的体积为18 计算底面是半径为R的圆而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积解设过点x且垂直于x轴的截面面积为Ax 由已知条件知它是边长为的等边三角形的面积其值为所以 19 证明由平面图形0axb 0yfx绕y轴旋转所成的旋转体的体积为证明如图在x处取一宽为dx的小曲边梯形小曲边梯形绕y轴旋转所得的旋转体的体积近似为2xfxdx 这就是体积元素即dV2xfxdx于是平面图形绕y轴旋转所成的旋转体的体积为20 利用题19和结论计算曲线ysin x0x和x轴所围成的图形绕y轴旋转所得旋转体的体积解 21 计算曲线yln x上相应于的一段弧的长度解令即则22 计算曲线上相应于1x3的一段弧的长度解所求弧长为23 计算半立方抛物线被抛物线截得的一段弧的长度解由得两曲线的交点的坐标为所求弧长为因为所以24 计算抛物线y22px 从顶点到这曲线上的一点Mx y的弧长解 25 计算星形线的全长解用参数方程的弧长公式26 将绕在圆半径为a上的细线放开拉直使细线与圆周始终相切细线端点画出的轨迹叫做圆的渐伸线它的方程为计算这曲线上相应于t从0变到的一段弧的长度解由参数方程弧长公式 27 在摆线xatsin t ya1cos t上求分摆线第一拱成1 3的点的坐标解设t从0变化到t0时摆线第一拱上对应的弧长为st0 则当t02时得第一拱弧长s28a 为求分摆线第一拱为1 3的点为Ax y 令解得因而分点的坐标为横坐标纵坐标故所求分点的坐标为28 求对数螺线相应于自?0到??的一段弧长解用极坐标的弧长公式29 求曲线1相应于自至的一段弧长解按极坐标公式可得所求的弧长30 求心形线a1cos?的全长解用极坐标的弧长公式习题63 1 由实验知道弹簧在拉伸过程中需要的力F单位 N 与伸长量s单位 cm成正比即Fks k为比例常数如果把弹簧由原长拉伸6cm 计算所作的功解将弹簧一端固定于A 另一端在自由长度时的点O为坐标原点建立坐标系功元素为dWksds 所求功为 k牛厘米2 直径为20cm、高80cm的圆柱体内充满压强为10N/cm2的蒸汽设温度保持不变要使蒸汽体积缩小一半问需要作多少功? 解由玻马定律知设蒸气在圆柱体内变化时底面积不变高度减小x厘米时压强为Px牛/厘米2 则功元素为所求功为 J3 1证明把质量为m的物体从地球表面升高到h处所作的功是其中g是地面上的重力加速度 R是地球的半径2一颗人造地球卫星的质量为173kg 在高于地面630km处进入轨道问把这颗卫星从地面送到630的高空处克服地球引力要作多少功?已知g98m/s2 地球半径R6370km证明 1取地球中心为坐标原点把质量为m的物体升高的功元素为所求的功为2kJ4 一物体按规律作直线运动媒质的阻力与速度的平方成正比计算物体由x0移至xa时克服媒质阻力所作的功解因为所以阻力而所以功元素dWfxdx 所求之功为5 用铁锤将一铁钉击入木板设木板对铁钉的阻力与铁钉击入木板的深度成正比在击第一次时将铁钉击入木板1cm 如果铁锤每次打击铁钉所做的功相等问锤击第二次时铁钉又击入多少? 解设锤击第二次时铁钉又击入hcm 因木板对铁钉的阻力f与铁钉击入木板的深度xcm成正比即fkx 功元素dWf dxkxdx击第一次作功为击第二次作功为因为所以有解得cm6 设一锥形贮水池深15m 口径20m 盛满水今以唧筒将水吸尽问要作多少功? 解在水深x处水平截面半径为功元素为所求功为 1875吨米57785.7kJ7 有一闸门它的形状和尺寸如图水面超过门顶2m 求闸门上所受的水压力解建立x轴方向向下原点在水面水压力元素为闸门上所受的水压力为吨205 8kN8 洒水车上的水箱是一个横放的椭圆柱体尺寸如图所示当水箱装满水时计算水箱的一个端面所受的压力解建立坐标系如图则椭圆的方程为压力元素为所求压力为吨17.3kN提示积分中所作的变换为 9 有一等腰梯形闸门它的两条底边各长10m和6m 高为20m 较长的底边与水面相齐计算闸门的一侧所受的水压力解建立坐标系如图直线AB的方程为压力元素为所求压力为吨14388千牛10 一底为8cm、高为6cm的等腰三角形片铅直地沉没在水中顶在上底在下且与水面平行而顶离水面3cm 试求它每面所受的压力解建立坐标系如图腰AC的方程为压力元素为所求压力为克?牛 11 设有一长度为l、线密度为的均匀细直棒在与棒的一端垂直距离为a单位处有一质量为m的质点M 试求这细棒对质点M的引力解建立坐标系如图在细直棒上取一小段dy 引力元素为dF在x轴方向和y轴方向上的分力分别为12 设有一半径为R、中心角为的圆弧形细棒其线密度为常数在圆心处有一质量为m的质点F 试求这细棒对质点M的引力解根据对称性 Fy0引力的大小为方向自M点起指向圆弧中点总习题六 1 一金属棒长3m 离棒左端xm处的线密度为kg/m 问x为何值时 [0 x]一段的质量为全棒质量的一半解 x应满足因为所以 m2 求由曲线asin acossina0所围图形公共部分的面积解 3 设抛物线通过点0 0 且当x[0 1]时 y0 试确定a、b、c的值使得抛物线与直线x1 y0所围图形的面积为且使该图形绕x轴旋转而成的旋转体的体积最小解因为抛物线通过点0 0 所以c0 从而抛物线与直线x1 y0所围图形的面积为令得该图形绕x轴旋转而成的旋转体的体积为令得于是b24 求由曲线与直线x4 x轴所围图形绕y轴旋转而成的旋转体的体积解所求旋转体的体积为5 求圆盘绕y轴旋转而成的旋转体的体积解 6 抛物线被圆所需截下的有限部分的弧长解由解得抛物线与圆的两个交点为于是所求的弧长为7 半径为r的球沉入水中球的上部与水面相切球的比重与水相同现将球从水中取出需作多少功解建立坐标系如图将球从水中取出时球的各点上升的高度均为2r 在x处取一厚度为dx的薄片在将球从水中取出的过程中薄片在水下上升的高度为rx 在水上上升的高度为rx 在水下对薄片所做的功为零在水上对薄片所做的功为对球所做的功为8 边长为a和b的矩形薄板与液面成??角斜沉于液体内长边平行于液面而位于深h处设ab 液体的比重为? 试求薄板每面所受的压力解在水面上建立x轴使长边与x轴在同一垂面上长边的上端点与原点对应长边在x轴上的投影区间为[0 bcos] 在x处x轴到薄板的距离为hxtan 压力元素为薄板各面所受到的压力为9 设星形线上每一点处的线密度的大小等于该点到原点距离的立方在原点O处有一单位质点求星形线在第一象限的弧段对这质点的引力解取弧微分ds为质点则其质量为其中设所求的引力在x轴、y轴上的投影分别为Fx、Fy 则有所以。
第六章多元函数微分学[单选题]1、设积分域在D由直线所围成,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]2、().A、9B、4C、3D、1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]3、设,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】首先设出,然后求出最后结果中把用次方代换一下就可以得到结果.[单选题]4、设则().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题直接根据偏导数定义得到. [单选题]5、设,=().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】对x求导,将y看做常数,.[单选题]6、设,则= ().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]7、A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]8、函数的定义域为().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,,综上满足:.[单选题]9、().A、0B、﹣1C、1D、∞【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]10、设,则().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]11、函数的确定的隐函数,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】方程左右两边求导,,.[单选题]12、设,则在(0,0)处().A、取得极大值B、取得极小值C、无极值D、无法判定是否取得极值【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】故,故取得极小值[单选题]13、设,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]14、设z=x^2/y,x=v-2u,y=u+2v,则().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]15、设函数z=ln(x2+y2),则=( )A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]16、设函数,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】参见教材P178~179。
习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f =-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4. 2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f '''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f '(0)=-9, f ''(0)=60, f '''(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+==1-9x +30x 3-45x 3+30x 4-9x 5+x 6.3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为24)4(==f , 4121)4(421=='=-x x f , 32141)4(423-=-=''=-x x f , 328383)4(425⋅=='''=-x x f , 27)4(1615)(--=x x f , 所以4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1). 4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , nn nn x n x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--; kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1), 所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32n n n x o x n f x f x f x f f x -+-+⋅⋅⋅+-'''+-''+-'+=])2[()2(2)1( )2(231)2(221)2(212ln 13322n n n n x o x n x x x -+-⋅-+⋅⋅⋅--⋅+-⋅--+=-. 5. 求函数x x f 1)(=按(x +1)的幂展开的带有拉格朗日型余项的n 阶泰勒公式. 解 因为f (x )=x -1, f '(x )=(-1)x -2, f ''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , 1)1()(!)1()( )2)(1()(++--=-⋅⋅⋅--=n n n n xn xn x f ; !)1(!)1()1(1)(k k fk k k -=--=-+(k =1, 2, ⋅ ⋅ ⋅, n ),所以 )1(!3)1()1(!2)1()1)(1()1(132⋅⋅⋅++-'''++-''++-'+-=x f x f x f f x1)1()()1()!1()()1(!)1(++++++-+n n nn x n f x n f ξ 12132)1()]1(1[)1(])1( )1()1()1(1[++++++--+++⋅⋅⋅+++++++-=n n n nx x x x x x θ (0<θ<1). 6. 求函数f (x )=tan x 的带有拉格朗日型余项的3阶麦克劳林公式. 解 因为 f '(x )=sec 2x ,f ''(x )=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x ,f '''(x )=4sec x ⋅sec x ⋅tan 2x +2sec 4x =4sec 2x ⋅tan 2x +2sec 4x ,f (4)(x )=8sec 2x ⋅tan 3x +8sec 4x ⋅tan x +8sec 4x ⋅tan x xx x 52cos )2(sin sin 8+=;f (0)=0, f '(0)=1, f ''(0)=0, f '''(0)=2,所以 4523)(c o s 3]2)()[s i n s i n (31t a nx x x x x x x θθθ+++=(0<θ<1). 7. 求函数f (x )=xe x 的带有佩亚诺型余项的n 阶麦克劳林公式. 解 因为 f '(x )=e x +xe x ,f ''(x )=e x +e x +xe x =2e x +xe x , f '''(x )=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅, f (n )(x )=ne x +xe x ; f (k )(0)=k (k =1, 2, ⋅ ⋅ ⋅, n ),所以 )(!)0( !3)0(!2)0()0()0()(32n nn xx o x n f x f x f x f f xe ++⋅⋅⋅⋅+'''+''+'+=)()!1(1 !2132n n x o x n x x x +-⋅⋅⋅+++=.8. 验证当210≤≤x 时, 按公式62132x x x e x +++≈计算e x 的近似值时, 所产生的误差小于0.01, 并求e 的近似值, 使误差小于0.01.解 因为公式62132x x x e x+++≈右端为e x 的三阶麦克劳林公式, 其余项为 43!4)(x e x R ξ=, 所以当210≤≤x 时,按公式62132x x x e x +++≈计算e x 的误差 01.00045.0)21(!43|!4||)(|42143<≈≤=x e x R ξ.645.1)21(61)21(212113221≈⋅+⋅++≈=e e .9. 应用三阶泰勒公式求下列各数的近似值, 并估计误差: (1)330; (2)sin18︒.解 (1)设3)(x x f =, 则f (x )在x 0=27点展开成三阶泰勒公式为2353233)27)(2792(!21)27(273127)(-⋅-⋅+-⋅+==--x x x x f4311338)27)(8180(!41)27)(272710(!31--⋅+-⋅⋅+--x x ξ(ξ介于27与x 之间).于是33823532333)272710(!313)2792(!21327312730⋅⋅⋅+⋅⋅-⋅+⋅⋅+≈---10724.3)3531311(31063≈+-+≈, 其误差为5114311431131088.13!4803278180!41|3)8180(!41||)30(|---⨯=⋅=⋅⋅⋅<⋅-⋅=ξR .(2) 已知43!4s i n !31s i n x x x x ξ+-=(ξ介于0与x 之间),所以 sin 18︒3090.0)10(!311010sin 3≈-≈=πππ,其误差为44431003.2)10(!46sin |)10(!4sin ||)10(|-⨯=<=πππξπR . 10. 利用泰勒公式求下列极限: (1))23(lim 434323x x x x x --++∞→;(2))]1ln([cos lim2202x x x e x x x -+--→;(3)2220sin )(cos 1211lim 2x e x x x x x -+-+→. 解 (1)tt t xx x x x x x t x x 430434343232131lim 12131lim)23(lim --+=--+=--++→+∞→+∞→.因为)(1313t o t t ++=+,)(211214t o t t +-=-, 所以23])(23[lim )](211[)](1[lim)23(lim 00434323=+=+--++=--++→+→+∞→t t o t t o t t o t x x x x t t x . (2)])1ln(1[)](41!21211[)](!41!211[lim)]1ln([cos lim1344244202202x x xx x xx o x x x o x x x x x e x -++⋅+--++-=-+-→-→010)1l n (1)(121lim 11340=+=-++-=-→e x x x o x x x . (3)2442442442202220))](!211())(!41!211[()](!43!211[211lim sin )(cos 1211lim 2xx o x x x o x x x o x x x x e x x x x x x +++-++-+-+-+=-+-+→→ 12123!43)(241123)(!43lim )(241123)(!43lim 2424404264440-=-=+--+=⋅+--+=→→x x o x x x o x o x x x x o x x x .习题3-41. 判定函数f (x )=arctan x -x 单调性.解 因为011111)(22≤+-=-+='x x x f , 且仅当x =0时等号成立, 所以f (x )在(-∞, +∞)内单调减少.2. 判定函数f (x )=x +cos x (0≤x ≤2π)的单调性.解 因为f '(x )=1-sin x ≥0, 所以f (x )=x +cos x 在[0, 2π]上单调增加. 3. 确定下列函数的单调区间: (1) y =2x 3-6x 2-18x -7;(2)xx y 82+=(x >0);(3)x x x y 6941023+-=;(4))1ln(2x x y ++=; (5) y =(x -1)(x +1)3;(6))0())(2(32>--=a x a a x y ; (7) y =x n e -x (n >0, x ≥0); (8)y =x +|sin 2x |.解 (1) y '=6x 2-12x -18=6(x -3)(x +1)=0, 令y '=0得驻点x 1=-1, x 2=3. 列表得可见函数在(-∞, -1]和[3, +∞)内单调增加, 在[-1, 3]内单调减少.(2) 0)2)(2(28222=+-=-='x x x x y ,令y '=0得驻点x 1=2, x 2=-2(舍去).因为当x >2时, y >0; 当0<x <2时, y '<0, 所以函数在(0, 2]内单调减少, 在[2, +∞)内单调增加. (3)223)694()1)(12(60x x x x x y +----=', 令y '=0得驻点211=x , x 2=1, 不可导点为x =0. 列表得可见函数在(-∞, 0), ]21 ,0(, [1, +∞)内单调减少, 在]1 ,21[上单调增加.(4)因为011)1221(11222>+=++++='x x x x x y , 所以函数在(-∞, +∞)内单调增加. (5) y '=(x +1)3+3(x -1)(x +1)22)1)(21(4+-=x x . 因为当21<x 时, y '<0; 当21>x 时, y '>0, 所以函数在]21 ,(-∞内单调减少, 在) ,21[∞+内单调增加.(6)32)()2(3)32(x a a x a x y ----=', 驻点为321a x =, 不可导点为22a x =, x 3=a .列表得可见函数在)2 ,(a -∞, ]32 ,2(a a , (a , +∞)内单调增加, 在) ,32[a a 内单调减少.(7)y '=e -x x n -1(n -x ), 驻点为x =n . 因为当0<x <n 时, y '>0; 当x >n 时, y '<0, 所以函数在[0, n ]上单调增加, 在[n , +∞)内单调减少.(8)⎪⎩⎪⎨⎧+<<+-+≤≤+=πππππππk x k x x k x k x x y 22sin 2 2sin (k =0, ±1, ±2, ⋅ ⋅ ⋅),⎪⎩⎪⎨⎧+<<+-+≤≤+='πππππππk x k x k x k x y 2 2c o s 212 2c o s 21(k =0, ±1, ±2, ⋅ ⋅ ⋅). y '是以π为周期的函数, 在[0, π]内令y '=0, 得驻点21π=x , 652π=x , 不可导点为23π=x .列表得根据函数在[0, π]上的单调性及y '在(-∞, +∞)的周期性可知函数在]32 ,2[πππ+k k 上单调增加, 在]22 ,32[ππππ++k k 上单调减少(k =0, ±1, ±2, ⋅ ⋅ ⋅).4. 证明下列不等式: (1)当x >0时, x x +>+1211;(2)当x >0时, 221)1ln(1x x x x +>+++; (3)当20π<<x 时, sin x +tan x >2x ;(4)当20π<<x 时, 331tan x x x +>;(5)当x >4时, 2x >x 2;证明 (1)设x x x f +-+=1211)(, 则f (x )在[0, +∞)内是连续的. 因为x x f +-='12121)(01211>+-+=xx , 所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01211>+-+x x , 也就是 x x +>+1211.(2)设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的. 因为 0)1l n (1)11(11)1l n ()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x x x f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1l n (122>+-+++x x x x , 也就是 221)1l n (1x x x x +>+++.(3)设f (x )=sin x +tan x -2x , 则f (x )在)2,0[π内连续,f '(x )=cos x +sec 2x -2xx x x 22cos ]cos )1)[(cos 1(cos ---=. 因为在)2 ,0(π内cos x -1<0, cos 2x -1<0, -cos x <0, 所以f '(x )>0, 从而f (x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即sin x +tan x -2x >0, 也就是 sin x +tan x >2x .(4)设331tan )(x x x x f --=, 则f (x )在)2 ,0[π内连续,))(t a n (t a n t a n 1s e c )(2222x x x x x x x x x f +-=-=--='. 因为当20π<<x 时, tan x >x , tan x +x >0, 所以f '(x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即031t a n 3>--x x x ,也就是 231t a n x x x +>.(5)设f (x )=x ln2-2ln x , 则f (x )在[4, +∞)内连续, 因为 0422ln 224ln 22ln )(=->-=-='e x x x f ,所以当x >4时, f '(x )>0, 即f (x )内单调增加.因此当x >4时, f (x )>f (4)=0, 即x ln2-2ln x >0, 也就是2x >x 2. 5. 讨论方程ln x =ax (其中a >0)有几个实根?解 设f (x )=ln x -ax . 则f (x )在(0, +∞)内连续, xax a x x f -=-='11)(, 驻点为a x 1=.因为当ax 10<<时, f '(x )>0, 所以f (x )在)1 ,0(a 内单调增加; 当a x 1>时, f '(x )<0, 所以f (x )在) ,1(∞+a内单调减少. 又因为当x →0及x →+∞时, f (x )→-∞, 所以如果011ln )1(>-=a a f , 即e a 1<, 则方程有且仅有两个实根; 如果011ln )1(<-=aa f , 即e a 1>, 则方程没有实根. 如果011ln )1(=-=a a f , 即e a 1=, 则方程仅有一个实根. 6. 单调函数的导函数是否必为单调函数?研究下面这个例子: f (x )=x +sin x .解 单调函数的导函数不一定为单调函数.例如f (x )=x +sin x 在(-∞,+∞)内是单调增加的, 但其导数不是单调函数. 事实上, f '(x )=1+cos x ≥0,这就明f (x )在(-∞, +∞)内是单调增加的. f ''(x )=-sin x 在(-∞, +∞)内不保持确定的符号, 故f '(x )在(-∞, +∞)内不是单调的.7. 判定下列曲线的凹凸性: (1) y =4x -x 2 ; (2) y =sh x ;(3)xy 11+=(x >0);(4) y =x arctan x ; 解 (1)y '=4-2x , y ''=-2,因为y ''<0, 所以曲线在(-∞, +∞)内是凸的. (2)y '=ch x , y ''=sh x . 令y ''=0, 得x =0.因为当x <0时, y ''=sh x <0; 当x >0时, y ''=sh x >0, 所以曲线在(-∞, 0]内是凸的, 在[0, +∞)内是凹的.(3)21x y -=', 32x y =''. 因为当x >0时, y ''>0, 所以曲线在(0, +∞)内是凹的. (4)21arctan xx x y ++=',22)1(2x y +=''.因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.8. 求下列函数图形的拐点及凹或凸的区间: (1).y =x 3-5x 2+3x +5 ; (2) y =xe -x ; (3) y =(x +1)4+e x ;(4) y =ln(x 2+1); (5) y =e arctan x ; (6) y =x 4(12ln x -7),解 (1)y '=3x 2-10x +3, y ''=6x -10. 令y ''=0, 得35=x .因为当35<x 时, y ''<0; 当35>x 时, y ''>0, 所以曲线在]35 ,(-∞内是凸的, 在) ,35[∞+内是凹的, 拐点为)2720 ,35(.(2)y '=e -x -xe -x , y ''=-e -x -e -x +xe -x =e -x (x -2). 令y ''=0, 得x =2.因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2).(3)y '=4(x +1)3+e x , y ''=12(x +1)2+e x .因为在(-∞, +∞)内, y ''>0, 所以曲线y =(x +1)4+e x 的在(-∞, +∞)内是凹的, 无拐点.(4)122+='x x y , 22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1. 列表得可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).(5)2arctan 11x e y x+⋅=',)21(12arctan x x e y x-+=''. 令y ''=0得, 21=x . 因为当21<x 时, y ''>0; 当21>x 时, y ''<0, 所以曲线y =e arctg x 在]21 ,(-∞内是凹的,在) ,21[∞+内是凸的, 拐点是) ,21(21arctane. (6) y '=4x 3(12ln x -7)+12x 3, y ''=144x 2⋅ln x . 令y ''=0, 得x =1.因为当0<x <1时, y ''<0; 当x >1时, y ''>0, 所以曲线在(0, 1]内是凸的, 在[1, +∞)内是凹的, 拐点为(1, -7).9. 利用函数图形的凹凸性, 证明下列不等式:(1) nn n y x y x )2()(21+>+(x >0, y >0, x ≠y , n >1);(2))(22y x e e e yx y x ≠>++;(3)2ln)(ln ln yx y x y y x x ++>+ (x >0, y >0, x ≠y ). 证明 (1)设f (t )=t n , 则f '(t )=nt n -1, f ''(t )=n (n -1)t n -2. 因为当t >0时, f ''(t )>0, 所以曲线f (t )=t n 在区间(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+,即 nn n y x y x )2()(21+>+.(2)设f (t )=e t , 则f '(t )=e t , f ''(t )=e t . 因为f ''(t )>0, 所以曲线f (t )=e t 在(-∞, +∞)内是凹的. 由定义, 对任意的x , y ∈(-∞, +∞), x ≠y 有)2()]()([21yx f y f x f +>+,即 )(22y x ee e yx yx ≠>++.(3)设f (t )=t ln t , 则 f '(t )=ln t +1, tt f 1)(=''.因为当t >0时, f ''(t )>0, 所以函数f (t )=t ln t 的图形在(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+,即 2ln )(ln ln yx y x y y x x ++>+. 10. 试证明曲线112+-=x x y 有三个拐点位于同一直线上.证明 222)1(12+++-='x x x y ,323223)1()]32()][32()[1(2)1(2662++---+=++--=''x x x x x x x x y . 令y ''=0, 得x 1=-1, 322-=x , 323+=x . 例表得可见拐点为(-1, -1), ))32(431 ,32(---, ))32(431 ,32(+++. 因为41)1(32)1()32(431=-------, 41)1(32)1()32(431=--+--++,所以这三个拐点在一条直线上.11. 问a 、b 为何值时, 点(1, 3)为曲线y =ax 3+bx 2的拐点?解 y '=3ax 2+2bx , y ''=6ax +2b . 要使(1, 3)成为曲线y =ax 3+bx 2的拐点, 必须y (1)=3且y ''(1)=0, 即a +b =3且6a +2b =0, 解此方程组得23-=a , 29=b .12. 试决定曲线y =ax 3+bx 2+cx +d 中的a 、b 、c 、d , 使得x =-2处曲线有水平切线, (1, -10)为拐点, 且点(-2, 44)在曲线上. 解 y '=3ax 2+2bx +c , y ''=6ax +2b . 依条件有⎪⎩⎪⎨⎧=''=-'-==-0)1(0)2(10)1(44)2(y y y y , 即⎪⎩⎪⎨⎧=+=+--=+++=+-+-02604121044248b a c b a d c b a d c b a .解之得a =1, b =-3, c =-24, d =16.13. 试决定y =k (x 2-3)2中k 的值, 使曲线的拐点处的法线通过原点. 解y '=4kx 3-12kx , y ''=12k (x -1)(x +1). 令y ''=0, 得x 1=-1, x 2=1.因为在x 1=-1的两侧y ''是异号的, 又当x =-1时y =4k , 所以点(-1, 4k )是拐点. 因为y '(-1)=8k , 所以过拐点(-1, 4k )的法线方程为)1(814+-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即kk 814-=-, 82±=k .同理, 因为在x 1=1的两侧y ''是异号的, 又当x =1时y =4k , 所以点(1, 4k )也是拐点.因为y '(1)=-8k , 所以过拐点(-1, 4k )的法线方程为)1(814-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即k k 814-=-, 82±=k .因此当82±=k 时, 该曲线的拐点处的法线通过原点.14. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数, 如果f ''(x 0)=0, 而f '''(x 0)≠0,试问 (x 0, f (x 0))是否为拐点?为什么?解 不妨设f '''(x 0)>0. 由f '''(x )的连续性, 存在x 0的某一邻域(x 0-δ, x 0+δ), 在此邻域内有f '''(x )>0. 由拉格朗日中值定理, 有f ''(x )-f ''(x 0)=f '''(ξ)(x -x 0) (ξ介于x 0与x 之间), 即 f ''(x )=f '''(ξ)(x -x 0).因为当x 0-δ<x <x 0时, f ''(x )<0; 当x 0<x <x 0+δ 时, f ''(x )>0, 所以(x 0, f (x 0))是拐点.习题3-51. 求函数的极值: (1) y =2x 3-6x 2-18x +7; (2) y =x -ln(1+x ) ; (3) y =-x 4+2x 2 ; (4)x x y -+=1;(5)25431x xy ++=;(6)144322++++=x x x x y ;(7) y =e xcos x ;(8)xx y 1=;(9)31)1(23+-=x y ; (10) y =x +tan x .解 (1)函数的定义为(-∞, +∞), y '=6x 2-12x -18=6(x 2-2x -3)=6(x -3)(x +1), 驻点为x 1=-1, x 2=3. 列表可见函数在 (2)函数的定义为(-1, +∞), xxx y +=+-='1111, 驻点为x =0. 因为当-1<x <0时, y '<0; 当x >0时, y '>0, 所以函数在x =0处取得极小值, 极小值为y (0)=0. (3)函数的定义为(-∞, +∞),y '=-4x 3+4x =-4x (x 2-1), y ''=-12x 2+4, 令y '=0, 得x 1=0, x 2=-1, x 3=1.因为y ''(0)=4>0, y ''(-1)=-8<0, y ''(1)=-8<0, 所以y (0)=0是函数的极小值, y (-1)=1和y (1)=1是函数的极大值.(4)函数的定义域为(-∞, 1], )112(1243121121211+---=---=--='x x x xx xy ,令y '=0, 得驻点43=x .因为当43<x 时, y '>0; 当143<<x 时, y '<0, 所以45)1(=y 为函数的极大值.(5)函数的定义为(-∞, +∞), 32)54()512(5x x y +--=', 驻点为512=x . 因为当512<x 时, y '>0; 当512>x 时, y '<0, 所以函数在512=x 处取得极大值, 极大值为10205)512(=y . (6)函数的定义为(-∞, +∞), 22)1()2(+++-='x x x x y , 驻点为x 1=0, x 2=-2.列表可见函数在x =-2处取得极小值3, 在x =0处取得极大值4.(7)函数的定义域为(-∞, +∞). y '=e x (cos x -sin x ), y ''=-e x sin x .令y '=0, 得驻点ππk x 24+=, ππ)1(24++=k x , (k =0, ±1, ±2, ⋅ ⋅ ⋅).因为0)24(<+''ππk y , 所以22)24(24⋅=++ππππk e k y 是函数的极大值. 因为y ''0])1(24[>++ππk , 所以22])1(24[)1(24⋅-=++++ππππk e k y 是函数的极小值. (8)函数xx y 1=的定义域为(0, +∞),)ln 1(121x x x y x-⋅='. 令y '=0, 得驻点x =e .因为当x <e 时, y '>0; 当x >e 时, y '<0, 所以ee e y 1)(=为函数f (x )的极大值.(9)函数的定义域为(-∞, +∞), 3/2)1(132+-='x y , 因为y '<0, 所以函数在(-∞, +∞)是单调减少的, 无极值.(10)函数y =x +tg x 的定义域为ππk x +≠2(k =0, ±1, ±2, ⋅ ⋅ ⋅). 因为y '=1+sec 2x >0, 所以函数f (x )无极值.2. 试证明: 如果函数y =ax 3+bx 2+cx +d 满足条件b 2 -3ac <0, 那么这函数没有极值 . 证明y '=3a x 2+2b x +c . 由b 2 -3ac <0, 知a ≠0. 于是配方得到y '=3a x 2+2b x +c ab ac a b x a a c x a b x a 33)3(3)332(32222-++=++=,因3ac -b 2>0, 所以当a >0时, y '>0; 当a <0时, y '<0. 因此y =ax 3+bx 2+cx +d 是单调函数, 没有极值.3. 试问a 为何值时, 函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值?它是极大值还是极小值?并求此极值.解 f '(x )=a cos x +cos 3x , f ''(x )=-a sin x -3 sin x .要使函数f (x )在3π=x 处取得极值, 必有0)3(='πf , 即0121=-⋅a , a =2 .当a =2时, 0232)3(<⋅-=''πf . 因此, 当a =2时, 函数f (x )在3π=x 处取得极值, 而且取得极大值, 极大值为3)23(=f .4. 求下列函数的最大值、最小值: (1) y =2x 3-3x 2 , -1≤x ≤4; (2) y =x 4-8x 2+2, -1≤x ≤3 ; (3)x x y -+=1, -5≤x ≤1.解 (1)y '=6x 2-6x =6x (x -1), 令y '=0, 得x 1=0, x 2=1. 计算函数值得 y (-1)=-5, y (0)=0, y (1)=-1, y (4)=80,经比较得出函数的最小值为y (-1)=-5, 最大值为y (4)=80.(2)y '=4x 3-16x =4x (x 2-4), 令y '=0, 得x 1=0, x 2=-2(舍去), x 3=2. 计算函数值得 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11,经比较得出函数的最小值为y (2)=-14, 最大值为y (3)=11.(3)xy --='1211, 令y '=0, 得43=x . 计算函数值得65)5(+-=-y , 45)43(=y , y (1)=1,经比较得出函数的最小值为65)5(+-=-y , 最大值为45)43(=y .5. 问函数y =2x 3-6x 2-18x -7(1≤x ≤4)在何处取得最大值?并求出它的最大值. 解 y '=6x 2-12x -18=6(x -3)(x +1), 函数f (x )在1≤x ≤4内的驻点为x =3. 比较函数值:f (1)=-29, f (3)=-61, f (4)=-47,函数f (x )在x =1处取得最大值, 最大值为f (1)=-29.6. 问函数x x y 542-=(x <0)在何处取得最小值?解 2542x x y +=', 在(-∞, 0)的驻点为x =-3. 因为31082xy -='', 0271082)3(>+=-''y ,所以函数在x =-3处取得极小值. 又因为驻点只有一个, 所以这个极小值也就是最小值, 即函数在x =-3处取得最小值, 最小值为27)3(=-y .7. 问函数12+=x xy (x ≥0)在何处取得最大值?解 222)1(1+-='x x y . 函数在(0, +∞)内的驻点为x =1.因为当0<x <1时, y '>0; 当x >1时y '<0, 所以函数在x =1处取得极大值. 又因为函数在(0, +∞)内只有一个驻点, 所以此极大值也是函数的最大值, 即函数在x =1处取得最大值, 最大值为f (1)=21.8. 某车间靠墙壁要盖一间长方形小屋, 现有存砖只够砌20cm 长的墙壁, 问应围成怎样的长方形才能使这间小屋的面积最大?解 设宽为x 长为y , 则2x +y =20, y =20-2x , 于是面积为 S = xy =x (20-2x )=20x -2x 2. S '=20-4x =4(10-x ), S ''=-4. 令S '=0, 得唯一驻点x =10.因为S ''(10)-4<0, 所以x =10为极大值点, 从而也是最大值点. 当宽为5米, 长为10米时这间小屋面积最大.9. 要造一圆柱形油罐, 体积为V , 问底半径r 和高h 等于多少时, 才能使表面积最小?这时底直径与高的比是多少?解 由V =π r 2h , 得h =V π-1r -2. 于是油罐表面积为S =2π r 2+2π rh rVr 222+=π(0<x <+∞),224r Vr S -='π.令S '=0, 得驻点32πV r =. 因为0443>+=''r V S π, 所以S 在驻点32πVr =处取得极小值, 也就是最小值. 这时相应的高为r r Vh 2 20==π. 底直径与高的比为2r : h =1 : 1.10. 某地区防空洞的截面拟建成矩形加半圆(如图), 截面的面积为5m 2, 问底宽x 为多少时才能使截面的周长最小, 从而使建造时所用的材料最省?解 设矩形高为h , 截面的周长S , 则5)2(212=⋅+πx xh , x x h 85π-=.于是xx x x h x S 10422++=++=ππ(π400<<x ), 21041xS -+='π.令S '=0, 得唯一驻点π+=440x .因为0203>=''xS , 所以π+=440x 为极小值点, 同时也是最小值点. 因此底宽为π+=440x 时所用的材料最省.11. 设有重量为5kg 的物体, 置于水平面上, 受力F 的作用而开始移动(如图). 设摩擦系数μ=0.25, 问力F 与水平线的交角α为多少时, 才可使力F 的大小为最小?解 由F cos α =(m -F sin α)μ 得αμαμsin cos +=m F (2 0πα≤≤),2)sin (cos )cos (sin αμααμαμ+-='m F , 驻点为 α = arctan μ.因为F 的最小值一定在)2 ,0(π内取得, 而F 在)2,0(π内只有一个驻点α = arctan μ,所以α=arctan μ一定也是F 的最小值点. 从而当α=arctan0.25=14︒时, 力F 最小. 12. 有一杠杆, 支点在它的一端. 在距支点0.1m 处挂一重量为49kg 的物体. 加力于杠杆的另一端使杠杆保持水平(如图). 如果杠杆的线密度为5kg/m , 求最省力的杆长?解 设杆长为x (m), 加于杠杆一端的力为F , 则有1.049521⋅+⋅=x x xF , 即)0(9.425>+=x x x F .29.425xF -=',驻点为x =1.4. 由问题的实际意义知, F 的最小值一定在(0, +∞)内取得, 而F 在(0, +∞)内只有一个驻点x =1.4, 所以F 一定在x =1.4m 处取得最小值, 即最省力的杆长为1.4m . 13. 从一块半径为R 的圆铁片上挖去一个扇形做成一漏斗(如图),问留下的扇形的中心角ϕ取多大时, 做成的漏斗的容积最大? 解 漏斗的底周长l 、底半径r 、高h 分别为l =R ⋅ϕ, πϕ2R r =, 222242ϕππ-=-=Rr R h .漏斗的容积为22223242431ϕππϕπ-==R hr V (0<ϕ<2π). 2222234)38(24ϕπϕπϕπ--⋅='R V ,驻点为πϕ362=. 由问题的实际意义, V 一定在(0, 2π)内取得最大值, 而V 在(0, 2π)内只有一个驻点, 所以该驻点一定也是最大值点. 因此当ϕ π362=时, 漏斗的容积最大.14. 某吊车的车身高为1.5m , 吊臂长15m , 现在要把一个6m 宽、2m 高的屋架, 水平地吊到6m 高的柱子上去(如图), 问能否吊得上去?解 设吊臂对地面的倾角为ϕ时, 屋架能够吊到的最大高度为h . 在直角三角形∆EDG 中 15sin ϕ=(h -1. 5)+2+3tan ϕ,故 21tan 3sin 15--=ϕϕh ,ϕϕ2cos 3cos 15-='h . 令h '=0得唯一驻点5451arccos 3≈=ϕ︒.因为0cos sin 6sin 153<--=''ϕϕϕh , 所以ϕ=54︒为极大值点, 同时这也是最大值点. 当ϕ=54︒时, 5.721tan 3sin 15≈--=ϕϕh m .所以把此屋最高能水平地吊至7. 5m 高, 现只要求水平地吊到6m 处, 当然能吊上去. 15. 一房地产公司有50套公寓要出租. 当月租金定为1000元时, 公寓会全部租出去. 当月租金每增加50元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费100元的维修费. 试问房租定为多少可获最大收入?解 房租定为x 元, 纯收入为R 元.当x ≤1000时, R =50x -50⨯100=50x -5000, 且当x =1000时, 得最大纯收入45000元. 当x >1000时,700072501100)]1000(5150[)]1000(5150[2-+-=⋅---⋅--=x x x x x R ,72251+-='x R .令R '=0得(1000, +∞)内唯一驻点x =1800. 因为0251<-=''R , 所以1800为极大值点, 同时也是最大值点. 最大值为R =57800.因此, 房租定为1800元可获最大收入.习题3-6描绘下列函数的图形: 1. )786(5124++-=x x x y ;解 (1)定义域为(-∞, +∞);(2)23)1)(2(54)8124(51-+=+-='x x x x y ,)1)(1(512)33(542-+=-=''x x x y ,令y '=0, 得x =-2, x =1; 令y ''=0, 得x =-1, x =1.(3)列表(4)作图:2.21xx y +=;解 (1)定义域为(-∞, +∞);(2)奇函数, 图形关于原点对称, 故可选讨论x ≥0时函数的图形.(3)22)1()1)(1(x x x y ++--=', 32)1()3)(3(2x x x x y ++-='',当x ≥0时, 令y '=0, 得x =1; 令y ''=0, 得x =0, 3=x .(4)列表(5)有水平渐近线y =0; (6)作图:3.2)1(--=x e y ;解 (1)定义域为(-∞, +∞); (2))]221()][221([4)1(222)1()1(--+-=''--='----x x e y e x y x x ,令y '=0, 得x =1; 令y ''=0, 得221+=x ,221-=x .(3)列表(4)有水平渐近线y =0; (5)作图: 4.xx y 12+=;解 (1)定义域为(-∞, 0)⋃(0, +∞); (2)2321212xx xx y -=-=',333)1(222x x x y +=+='',令y '=0, 得321=x ; 令y ''=0, 得x =-1.(3)列表(4)有铅直渐近线x =0; (5)作图: 5.xxy 2cos cos =.解 (1)定义域为42ππ+≠n x (n =0, ±1, ±2, ⋅⋅⋅)(2)是偶函数, 周期为2 . 可先作[0, ]上的图形, 再根据对称性作出[-, 0)内的图形, 最后根据周期性作出[-, ]以外的图形; (3)xx x y 2cos )sin 23(sin 22-=',xx x x y 2cos )sin 4sin 123(cos 342-+⋅='',在[0,]上, 令y '=0, 得x =0, x =; 令y ''=0, 得2π=x .(4)列表(5)有铅直渐近线4π=x 及43π=x ;(6)作图:习题3-71. 求椭圆4x 2+y 2=4在点(0, 2)处的曲率. 解 两边对x 求导数得8x +2yy '=0, y x y 4-=', 244y y x y y '--=''.y '|(0, 2)=0, y ''|(0, 2)=-2.所求曲率为2)01(|2|)1(||2/322/32=+-='+''=y y K .2. 求曲线y =lnsec x 在点(x , y )处的曲率及曲率半径.解 x x x xy tan tan sec sec 1=⋅⋅=', x y 2sec =''.所求曲率为|cos |)tan 1(|sec |)1(||2/3222/32x x x y y K =+='+''=, 曲率半径为 |sec ||cos |11x x K ===ρ.3. 求抛物线y =x 2-4x +3在其顶点处的曲率及曲率半径. 解 y '=2x -4, y ''=2.令y '=0, 得顶点的横坐标为x =2. y '|x =2=0, y ''|x =2=2. 所求曲率为2)01(|2|)1(||2/322/32=+='+''=y y K , 曲率半径为211==K ρ.4. 求曲线x =a cos 3t , y =a sin 3t 在t =t 0处的曲率.解 t x a t a y tan )cos ()sin (33-=''=', tt a x a x y 43cos sin 31)cos ()tan (⋅=''-=''. 所求曲率为|2sin |32|cos sin 31|)tan 1(|cos sin 31|)1(||32/3242/32t a t t a t t t a y y K ==+⋅='+''=, |2sin |3200t a K t t ==.5. 对数曲线y =ln x 上哪一点处的曲率半径最小?求出该点处的曲率半径.解 x y 1=', 21xy -=''.2/322/3222/32)1()11(|1|)1(||x x xx y y K +=+-='+''=, xx 232)1(+=ρ,2222232212)12(1)1(2)1(23x x x x x x x x --=+-⋅⋅+='ρ.令ρ'=0, 得22=x . 因为当220<<x 时, ρ<0; 当22>x 时, ρ>0, 所以22=x 是ρ的极小值点, 同时也最小值点. 当22=x 时, 22ln =y . 因此在曲线上点)22ln ,22(处曲率半径最小, 最小曲率半径为233=ρ. 6. 证明曲线axa y ch =在点(x , y )处的曲率半径为a y 2.解 a x y sh =', axa y ch 1=''.在点(x , y )处的曲率半径为a y a x a a x a a xa x a a x y y 222/322/322/32ch |ch 1|)(ch |ch 1|)sh 1(||)1(===+='''+=ρ.7. 一飞机沿抛物线路径100002x y =(y 轴铅直向上, 单位为m )作俯冲飞行, 在坐标原点O 处飞机的速度为v =200m /s 飞行员体重G =70Kg . 求飞机俯冲至最低点即原点O 处时座椅对飞行员的反力.解 5000100002x x y ==', 50001=''y ; y '|x =0=0, 50001|0=''=x y . 500050001)01(||)1(|2/322/320=+='''+==y y x ρ.向心力56050002007022=⨯==ρmV F (牛顿). 飞行员离心力及它本身的重量对座椅的压力为 79⨯9.8+560=1246(牛顿).8. 汽车连同载重共5t , 在抛物线拱桥上行驶, 速度为21.6km/h , 桥的跨度为10m , 拱的矢高为0.25m . 求汽车越过桥顶时对桥的压力.解 如图取直角坐标系, 设抛物线拱桥方程为y =ax 2, 由于抛物线过点(5, 0.25), 代入方程得01.02525.0==a ,于是抛物线方程为y =0. 01x 2. y '=0.02x , y ''=0.02.5002.0)01(||)1(|2/322/320=+='''+==y y x ρ. 向心力为360050)3600106.21(1052332=⨯⨯==ρmV F (牛顿). 因为汽车重为5吨, 所以汽车越过桥顶时对桥的压力为 5⨯103⨯9.8-3600=45400(牛顿).*9. 求曲线y =ln x 在与x 轴交点处的曲率圆方程.*10. 求曲线y =tan x 在点)1 ,4(π处的曲率圆方程.*11. 求抛物线y 2=2px 的渐屈线方程.总习题三1. 填空:设常数k >0, 函数k exx x f +-=ln )(在(0, +∞)内零点的个数为________.解 应填写2.提示: e x x f 11)(-=', 21)(xx f -=''.在(0, +∞)内, 令f '(x )=0, 得唯一驻点x =e .因为f ''(x )<0, 所以曲线k exx x f +-=ln )(在(0, +∞)内是凸的, 且驻点x =e 一定是最大值点,最大值为f (e )=k >0.又因为-∞=+→)(lim 0x f x , -∞=+∞→)(lim x f x , 所以曲线经过x 轴两次, 即零点的个数为2.2. 选择以下题中给出的四个结论中一个正确的结论:设在[0, 1]上f ''(x )>0, 则f '(0), f '(1), f (1)-f (0)或f (0)-f (1)几个数的大小顺序为( ). (A )f '(1)>f '(0)>f (1)-f (0); (B )f '(1)>f (1)-f (0)>f '(0); (C )f (1)-f (0)>f '(1)>f '(0); (D )f '(1)>f (0)-f (1)>f '(0). 解 选择B .提示: 因为f ''(x )>0, 所以f '(x )在[0, 1]上单调增加, 从而f '(1)>f '(x )>f '(0). 又由拉格朗日中值定理, 有f (1)-f (0)=f '(ξ), ξ∈[0, 1], 所以 f '(1)> f (1)-f (0)>f '(0).3. 列举一个函数f (x )满足: f (x )在[a , b ]上连续, 在(a ,b )内除某一点外处处可导, 但在(a , b )内不存在点ξ , 使f (b )-f (a )=f '(ξ)(b -a ). 解 取f (x )=|x |, x ∈[-1, 1].易知f (x )在[-1, 1]上连续, 且当x >0时f '(x )=1; 当x >0时, f '(x )=-1; f '(0)不存在, 即f (x )在[-1, 1]上除x =0外处处可导.注意f (1)-f (-1)=0, 所以要使f (1)-f (-1)=f '(ξ)(1-(-1))成立, 即f '(ξ)=0, 是不可能的. 因此在(-1, 1)内不存在点ξ , 使f (1)-f (-1)=f '(ξ)(1-(-1)). 4. 设k x f x ='∞→)(lim , 求)]()([lim x f a x f x -+∞→.解 根据拉格朗日中值公式, f (x +a )-f (x )=f '(ξ )⋅a , ξ 介于x +a 与x 之间. 当x →∞ 时, ξ → ∞, 于是ak f a a f x f a x f x x ='=⋅'=-+∞→∞→∞→)(lim )(lim )]()([lim ξξξ.5. 证明多项式f (x )=x 3-3x +a 在[0, 1]上不可能有两个零点.证明 f '(x )=3x 2-3=3(x 2-1), 因为当x ∈(0, 1)时, f '(x )<0, 所以f (x )在[0, 1]上单调减少. 因此, f (x ) 在[0, 1]上至多有一个零点.6. 设1210++⋅⋅⋅++n a aa n =0, 证明多项式f (x )=a 0+a 1x +⋅ ⋅ ⋅+a n x n 在(0,1)内至少有一个零点.证明 设121012)(+++++=n n x n a x ax a x F , 则F (x )在[0, 1]上连续, 在(0, 1)内可导, 且F (0)=F (1)=0. 由罗尔定理, 在(0, 1)内至少有一个点ξ , 使F (ξ )=0. 而F '(x )=f (x ), 所以f (x )在(0, 1)内至少有一个零点.7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0.8. 设0<a <b , 函数f (x )在[a , b ]上连续, 在(a , b )内可导, 试利用柯西中值定理, 证明存在一点ξ∈(a , b )使abf b f a f ln )()()(ξξ'=-.证明 对于f (x )和ln x 在[a , b ]上用柯西中值定理, 有ξξ1)(ln ln )()(f ab a f b f '=--, ξ∈(a , b ), 即 abf b f a f ln )()()(ξξ'=-, ξ∈(a , b ).9. 设f (x )、g (x )都是可导函数, 且|f '(x )|<g '(x ), 证明: 当x >a 时, |f (x )-f (a )|<g (x )-g (a ).证明 由条件|f '(x )|<g '(x )得知,1)()(<''ξξg f , 且有g '(x )>0, g (x )是单调增加的, 当x >a 时, g (x )>g (a ).因为f (x )、g (x )都是可导函数, 所以f (x )、g (x ) 在[a , x ]上连续, 在(a , x )内可导, 根据柯西中值定理, 至少存在一点ξ∈(a , x ), 使)()()()()()(ξξg f a g x g a f x f ''=--. 因此,1)()()()(|)()(|<''=--ξξg f a g x g a f x f , |f (x )-f (a )|<g (x )-g (a ).10. 求下列极限:(1)xx x x xx ln 1lim 1+--→;(2)]1)1ln(1[lim 0xx x -+→;(3)x x x )arctan 2(lim π+∞→.(4)nxx n x x x n a a a ]/) [(lim 11211+⋅⋅⋅++∞→(其中a 1, a 2, ⋅ ⋅ ⋅, a n >0).解 (1) (x x )'=(e x l n x )'=e x l n x(ln x +1)=x x (ln x +1).xx x x xx x x x x x x x x x x x x x x x xx -+-=+-+-='+-'-=+--+→→→→1)1(ln lim11)1(ln 1lim )ln 1()(lim ln 1lim 11111 21)1)(ln 11(ln 1lim11=--+++-=+→xx x x x x x x . (2)xxx x x x x x x x x x x x x x x x ++++-='+'+-=++-=-+→→→→1)1ln(111lim ])1ln([])1ln([lim )1ln()1ln(lim ]1)1ln(1[lim 00002111)1l n (1lim )1ln()1(lim00=+++=+++=→→x x x x x x x。
习题9-11. 设有一平面薄板(不计其厚度), 占有xOy 面上的闭区域D , 薄板上分布有密度为μ =μ(x , y )的电荷, 且μ(x , y )在D 上连续, 试用二重积分表达该板上全部电荷Q .解 板上的全部电荷应等于电荷的面密度μ(x , y )在该板所占闭区域D 上的二重积分⎰⎰=Dd y x Q σμ),(.2. 设⎰⎰+=13221)(D d y x I σ, 其中D 1={(x , y )|-1≤x ≤1, -2≤y ≤2};又⎰⎰+=23222)(D d y x I σ, 其中D 2={(x , y )|0≤x ≤1, 0≤y ≤2}.试利用二重积分的几何意义说明I 1与I 2的关系.解 I 1表示由曲面z =(x 2+y 2)3与平面x =±1, y =±2以及z =0围成的立体V 的体积.I 2表示由曲面z =(x 2+y 2)3与平面x =0, x =1, y =0, y =2以及z =0围成的立体V 1的体积.显然立体V 关于yOz 面、xOz 面对称, 因此V 1是V 位于第一卦限中的部分, 故V =4V 1, 即I 1=4I 2.3. 利用二重积分的定义证明: (1)⎰⎰=Dd σσ (其中σ为D 的面积);证明 由二重积分的定义可知,⎰⎰∑=→∆=Dni iiif d y x f 1),(lim ),(σηξσλ其中∆σi 表示第i 个小闭区域的面积. 此处f (x , y )=1, 因而f (ξ, η)=1, 所以,σσσσλλ==∆=→=→⎰⎰∑01lim lim Dni id .(2)⎰⎰⎰⎰=DDd y x f k d y x kf σσ),(),( (其中k 为常数);证明∑⎰⎰∑=→=→∆=∆=ni i i i Dni iiif k kf d y x kf 11),(lim ),(lim ),(σηξσηξσλλ⎰⎰∑=∆==→Dn i i i i d y x f k f k σσηξλ),(),(lim 10. (3)⎰⎰⎰⎰⎰⎰+=21),(),(),(D DD d y x f d y x f d y x f σσσ,其中D =D 1⋃D 2, D 1、D 2为两个无公共内点的闭区域.证明 将D 1和D 2分别任意分为n 1和n 2个小闭区域1i σ∆和2i σ∆, n 1+n 2=n , 作和∑∑∑===∆+∆=∆2222211111111),(),(),(n i i i i n i i i i ni iiif f f σηξσηξσηξ.令各1i σ∆和2i σ∆的直径中最大值分别为λ1和λ2, 又λ=ma x (λ1λ2), 则有∑=→∆ni i i i f 10),(lim σηξλ∑∑=→=→∆+∆=22222211111111),(lim ),(lim n i i i i n i i i i f f σηξσηξλλ, 即 ⎰⎰⎰⎰⎰⎰+=21),(),(),(D D Dd y x f d y x f d y x f σσσ.4. 根据二重积分的性质, 比较下列积分大小:(1)⎰⎰+Dd y x σ2)(与⎰⎰+Dd y x σ3)(, 其中积分区域D 是由x 轴, y 轴与直线x +y =1所围成;解 区域D 为: D ={(x , y )|0≤x , 0≤y , x +y ≤1}, 因此当(x , y )∈D 时, 有(x +y )3≤(x +y )2, 从而⎰⎰+Dd y x σ3)(≤⎰⎰+Dd y x σ2)(. (2)⎰⎰+Dd y x σ2)(与⎰⎰+Dd y x σ3)(, 其中积分区域D 是由圆周(x -2)2+(y -1)2=2所围成;解 区域D 如图所示, 由于D 位于直线x +y =1的上方, 所以当(x , y )∈D 时, x +y ≥1, 从而(x +y )3≥(x +y )2, 因而⎰⎰⎰⎰+≤+DDd y x d y x σσ32)()(. (3)⎰⎰+Dd y x σ)ln(与⎰⎰+Dd y x σ3)(, 其中D 是三角形闭区域, 三角顶点分别为(1, 0), (1, 1), (2, 0);解 区域D 如图所示, 显然当(x , y )∈D 时, 1≤x +y ≤2, 从而0≤ln(x +y )≤1, 故有[ln(x +y )]2≤ ln(x +y ), 因而⎰⎰⎰⎰+≥+DDd y x d y x σσ)ln()][ln(2. (4)⎰⎰+Dd y x σ)ln(与⎰⎰+Dd y x σ3)(, 其中D ={(x , y )|3≤x ≤5. 0≤y ≤1}.解 区域D 如图所示, 显然D 位于直线x +y =e 的上方, 故当(x , y )∈D 时, x +y ≥e , 从而ln(x +y )≥1, 因而 [ln(x +y )]2≥ln(x +y ), 故⎰⎰⎰⎰+≤+DDd y x d y x σσ2)][ln()ln(. 5. 利用二重积分的性质估计下列积分的值: (1)⎰⎰+=Dd y x xy I σ)(, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解 因为在区域D 上0≤x ≤1, 0≤y ≤1, 所以 0≤xy ≤1, 0≤x +y ≤2, 进一步可得0≤xy (x +y )≤2, 于是⎰⎰⎰⎰⎰⎰≤+≤DDDd d y x xy d σσσ2)(0,即 ⎰⎰≤+≤Dd y x xy 2)(0σ.(2)⎰⎰=Dyd x I σ22sin sin , 其中D ={(x , y )| 0≤x ≤π, 0≤y ≤π};解 因为0≤sin 2x ≤1, 0≤sin 2y ≤1, 所以0≤sin 2x sin 2y ≤1. 于是⎰⎰⎰⎰⎰⎰≤≤DDDd yd x d σσσ1sin sin 022, 即 ⎰⎰≤≤Dyd x 222sin sin 0πσ.(3)⎰⎰++=Dd y x I σ)1(, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤2};解 因为在区域D 上, 0≤x ≤1, 0≤y ≤2, 所以1≤x +y +1≤4, 于是⎰⎰⎰⎰⎰⎰≤++≤DDDd d y x d σσσ4)1(,即 ⎰⎰≤++≤Dd y x 8)1(2σ.(4)⎰⎰++=Dd y x I σ)94(22, 其中D ={(x , y )| x 2+y 2 ≤4}.解 在D 上, 因为0≤x 2+y 2≤4, 所以 9≤x 2+4y 2+9≤4(x 2+y 2)+9≤25. 于是⎰⎰⎰⎰⎰⎰≤++≤DDDd d y x d σσσ25)94(922, ⎰⎰⋅⋅≤++≤Dd y x 2222225)94(29πσπ,即 ⎰⎰≤++≤Dd y x πσπ100)94(3622.习题9-21. 计算下列二重积分:(1)⎰⎰+Dd y x σ)(22, 其中D ={(x , y )| |x |≤1, |y |≤1};解 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是⎰⎰+Dd y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=. (2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域:解 积分区域可表示为D : 0≤x ≤2, 0≤y ≤2-x . 于是⎰⎰+Dd y x σ)23(y d y x dx x⎰⎰-+=2020)23(dx y xy x ⎰-+=222]3[ dx x x ⎰-+=202)224(0232]324[x x x -+=320=. (3)⎰⎰++Dd y y x x σ)3(223, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解⎰⎰++Dd y y x x σ)3(323⎰⎰++=132310)3(dx y y x x dy ⎰++=1001334]4[dy x y y x x⎰++=103)41(dy y y 0142]424[y y y ++=1412141=++=.(4)⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (π, 0), 和(π, π)的三角形闭区域.解 积分区域可表示为D : 0≤x ≤π, 0≤y ≤x . 于是,⎰⎰+Dd y x x σ)cos(⎰⎰+=x dy y x xdx 00)cos(π⎰+=π0)][sin(dx y x x x⎰-=π0)s i n 2(s i n dx x x x ⎰--=π0)c o s 2c o s 21(x x xd+--=0|)c o s 2c o s 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=. .2. 画出积分区域, 并计算下列二重积分:(1)⎰⎰Dd y x σ, 其中D 是由两条抛物线x y =, 2x y =所围成的闭区域;解 积分区域图如, 并且D ={(x , y )| 0≤x ≤1, x y x ≤≤2}. 于是⎰⎰D d y xσ⎰⎰=102dy y x dx xx⎰=10223]32[dx y x x x 556)3232(1047=-=⎰dx x x .(2)⎰⎰Dd xy σ2, 其中D 是由圆周x 2+y 2=4及y 轴所围成的右半闭区域; 解 积分区域图如, 并且D ={(x , y )| -2≤y ≤2, 240y x -≤≤}. 于是⎰⎰⎰⎰⎰----=22402240222222]21[dy y x dx xy dy d xy y y Dσ1564]10132[)212(22225342=-=-=--⎰y y dy y y . (3)⎰⎰+Dy x d e σ, 其中D ={(x , y )| |x |+|y |≤1};解 积分区域图如, 并且D ={(x , y )| -1≤x ≤0, -x -1≤y ≤x +1}⋃{(x , y )| 0≤x ≤1, x -1≤y ≤-x +1}. 于是⎰⎰⎰⎰⎰⎰+--+---++=1110111x x y x x x y x Dy x dy e dx e dy e dx e d e σ⎰⎰+---+--+=10110111][][dy e e dx e e x x y x x x y x ⎰⎰---+-+-=11201112)()(dx e e dx e ex x 101201112]21[]21[---+-+-=x x e ex x e e =e -e -1. (4)⎰⎰-+Dd x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域.解 积分区域图如, 并且D ={(x , y )| 0≤y ≤2, y x y ≤≤21}. 于是⎰⎰⎰⎰⎰-+=-+=-+2022232222022]2131[)()(dy x x y x dx x y x dy d x y x y y y y Dσ613)832419(2023=-=⎰dy y y .3. 如果二重积分⎰⎰Ddxdy y x f ),(的被积函数f (x , y )是两个函数f 1(x )及f 2(y )的乘积,即f (x , y )= f 1(x )⋅f 2(y ), 积分区域D ={(x , y )| a ≤x ≤b , c ≤ y ≤d }, 证明这个二重积分等于两个单积分的乘积, 即 ])([])([)()(2121dy y f dx x f dxdy y f x f dcb aD⎰⎰⎰⎰⋅=⋅证明dx dy y f x f dy y f x f dx dxdy y f x f dcb a d cb aD⎰⎰⎰⎰⎰⎰⋅=⋅=⋅])()([)()()()(212121,而⎰⎰=⋅dcdc dy y f x f dy y f x f )()()()(2121,故 dx dy y f x f dxdy y f x f b a dcD⎰⎰⎰⎰=⋅])()([)()(2121.由于⎰dcdy y f )(2的值是一常数, 因而可提到积分号的外面, 于是得])([])([)()(2121dy y f dx x f dxdy y f x f dcb a D⎰⎰⎰⎰⋅=⋅4. 化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域D 是:(1)由直线y =x 及抛物线y 2=4x 所围成的闭区域; 解积分区域如图所示, 并且D ={(x , y )|x y x x 2 ,40≤≤≤≤}, 或D ={(x , y )| y x y y ≤≤≤≤241 ,40},所以 ⎰⎰=xxdy y x f dx I 240),(或⎰⎰=yy dx y x f dy I 4402),(.(2)由x 轴及半圆周x 2+y 2=r 2(y ≥0)所围成的闭区域; 解积分区域如图所示, 并且D ={(x , y )|220 ,x r y r x r -≤≤≤≤-},或D ={(x , y )| 2222 ,0y r x y r r y -≤≤--≤≤}, 所以 ⎰⎰--=220),(x r rr dy y x f dx I , 或⎰⎰---=2222),(0y r y r r dx y x f dy I .(3)由直线y =x , x =2及双曲线x y 1=(x >0)所围成的闭区域;解积分区域如图所示, 并且D ={(x , y )|x y xx ≤≤≤≤1 ,21},或D ={(x , y )| 21 ,121≤≤-≤≤x y y }⋃{(x , y )|2 ,21≤≤≤≤x y y },所以 ⎰⎰=x xdy y x f dx I 1),(21, 或⎰⎰⎰⎰+=22121121),(),(yydx y x f dy dx y x f dy I .(4)环形闭区域{(x , y )| 1≤x 2+y 2≤4}.解 如图所示, 用直线x =-1和x =1可将积分区域D 分成四部分, 分别记做D 1, D 2,D 3, D 4. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ⎰⎰⎰⎰--------+=222244411112),(),(x x x x dy y x f dx dy y x f dx ⎰⎰⎰⎰--------++222214442111),(),(x x x x dy y x f dx dy y x f dx用直线y =1, 和y =-1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4, 如图所示. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ⎰⎰⎰⎰--------+=222244141121),(),(y y y y dx y x f dy dx y x f dy⎰⎰⎰⎰--------++222241441211),(),(y y y y dx y x f dy dx y x f dy5. 设f (x , y )在D 上连续, 其中D 是由直线y =x 、y =a 及x =b (b >a )围成的闭区域, 证明:⎰⎰⎰⎰=bybaxabadx y x f dy dy y x f dx ),(),(.证明 积分区域如图所示, 并且积分区域可表示为 D ={(x , y )|a ≤x ≤b , a ≤y ≤x }, 或D ={(x , y )|a ≤y ≤b , y ≤x ≤b }. 于是⎰⎰Dd y x f σ),(⎰⎰=x a b a dy y x f dx ),(, 或⎰⎰Dd y x f σ),(⎰⎰=by b a dx y x f dy ),(.因此⎰⎰⎰⎰=byb ax abadx y x f dy dy y x f dx ),(),(.6. 改换下列二次积分的积分次序: (1)⎰⎰ydx y x f dy 01),(;解 由根据积分限可得积分区域D ={(x , y )|0≤y ≤1, 0≤x ≤y }, 如图. 因为积分区域还可以表示为D ={(x , y )|0≤x ≤1, x ≤y ≤1}, 所以⎰⎰⎰⎰=11010),(),(xy dy y x f dx dx y x f dy .(2)⎰⎰yydx y x f dy 222),(;解 由根据积分限可得积分区域D ={(x , y )|0≤y ≤2, y 2≤x ≤2y }, 如图. 因为积分区域还可以表示为D ={(x , y )|0≤x ≤4, x y x ≤≤2}, 所以⎰⎰y ydx y x f dy 222),(⎰⎰=402),(xx dy y x f dx .(3)⎰⎰---221110),(y y dx y x f dy ;解 由根据积分限可得积分区域}11 ,10|),{(22y x y y y x D -≤≤--≤≤=, 如图. 因为积分区域还可以表示为}10 ,11|),{(2x y x y x D -≤≤≤≤-=, 所以⎰⎰⎰⎰-----=22210111110),(),(x y ydy y x f dx dx y x f dy(4)⎰⎰--21222),(x x xdy y x f dx ;解 由根据积分限可得积分区域}22 ,21|),{(2x x y x x y x D -≤≤-≤≤=, 如图. 因为积分区域还可以表示为}112 ,10|),{(2y x y y y x D -+≤≤-≤≤=, 所以⎰⎰--21222),(x x xdy y x f dx ⎰⎰-+-=11122),(y ydx y x f dy .(5)⎰⎰e xdy y x f dx 1ln 0),(;解 由根据积分限可得积分区域D ={(x , y )|1≤x ≤e , 0≤y ≤ln x }, 如图. 因为积分区域还可以表示为D ={(x , y )|0≤y ≤1, e y ≤x ≤ e }, 所以⎰⎰exdy y x f dx 1ln 0),(⎰⎰=10),(ee y dx y xf dy(6)⎰⎰-xx dy y x f dx sin 2sin0),(π(其中a ≥0).解 由根据积分限可得积分区域}sin 2sin ,0|),{(x y x x y x D ≤≤-≤≤=π, 如图.因为积分区域还可以表示为}a r c s i n 2 ,01|),{(π≤≤-≤≤-=x y y y x D }a r c s i n a r c s i n ,10|),{(y x y y y x -≤≤≤≤⋃π, 所以⎰⎰⎰⎰⎰⎰----+=yyyxxdx y x f dy dx y x f dy dy y x f dx arcsin arcsin 10arcsin 201sin 2sin 0),(),(),(πππ.7. 设平面薄片所占的闭区域D 由直线x +y =2, y =x 和x 轴所围成, 它的面密度为μ(x , y )=x 2+y 2, 求该薄片的质量. 解 如图, 该薄片的质量为⎰⎰=Dd y x M σμ),(⎰⎰+=Dd y x σ)(22⎰⎰-+=10222)(yydx y x dy⎰-+-=10323]372)2(31[dy y y y 34=.8. 计算由四个平面x =0, y =0, x =1, y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体的体积.解 四个平面所围成的立体如图, 所求体积为⎰⎰--=Ddxdy y x V )326(⎰⎰--=110)326(dy y x dx⎰--=10102]2326[dx y xy y ⎰=-=1027)229(dx x .9. 求由平面x =0, y =0, x +y =1所围成的柱体被平面z =0及抛物面x 2+y 2=6-z 截得的立体的体积.解 立体在xOy 面上的投影区域为D ={(x , y )|0≤x ≤1, 0≤y ≤1-x }, 所求立体的体积为以曲面z =6-x 2-y 2为顶, 以区域D 为底的曲顶柱体的体积, 即⎰⎰--=Dd y x V σ)6(22⎰⎰---=101022)6(xdy y x dx 617=.10. 求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.解 由⎩⎨⎧--=+=2222262y x z y x z 消去z , 得x 2+2y 2=6-2x 2-y 2, 即x 2+y 2=2, 故立体在x O y 面上的投影区域为x 2+y 2≤2, 因为积分区域关于x 及y 轴均对称, 并且被积函数关于x , y都是偶函数, 所以⎰⎰+---=Dd y x y x V σ)]2()26[(2222⎰⎰--=Dd y x σ)336(22⎰⎰---=2202220)2(12x dy y x dx π6)2(8232=-=⎰dx x .11. 画出积分区域, 把积分⎰⎰Ddxdy y x f ),(表示为极坐标形式的二次积分, 其中积分区域D 是:(1){(x , y )| x 2+y 2≤a 2}(a >0);解积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤a }, 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ200)s i n ,c o s (d f d a. (2){(x , y )|x 2+y 2≤2x };解 积分区域D 如图. 因为}cos 20 ,22|),{(θρπθπθρ≤≤≤≤-=D , 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰-=22c o s20)s i n ,co s (ππθρρθρθρθd f d .(3){(x , y )| a 2≤x 2+y 2≤b 2}, 其中0<a <b ;解 积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)s i n ,c o s (bad f d .(4){(x , y )| 0≤y ≤1-x , 0≤x ≤1}.解 积分区域D 如图. 因为}sin cos 10 ,20|),{(θθρπθθρ+≤≤≤≤=D , 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰+=θθρρθρθρθπs i nc o s 1020)s i n ,c o s (d f d .12. 化下列二次积分为极坐标形式的二次积分: (1)⎰⎰101),(dy y x f dx ;解 积分区域D 如图所示. 因为}c s c 0 ,24|),{(}sec 0 ,40|),{(θρπθπθρθρπθθρ≤≤≤≤⋃≤≤≤≤=D ,所以⎰⎰⎰⎰⎰⎰==DDd d f d y x f dy y x f dx θρρθρθρσ)sin ,cos (),(),(0⎰⎰=4s e c)s i n ,c o s (πθρρθρθρθd f d ⎰⎰+2c s c)s i n ,c o s (ππθρρθρθρθd f d .(2)⎰⎰+xxdy y x f dx 32220)(;解 积分区域D 如图所示, 并且 }s e c 20 ,34|),{(θρπθπθρ≤≤≤≤=D ,所示⎰⎰⎰⎰⎰⎰=+=+xxDDd d f d y x f dy y x f dx 3222220)()()(θρρρσ⎰⎰=34sec 20)(ππθρρρθd f d .(3)⎰⎰--2111),(x xdy y x f dx ;解 积分区域D 如图所示, 并且}1s i n c o s 1 ,20|),{(≤≤+≤≤=ρθθπθθρD ,所以⎰⎰⎰⎰⎰⎰--==10112)sin ,cos (),(),(x xDDd d f d y x f dy y x f dx θρρθρθρσ⎰⎰+=2s i nc o s 11)s i n ,c o s (πθθρρθρθρθd f d(4)⎰⎰210),(x dy y x f dx .解 积分区域D 如图所示, 并且}s e c t a n s e c ,40|),{(θρθθπθθρ≤≤≤≤=D ,所以⎰⎰210),(x dy y x f dx ⎰⎰⎰⎰==DDd d f d y x f θρρθρθρσ)sin ,cos (),(⎰⎰=0s e ct a ns e c )s i n ,c o s (πθθθρρθρθρθd f d13. 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax ady y x dx ;解 积分区域D 如图所示. 因为}cos 20 ,20|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰-+2202220)(x ax ady y x dx ⎰⎰⋅=Dd d θρρρ2⎰⎰⋅=20c o s202πθρρρθa d d ⎰=2044c o s 4πθθd a 443a π=.(2)⎰⎰+dy y x dx 0220;解 积分区域D 如图所示. 因为}sec 0 ,40|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰⎰⎰⋅=+Dxad d dy y x dx θρρρ0220⎰⎰⋅=40s e cπθρρρθa d d ⎰=4033s e c 3πθθd a )]12ln(2[63++=a .(3)⎰⎰-+xxdyy xdx 2212210)(;解 积分区域D 如图所示. 因为}tan sec 0 ,40|),{(θθρπθθρ≤≤≤≤=D , 所以⎰⎰⎰⎰⋅=+--Dxx d d dy y xdx θρρρ212122102)(12t a n s e c 40t a ns e c 02140-==⋅=⎰⎰⎰-πθθπθθθρρρθd d d .(4)⎰⎰-+220220)(y a a dx y x dy .解 积分区域D 如图所示. 因为}0 ,20|),{(a D ≤≤≤≤=ρπθθρ, 所以⎰⎰⎰⎰⋅=+-Dy a ad d dx y x dy θρρρ2022022)(40028a d d aπρρρθπ=⋅=⎰⎰.14. 利用极坐标计算下列各题: (1)⎰⎰+Dy xd e σ22,其中D 是由圆周x 2+y 2=4所围成的闭区域;解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤2}, 所以⎰⎰⎰⎰=+DDy x d d e d e θρρσρ222)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ. (2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰+=++DDd d d y x θρρρσ)1ln()1ln(222)12l n 2(41)12l n 2(212)1l n (20102-=-⋅=+=⎰⎰πρρρθπd d .(3)σd x yDarctan ⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解 在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⎰⎰⋅=⋅=DDDd d d d d xyθρρθθρρθσ)arctan(tan arctan⎰⎰⋅=021πρρθθd d ⎰⎰==40321643ππρρθθd d . 15. 选用适当的坐标计算下列各题:(1)dxdy yx D 22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域.解 因为积分区域可表示为}1 ,21|),{(x y xx y x D ≤≤≤≤=, 所以d x d y yx D 22⎰⎰dy y dx x x x ⎰⎰=211221⎰-=213)(dx x x 49=.(2)⎰⎰++--Dd yx y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⋅+-=++--DD d d d y x y x θρρρρσ2222221111)2(811102220-=+-=⎰⎰ππρρρρθπd d .(3)⎰⎰+Dd y x σ)(22, 其中D 是由直线y =x , y =x +a , y =a , y =3a (a >0)所围成的闭区域;解 因为积分区域可表示为D ={(x , y )|a ≤y ≤3a , y -a ≤x ≤y }, 所以⎰⎰+D d y x σ)(22⎰⎰-+=a a ya y dx y x dy 322)(4332214)312(a dy a y a ay a a =+-=⎰.(4)σd y x D22+⎰⎰, 其中D 是圆环形闭区域{(x , y )| a 2≤x 2+y 2≤b 2}.解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以 σd y x D22+⎰⎰)(3233202a b dr r d b a -==⎰⎰πθπ.16. 设平面薄片所占的闭区域D 由螺线ρ=2θ上一段弧(20πθ≤≤)与直线2πθ=所围成, 它的面密度为μ(x , y )=x 2+y 2. 求这薄片的质量.解 区域如图所示. 在极坐标下}20 ,20|),{(θρπθθρ≤≤≤≤=D , 所以所求质量⎰⎰⎰⎰⋅==Dd d d y x M 20202),(πθρρρθσμ⎰==254404ππθθd .17. 求由平面y =0, y =kx (k >0), z =0以及球心在原点、半径为R 的上半球面所围成的在第一卦限内的立体的体积.解 此立体在xOy 面上的投影区域D ={(x , y )|0≤θ≤arctan k , 0≤ρ≤R }.⎰⎰--=D dxdy y x R V 222k R d R d k Ra r c t a n313a r c t a n 0022=-=⎰⎰ρρρθ. 18. 计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底, 而以曲面z =x 2+y 2为顶的曲顶柱体的体积.解 曲顶柱体在xOy 面上的投影区域为D ={(x , y )|x 2+y 2≤ax }. 在极坐标下}cos 0 ,22|),{(θρπθπθρa D ≤≤≤≤-=, 所以⎰⎰≤++=axy x dxdy y xV 22)(22πθθρρρθππθππ422c o s22442323cos 4a d a d d a ==⋅=⎰⎰⎰--. 习题9-31. 化三重积分dxdydz z y x f I ),,(Ω⎰⎰⎰=为三次积分, 其中积分区域Ω分别是:(1)由双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域; 解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤1-x , 0≤x ≤1}, 于是 ⎰⎰⎰-=xyx dz z y x f dy dx I 01010),,(.(2)由曲面z =x 2+y 2及平面z =1所围成的闭区域; 解 积分区域可表示为}11 ,11 ,1|),,{(2222≤≤--≤≤--≤≤+=Ωx x y x z y x z y x , 于是 ⎰⎰⎰+----=111112222),,(y x x x dz z y x f dy dx I .(3)由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域;解 曲积分区域可表示为}11 ,11 ,22|),,{(22222≤≤--≤≤---≤≤+=Ωx x y x x z y x z y x , 于是 ⎰⎰⎰-+----=22222221111),,(x y x x x dz z y x f dy dx I .提示: 曲面z =x 2+2y 2与z =2-x 2的交线在xOy 面上的投影曲线为x 2+y 2=1.(4)由曲面cz =xy (c >0), 12222=+by a x , z =0所围成的在第一卦限内的闭区域.解 曲积分区域可表示为}0 ,0 ,0|),,{(22a x x a a b y c xyz z y x ≤≤-≤≤≤≤=Ω,于是 ⎰⎰⎰-=xy abdz z y x f dy dx I x a a0),,(22.提示: 区域Ω的上边界曲面为曲面c z =xy , 下边界曲面为平面z =0.2. 设有一物体, 占有空间闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}, 在点(x , y , z )处的密度为ρ(x , y , z )=x +y +z , 计算该物体的质量.解 ⎰⎰⎰⎰⎰⎰++==Ω101010)(dz z y x dy dx dxdydz M ρ⎰⎰++=1010)21(dy y x dx⎰⎰+=++=1010102)1(]2121[dx x dx y y xy 23)1(21102=+=x .3. 如果三重积分dxdydz z y x f ),,(Ω⎰⎰⎰的被积函数f (x , y , z )是三个函数f 1(x )、f 2(y )、f 3(z )的乘积, 即f (x , y , z )= f 1(x )⋅f 2(y )⋅f 3(z ), 积分区域Ω={(x , y , z )|a ≤x ≤b , c ≤y ≤d , l ≤z ≤m }, 证明这个三重积分等于三个单积分的乘积, 即⎰⎰⎰⎰⎰⎰=Ωmldcb a dz z f dy y f dx x f dxdydz z f y f x f )()()()()()(321321.证明dxdydz z f y f x f )()()(321Ω⎰⎰⎰dx dy dz z f y f x f b a d c ml]))()()(([321⎰⎰⎰=dx dy dz z f y f x f b a d c ml ]))()()(([321⎰⎰⎰=⎰⎰⎰=mldcbadx dy y f dz z f x f )])()()()([(231 dx x f dy y f dz z f b a mldc)]())()()([(123⎰⎰⎰=⎰⎰⎰=dcbamldx x f dy y f dz z f )())()()((123 ⎰⎰⎰=dcmlbadz z f dy y f dx x f )()()(321.4. 计算dxdydz z xy 32Ω⎰⎰⎰, 其中Ω是由曲面z =xy , 与平面y =x , x =1和z =0所围成的闭区域.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤x , 0≤x ≤1}, 于是d x d y d z z xy 32Ω⎰⎰⎰⎰⎰⎰=xy x dz z dy y xdx 030210⎰⎰=xxy dy z y xdx 004210]4[ ⎰⎰=x dy y dx x 051054136412811012==⎰dx x .5. 计算3)1(z y x dxdydz+++Ω⎰⎰⎰, 其中Ω为平面x =0, y =0, z =0, x +y +z =1所围成的四面体. 解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤1-x -y , 0≤y ≤1-x , 0≤x ≤1},于是 3)1(z y x d x d y d z +++Ω⎰⎰⎰⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰--++=x dy y x dx 10210]81)1(21[dx x x ⎰+-+=10]8183)1(21[)852(l n 21-=.提示: ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰---+++-=xyx dy z y x dx 1010210])1(21[⎰⎰--++=x dy y x dx 10210]81)1(21[ dx y y x x-⎰-++-=1010]81)1(21[dx x x ⎰+-+=10]8183)1(21[ 102]16183)1ln(21[x x x +-+= )852(ln 21-=.6. 计算xyzdxdydz Ω⎰⎰⎰, 其中Ω为球面x 2+y 2+z 2=1及三个坐标面所围成的在第一卦限内的闭区域.解 积分区域可表示为}10 ,10 ,10|),,{(222≤≤-≤≤--≤≤=Ωx x y y x z z y x 于是x y z d x d y d Ω⎰⎰⎰⎰⎰⎰---=222101010x y x x y z d zdy dx ⎰⎰---=210221)1(21x dy y x xy dx ⎰-=1022)1(81dx x x 481=.7. 计算xzdxdydz Ω⎰⎰⎰, 其中Ω是由平面z =0, z =y , y =1以及抛物柱面y =x 2所围成的闭区域.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤y , x 2≤y ≤1, -1≤x ≤1}, 于是x z d x d y d z Ω⎰⎰⎰⎰⎰⎰-=yx z d z dy xdx 01112⎰⎰-=1211221x dy y xdx0)1(61116=-=⎰-dx x x .8. 计算zdxdydz Ω⎰⎰⎰, 其中Ω是由锥面22y x R h z +=与平面z =h (R >0, h >0)所围成的闭区域.解 当0≤z ≤h 时, 过(0, 0, z )作平行于xOy 面的平面, 截得立体Ω的截面为圆D z :222)(z hR y x =+, 故D z的半径为z h R , 面积为222z h R π, 于是 z d x d y d z Ω⎰⎰⎰=dxdy zdz zD h ⎰⎰⎰0⎰==h h R dz z h R 0223224ππ. 9. 利用柱面坐标计算下列三重积分:(1)zdv Ω⎰⎰⎰, 其中Ω是由曲面222y x z --=及z =x 2+y 2所围成的闭区域;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ρ≤1, 222ρρ-≤≤z , 于是z d v Ω⎰⎰⎰⎰⎰⎰-=122022ρρπρρθz d z d d⎰--=1042)2(212ρρρρπdπρρρρπ127)2(1053=--=⎰d .(2)dv y x )(22+Ω⎰⎰⎰, 其中Ω是由曲面x 2+y 2=2z 及平面z =2所围成的闭区域.解 在柱面坐标下积分区域Ω可表示为0≤θ≤2π, 0≤ρ≤2, 222≤≤z ρ, 于是dv y x)(22+Ω⎰⎰⎰dz d d θρρρ⋅=Ω⎰⎰⎰2⎰⎰⎰=2123202ρπρρθdz d d ⎰⎰-=205320)212(ρρρθπd d ⎰==ππθ2031638d .10. 利用球面坐标计算下列三重积分:(1)dv z y x )(222++Ω⎰⎰⎰, 其中Ω是由球面x 2+y 2+z 2=1所围成的闭区域.解 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤1,于是 dv z y x )(222++Ω⎰⎰⎰θϕϕd d r d r s i n 4⋅=Ω⎰⎰⎰⎰⎰⎰=104020s i n dr r d d ππϕϕθπ54=.(2)zdv Ω⎰⎰⎰, 其中闭区域Ω由不等式x 2+y 2+(z -a )2≤a 2, x 2+y 2≤z 2 所确定.解 在球面坐标下积分区域Ω可表示为 ϕπϕπθc o s 20 ,40 ,20a r ≤≤≤≤≤≤,于是 z d v Ω⎰⎰⎰θϕϕϕd d r d r r s i n c o s 2⋅=Ω⎰⎰⎰ ⎰⋅=404)c o s 2(41c o s s i n 2πϕϕϕϕπd a4405467c o s si n 8a d a πϕϕϕππ==⎰.11. 选用适当的坐标计算下列三重积分:(1)xydv Ω⎰⎰⎰, 其中Ω为柱面x 2+y 2=1及平面z =1, z =0, x =0, y =0所围成的在第一卦限内的闭区域;解 在柱面坐标下积分区域Ω可表示为 10 ,10 ,20≤≤≤≤≤≤z ρπθ,于是 x y d v Ω⎰⎰⎰dz d d θρρθρθρ⋅⋅=Ω⎰⎰⎰sin cos⎰⎰⎰==101032081c o s s i n dz d d ρρθθθπ.别解: 用直角坐标计算⎰⎰⎰Ωx y d v ⎰⎰⎰-=1010102dz ydy xdx x ⎰⎰-=21010x y d yx d x⎰-=103)22(dx x x 81]84[1042=-=x x . (2)dv z y x 222++Ω⎰⎰⎰, 其中Ω是由球面x 2+y 2+z 2=z 所围成的闭区域;解 在球面坐标下积分区域Ω可表示为 ϕπϕπθc o s 0 ,20 ,20≤≤≤≤≤≤r ,于是dv z y x 222++Ω⎰⎰⎰⎰⎰⎰⋅=ϕππϕϕθc o s22020s i n dr r r d d10cos 41sin 2204πϕϕϕππ=⋅=⎰d .(3)dv y x )(22+Ω⎰⎰⎰, 其中Ω是由曲面4z 2=25(x 2+y 2)及平面z =5所围成的闭区域;解 在柱面坐标下积分区域Ω可表示为 525 ,20 ,20≤≤≤≤≤≤z ρρπθ,于是dv y x )(22+Ω⎰⎰⎰⎰⎰⎰=5252320ρπρρθdz d d πρρρπ8)255(2203=-=⎰d . (4)dv y x )(22+Ω⎰⎰⎰, 其中闭区域Ω由不等式A z y x a ≤++≤<2220, z ≥0所确定.解 在球面坐标下积分区域Ω可表示为A r a ≤≤≤≤≤≤ ,20 ,20πϕπθ,于是 dv y x )(22+Ω⎰⎰⎰θϕϕθϕϕϕd d r d r r r s i n )s i n s i n c o s s i n(2222222+=Ω⎰⎰⎰)(154sin 55420320a A dr r d d Aa -==⎰⎰⎰πϕϕθππ.12. 利用三重积分计算下列由曲面所围成的立体的体积: (1)z =6-x 2-y 2及22y x z +=;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2 π, 0≤ρ≤2, ρ≤z ≤6-ρ2,于是 dz d d dv V θρρΩΩ⎰⎰⎰⎰⎰⎰==⎰⎰⎰-=262020ρρπρρθdz d d⎰=--=2032332)6(2πρρρρπd .(2)x 2+y 2+z 2=2az (a >0)及x 2+y 2=z 2(含有z 轴的部分); 解 在球面坐标下积分区域Ω可表示为ϕπϕπθc o s 20 ,40 ,20a r ≤≤≤≤≤≤,于是 θϕϕd d r d r dv V sin 2ΩΩ⎰⎰⎰⎰⎰⎰==⎰⎰⎰=ϕππϕϕθc o s2024020si n a dr r d d3033s i n c o s 382a d a πϕϕϕππ==⎰. (3)22y x z +=及z =x 2+y 2;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ρ≤1, ρ2≤z ≤ρ,于是 6)(2103210202πρρρπρρθρρπ=-===⎰⎰⎰⎰⎰⎰⎰Ωd dz d d dv V .(4)225y x z --=及x 2+y 2=4z .解 在柱面坐标下积分区域Ω可表示为 22541 ,20 ,20ρρρπθ-≤≤≤≤≤≤z ,于是 ⎰⎰⎰-=225412020ρρπρρθdz d d V)455(32)45(22022-=--=⎰πρρρρπd .13. 球心在原点、半径为R 的球体, 在其上任意一点的密度的大小与这点到球心的距离成正比, 求这球体的质量.解 密度函数为222),,(z y x k z y x ++=ρ. 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤R ,于是 dv z y x k M 222++=Ω⎰⎰⎰400220s i n R k dr r kr d d Rπϕϕθππ=⋅=⎰⎰⎰.习题9-41. 求球面x 2+y 2+z 2=a 2含在圆柱面x 2+y 2=ax 内部的那部分面积. 解 位于柱面内的部分球面有两块, 其面积是相同的.由曲面方程z =222y x a --得222y x a x x z ---=∂∂, 222y x a y y z ---=∂∂,于是 dxdy yz x z A axy x ⎰⎰≤+∂∂+∂∂+=2222)()(12dxdy yx a a axy x ⎰⎰≤+--=222222⎰⎰-=20c o s2214πθρρρθa d a d a )2(2)s i n(4220-=-=⎰πθθπa d a a a . 2. 求锥面z =22y x +被柱面z 2=2x 所割下的部分的曲面的面积.解 由z =22y x +和z 2=2x 两式消z 得x 2+y 2=2x , 于是所求曲面在xOy 面上的投影区域D 为x 2+y 2≤2x .由曲面方程22y x +得22y x x x z +=∂∂, 22y x y y z +=∂∂, 于是 dxdy yz x z A y x ⎰⎰≤+-∂∂+∂∂+=1)1(2222)()(1π221)1(22==⎰⎰≤+-dxdy y x .3. 求底面半径相同的两个直交柱面x 2+y 2=R 2及x 2+z 2=R 2所围立体的表面积. 解 设A 1为曲面22x R z -=相应于区域D : x 2+y 2≤R 2上的面积. 则所求表面积为A =4A 1.d x d y y z x z A D⎰⎰∂∂+∂∂+=22)()(14d x d yx R x D⎰⎰+--+=22220)(14 d x d y x R R D⎰⎰-=2242221681422R dx R dy x R dx R R R R R x R x R ==-=⎰⎰⎰-------. 4. 设薄片所占的闭区域D 如下, 求均匀薄片的质心:(1)D 由px y 2=, x =x 0, y =0所围成;解 令密度为μ=1.因为区域D 可表示为px y x x 20 ,00≤≤≤≤, 所以 3002023220px dx px dy dx dxdy A x x px D====⎰⎰⎰⎰⎰, 0002053211100x dx px x A xdy dx A xdxdy A x x x px D====⎰⎰⎰⎰⎰,000208311100y p x d x A y d y dx A ydxdy A y x x px D====⎰⎰⎰⎰⎰,所求质心为)83 ,53(00y x(2)D 是半椭圆形闭区域}0 ,1 |),{(2222≥≤+y by a x y x ; 解 令密度为μ=1. 因为闭区域D 对称于y 轴, 所以0=x . ab dxdy A Dπ21==⎰⎰(椭圆的面积),π34)(21112222022b dx x a a b A ydy dx A ydxdy A y aa aa x a Dab=-⋅===⎰⎰⎰⎰⎰---, 所求质心为)34 ,0(πb .(3)D 是介于两个圆r =a cos θ, r =b cos θ(0<a <b )之间的闭区域. 解 令密度为μ=1. 由对称性可知0=y . )(4)2()2(2222a b a b d x d y A D-=-==⎰⎰πππ(两圆面积的差),)(2c o s 212220c o s c o s b a ab b a dr r r d A xdxdy A x b a D+++=⋅⋅==⎰⎰⎰⎰πθθθθ, 所求质心是)0 ,)(2(22b a ab b a +++. 5. 设平面薄片所占的闭区域D 由抛物线y =x 2及直线y =x 所围成, 它在点(x , y )处的面密度μ(x , y )=x 2y , 求该薄片的质心.解 351)(21),(10641022=-===⎰⎰⎰⎰⎰dx x x ydy x dx dxdy y x M x x Dμ4835)(2111),(110751032=-===⎰⎰⎰⎰⎰dx x x M ydy x dx M dxdy y x x M x x x Dμ,5435)(3111),(1108510222=-===⎰⎰⎰⎰⎰dx x x M dy y x dx M dxdy y x y M y x x Dμ,质心坐标为)5435 ,4835(. 6. 设有一等腰直角三角形薄片, 腰长为a , 各点处的面密度等于该点到直角顶点的距离的平方, 求这薄片的质心.解 建立坐标系, 使薄片在第一象限, 且直角边在坐标轴上. 薄片上点(x , y )处的函数为μ=x 2+y 2. 由对称性可知y x =.4022061)(),(a dy y x dx dxdy y x M xa a D=+==⎰⎰⎰⎰-μ,a dy y x xdx M dxdy y x x M y x xa a D52)(1),(10220=+===⎰⎰⎰⎰-μ,薄片的质心坐标为)52 ,52(a a .7. 利用三重积分计算下列由曲面所围成立体的质心(设密度ρ=1): (1)z 2=x 2+y 2, z =1;解 由对称性可知, 重心在z 轴上, 故0==y x . π31==⎰⎰⎰Ωdv V (圆锥的体积),431120101===⎰⎰⎰⎰⎰⎰Ωπθr zdz rdr d V zdv V z ,所求立体的质心为)43 ,0 ,0(. (2)222y x A z --=, 222y x a z --=(A >a >0), z =0; 解 由对称性可知, 重心在z 轴上, 故0==y x .)(3232323333a A a A dv V -=-==⎰⎰⎰Ωπππ(两个半球体体积的差),)(8)(3c o s s i n 1c o s s i n 133442000332a A a A dr r d d V d drd r V z A --===⎰⎰⎰⎰⎰⎰Ωππϕϕϕθθϕϕϕ, 所求立体的质心为))(8)(3 ,0 ,0(3344a A a A --.(3)z =x 2+y 2, x +y =a , x =0, y =0, z =0.解 ⎰⎰⎰-+=a xa y x dz dy dx V 0022⎰⎰-+=a xa dy y x dx 022)(⎰-+-=adx x a x a x 032])(31)([461a =,⎰⎰⎰Ω=x d v V x 1a a a dz dy xdx V axa y x 526115114500022===⎰⎰⎰-+,a x y 52==,⎰⎰⎰Ω=z d v V z 1⎰⎰⎰-+=a x a y x z d zdy dx V 0002212307a =, 所以立体的重心为)307,52,52(2a a a .8. 设球体占有闭区域Ω={(x , y , z )|x 2+y 2+z 2≤2Rz }, 它在内部各点的密度的大小等于该点到坐标原点的距离的平方, 试求这球体的质心.解 球体密度为ρ=x 2+y 2+z 2. 由对称性可知质心在z 轴上, 即0==y x . 在球面坐标下Ω可表示为: ϕπϕπθcos 20 ,20 ,20R r ≤≤≤≤≤≤, 于是⎰⎰⎰⎰⎰⎰⋅==Ωππϕϕϕθρ2020cos 2022sin R dr r r d d dv M⎰=2055c o s s i n 5322πϕϕϕπd R 51532R π=,⎰⎰⎰⎰⎰⎰Ω==ππϕϕϕϕθρ2020cos 205cos sin 11R dr r d d M zdv Mz R r R d R M 45153238cos sin 6642562076===⎰ππϕϕϕππ,故球体的质心为)45 ,0 ,0(R .9. 设均匀薄片(面密度为常数1)所占闭区域D 如下, 求指定的转动惯量:(1)}1 |),{(2222≤+=by a x y x D , 求I y ; 解 积分区域D 可表示为22 ,x a ab y x a a b a x a -≤≤--≤≤-,于是 ⎰⎰⎰⎰⎰------===a a x a a bx a ab aaDy dx x a x a b dy dx x dxdy x I 2222222222b a 341π=. 提示: 4202422282sin 2 sina tdt a t a x dx x a x aa ππ==-⎰⎰-. (2)D 由抛物线x y 292=与直线x =2所围成, 求I x 和I y ;解 积分区域可表示为2/32/3 ,20x y x x ≤≤-≤≤,于是 57222273220232/32/32202====⎰⎰⎰⎰⎰-dx x dy y dx dxdy y I Dx x x , 796262252/32/3222====⎰⎰⎰⎰⎰-dx x dy dx x dxdy x I Dx x y . (3)D 为矩形闭区域{(x , y )|0≤x ≤a , 0≤y ≤b }, 求I x 和I y .解 331330202ab b a dy y dx dxdy y I Db a x =⋅===⎰⎰⎰⎰,331330022b a b a dy dx x dxdy x I Dba y =⋅===⎰⎰⎰⎰.10. 已知均匀矩形板(面密度为常量μ)的长和宽分别为b 和h , 计算此矩形板对于通过其形心且分别与一边平行的两轴的转动惯量.。
习题2-41. 求由下列方程所确定的隐函数y 的导数dxdy : (1) y 2-2x y +9=0; (2) x 3+y 3-3axy =0; (3) xy =e x +y ; (4) y =1-xe y .解 (1)方程两边求导数得 2y y '-2y -2x y ' =0 , 于是 (y -x )y '=y ,xy y y -='.(2)方程两边求导数得 3x 2+3y 2y '-2ay -3axy '=0, 于是 (y 2-ax )y '=ay -x 2 ,axy x ay y --='22.(3)方程两边求导数得 y +xy '=e x +y (1+y '), 于是 (x -e x +y )y '=e x +y -y ,yx y x e x y e y ++--='.(4)方程两边求导数得y '=-e y -xe y y ', 于是 (1+xe y )y '=-e y ,yy xe e y +-='1.2. 求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程.解 方程两边求导数得032323131='+--y y x ,于是 3131---='y x y , 在点)42 ,42(a a 处y '=-1.所求切线方程为 )42(42a x a y --=-,即a y x 22=+.所求法线方程为)42(42a x a y -=-, 即x -y =0.3. 求由下列方程所确定的隐函数y 的二阶导数22dxyd :(1) x 2-y 2=1;(2) b 2x 2+a 2y 2=a 2b 2; (3) y =tan(x +y ); (4) y =1+xe y .解 (1)方程两边求导数得 2x -2yy '=0, y '=yx ,3322221)(yy x y y y xx y y y x y y x y -=-=-='-='=''.(2)方程两边求导数得 2b 2x +2a 2yy '=0,yx a b y ⋅-='22,22222222)(y y x a b x y a b y y x y a b y ⋅--⋅-='-⋅-=''32432222222ya b y a x b y a a b -=+⋅-=.(3)方程两边求导数得 y '=sec 2(x +y )⋅(1+y '),1)(cos 1)(sec 1)(sec 222-+=+-+='y x y x y x y 222211)(sin )(cos )(sin y y x y x y x --=+-+++=,52233)1(2)11(22y y y y y y y +-=--='=''.(4)方程两边求导数得 y '=e y +xe y y ',ye y e xe e y y y y y -=--=-='2)1(11,3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''.4. 用对数求导法求下列函数的导数:(1) x xx y )1(+=;(2)55225+-=x x y ;(3)54)1()3(2+-+=x x x y ;(4)x e x x y -=1sin . 解 (1)两边取对数得ln y =x ln|x |-x ln|1+x |, 两边求导得x x x x x x y y +⋅-+-⋅+='11)1ln(1ln 1, 于是]111[ln )1(xx x x x y x ++++='.(2)两边取对数得)2ln(251|5|ln 51ln 2+--=x x y ,两边求导得22251515112+⋅--⋅='x xx y y ,于是]225151[25512552+⋅--=+-='x x x x x y .(3)两边取对数得)1ln(5)3ln(4)2ln(21ln +--++=x x x y ,两边求导得1534)2(211+---+='x x x y y , 于是]1534)2(21[)1()3(254+--+++-+='x x x x x x y(4)两边取对数得)1ln(41sin ln 21ln 21ln x e x x y -++=,两边求导得 )1(4cot 21211x xe e x x y y--+=',于是 ])1(4cot 2121[1sin x xx e e x x e x x y --+-=']1cot 22[1sin 41-++-=x xx e e x x e x x .5. 求下列参数方程所确定的函数的导数dx dy : (1) ⎩⎨⎧==22bty at x ;(2)⎩⎨⎧=-=θθθθcos )sin 1(y x . 解 (1)t a bat bt x y dx dy t t 23232==''=. (2)θθθθθθθθcos sin 1sin cos ---=''=x y dx dy . 6. 已知⎩⎨⎧==.cos ,sin t e y t e x t t 求当3π=t 时dx dy的值.解 tt tt t e t e t e t e x y dx dy t tt t t t cos sin sin cos cos sin sin cos +-=+-=''=,当3π=t 时,23313123212321-=+-=+-=dx dy .7. 写出下列曲线在所给参数值相应的点处的切线方程和法线方程: (1) ⎩⎨⎧==t y t x 2cos sin , 在4π=t 处; (2) ⎪⎩⎪⎨⎧+=+=2221313t at y t at x , 在t =2处.解 (1)tt x y dx dy t t cos 2sin 2-=''=.当4π=t 时,222224cos )42sin(2-=-=⋅-=ππdx dy , 220=x ,00=y ,所求切线方程为 )22(22--=x y , 即0222=-+y x ; 所求法线方程为)22(221---=x y , 即0142=--y x .(2)222222)1(6)1(23)1(6t at t t at t at y t +=+⋅-+=', 222222)1(33)1(23)1(3t at a t t at t a x t +-=+⋅-+=', 2212336tt at a at x y dx dy t t -=-=''=.当t =2时, 3421222-=-⋅=dx dy, a x 560=, a y 5120=,所求切线方程为)56(34512a x a y --=-, 即4x +3y -12a =0;所求法线方程为)56(43512a x a y -=-, 即3x -4y +6a =0.8. 求下列参数方程所确定的函数的二阶导数22dxyd :(1) ⎪⎩⎪⎨⎧-==.122t y tx ;(2) ⎩⎨⎧==t b y t a x sin cos ;(3) ⎩⎨⎧==-tte y e x 23; (4)⎩⎨⎧-==)()()(t f t tf y t f x tt , 设f ''(t )存在且不为零.解 (1) t x y dx dy t t 1-=''=, 322211)(t t t x y dx y d t t x =='''=.(2) t ab t a t b x y dx dy t t cot sin cos -=-=''=,t a b t a ta b x y dx y d t t x 32222sin sin csc )(-=-='''=.(3) t t tt t e e e x y dx dy 23232-=-=''=-,t t t t t x e e e x y dx y d 3222943232)(=-⋅-='''=-.(4) t t f t f t f t t f x y dx dy t t ='''-''+'=''=)()()()(,)(1)(22t f x y dxy d t t x ''='''=.9. 求下列参数方程所确定的函数的三阶导数33dxyd :(1)⎩⎨⎧-=-=321t t y t x ; (2)⎩⎨⎧-=+=t t y t x arctan )1ln(2.解(1)tt t t t dx dy 231)1()(223--='-'-=,)31(412)231(3222t t t t t dx y d +-=-'--=, )1(832)31(4125333t tt t t dx yd +-=-'+-=.(2)t t t t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=,t t t t t dx y d 4112)21(2222+=+'=,3422338112)41(tt tt t t dx y d -=+'+=.10. 落在平静水面上的石头, 产生同心波纹, 若最外一圈波半径的增大率总是6m/s , 问在2秒末扰动水面面积的增大率为多少?解 设波的半径为r , 对应圆面积为S , 则S =πr 2, 两边同时对t 求导得 S t '=2πrr '.当t =2时, r =6⋅2=12, r 't =6, 故S t '|t =2=2⋅12⋅6π=144π (米2/秒).11. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =,水的体积为3212413131h h h hS V ππ=⋅==,dt dh h dt dV ⋅⋅=2312π, dtdV h dt dh ⋅=24π.已知h =5(m),4=dtdV (m 3/min), 因此 πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).12. 溶液自深18cm 直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中, 开始时漏斗中盛满了溶液, 已知当溶液在漏斗中深为12cm 时, 其表面下降的速率为1cm/min . 问此时圆柱形筒中溶液表面上升的速率为多少?解 设在t 时刻漏斗在的水深为y , 圆柱形筒中水深为h . 于是有 h y r 22253118631=-⋅⋅ππ.由186y r =, 得3y r =, 代入上式得hy y 2225)3(3118631=-⋅⋅ππ,即h y 233253118631=-⋅⋅π. 两边对t 求导得h y y t '='-222531.当y =12时, y 't =-1代入上式得 64.025165)1(1231222≈=-⋅⋅-='t h (cm/min)..2-71. 已知y =x 3-x , 计算在x =2处当∆x 分别等于1, 0.1, 0.01时的∆y 及dy .解 ∆y |x =2, ∆x =1=[(2+1)3-(2+1)]-(23-2)=18, dy |x =2, ∆x =1=(3x 2-1)∆x |x =2, ∆x =1=11;∆y |x =2, ∆x =0.1=[(2+0.1)3-(2+0.1)]-(23-2)=1.161,dy |x =2, ∆x =0.1=(3x 2-1)∆x |x =2, ∆x =0.1=1.1;∆y |x =2, ∆x =0.01=[(2+0.01)3-(2+0.01)]-(23-2)=0.110601, dy |x =2, ∆x =0.01=(3x 2-1)∆x |x =2, ∆x =0.01=0.11.2. 设函数y =f (x )的图形如图所示, 试在图(a )、(b )、(c )、(d )中分别标出在点x 0的dy 、∆y 及∆y -d y 并说明其正负. 解 (a )∆y >0, dy >0, ∆y -dy >0. (b )∆y >0, dy >0, ∆y -dy <0. (c )∆y <0, dy <0, ∆y -dy <0. (d )∆y <0, dy <0, ∆y -dy >0. 3. 求下列函数的微分: (1)x xy 21+=;(2) y =x sin 2x ; (3)12+=x x y ;(4) y =ln 2(1-x ); (5) y =x 2e 2x ; (6) y =e -x cos(3-x ); (7)21arcsinx y -=;(8) y =tan 2(1+2x 2);(9)2211arctanx xy +-=;(10) s =A sin(ωt +ϕ) (A , ω, ϕ是常数) . 解 (1)因为xxy 112+-=', 所以dxxx dy )11(2+-=.(2)因为y '=sin2x +2x cos2x , 所以dy =(sin2x +2x cos2x )dx .(3)因为1)1(111122222++=++⋅-+='x x x x x x y , 所以dx x x dy 1)1(122++=.(4)dxx x dx x x dx x dx y dy )1ln(12])1(1)1ln(2[])1([ln 2--=--⋅-='-='=. (5)dy =y 'dx =(x 2e 2x )'dx =(2xe 2x +2x 2e 2x )dx =2x (1+x )e 2x . (6) dy =y 'dx =[e -x cos(3-x )]dx =[-e -x cos(3-x )+e -x sin(3-x )]dx =e -x [sin(3-x )-cos(3-x )]dx . (7)dx xx x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin--=--⋅--='-='=. (8) dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2) =2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x 2) =2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4xdx=8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx . (9))11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-=dx x x dx x x x x x x x 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. (10) dy =d [A sin(ω t +ϕ)]=A cos(ω t +ϕ)d (ωt +ϕ)=A ω cos(ωt +ϕ)dx .4. 将适当的函数填入下列括号内, 使等式成立: (1) d ( )=2dx ; (2) d ( )=3xdx ; (3) d ( )=cos tdt ; (4) d ( )=sin ωxdx ; (5) d ( )dx x 11+=;(6) d ( )=e -2x dx ; (7) d ( )dxx1=;(8) d ( )=sec 23xdx . 解 (1) d ( 2x +C )=2dx . (2) d (C x +223)=3xdx .(3) d ( sin t +C )=cos tdt . (4) d (C x +-ωωcos 1)=sin ωxdx .(5) d ( ln(1+x )+C )dx x 11+=.(6) d (C e x +--221)=e -2x dx . (7) d (C x +2)dxx1=.(8) d (C x +3tan 31)=sec 23xdx . 5.如图所示的电缆B O A的长为s , 跨度为2l , 电缆的最低点O 与杆顶连线AB 的距离为f , 则电缆长可按下面公式计算:)321(222lf l s +=,当f 变化了∆f 时, 电缆长的变化约为多少?解ff l df lf l dS S ∆='+=≈∆38)321(222.6. 设扇形的圆心角α=60︒, 半径R =100cm(如图), 如果R 不变, α 减少30', 问扇形面积大约改变了多少?又如果α 不变, R 增加1cm , 问扇形面积大约改变了多少?解 (1)扇形面积221R S α=,αααα∆='=≈∆2221)21(R d R dS S .将α=60︒3π=, R =100, 36003πα-='-=∆ 代入上式得63.43)360(100212-≈-⋅⋅≈∆πS (cm 2).(2)R R dR R dS S R ∆='=≈∆αα)21(2.将α=60︒3π=, R =100, ∆R =1代入上式得72.10411003≈⋅⋅≈∆πS (cm2).7. 计算下列三角函数值的近似值: (1) cos29︒; (2) tan136︒.解 (1)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=cos x 时, 有cos(x +∆x )≈cos x -sin x ⋅∆x , 所以cos29︒=87467.01802123)180(6sin 6cos )1806cos(≈⋅+=-⋅-≈-ππππππ.(2)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=tan x 时, 有tan(x +∆x )≈tan x +sec 2x ⋅∆x , 所以 tan136︒=96509.01802118043sec 43tan )18043tan(2-≈⋅+-=⋅+≈+ππππππ.8. 计算下列反三角函数值的近似值 (1) arcsin0.5002; (2) arccos 0.4995.解 (1)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=arcsin x 时, 有 x x x x x ∆⋅-+≈∆+211arcsin )arcsin(,所以0002.05.0115.0arcsin )0002.05.0arcsin(5002.0arcsin 2⋅-+≈+= 0002.0326⋅+=π≈30︒47''.(2)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=arccos x 时, 有 x x x x x ∆⋅--≈∆+211arccos )arccos(, 所以)0005.0(5.0115.0arccos )0005.05.0arccos(4995.0arccos 2-⋅--≈-= 0005.0323⋅+=π≈60︒2'.9. 当x 较小时, 证明下列近似公式: (1) tan x ≈x (x 是角的弧度值); (2) ln(1+x )≈x ; (3)x x-≈+111, 并计算tan45' 和ln1.002的近似值.(1)已知当|∆x |较小时, f (x 0+∆x )≈f (x 0)+f '(x 0)∆x , 取f (x )=tan x , x 0=0, ∆x =x ,则有tan x =tan(0+x )≈tan 0+sec 20⋅x =sec 20⋅x =x .(2)已知当|∆x |较小时, f (x 0+∆x )≈f (x 0)+f '(x 0)∆x , 取f (x )=ln x , x 0=1, ∆x =x ,则有ln(1+x )≈ln1+(ln x )'|x =1⋅x =x .(3)已知当|∆x |较小时, f (x 0+∆x )≈f (x 0)+f '(x 0)∆x , 取xx f 1)(=, x 0=1, ∆x =x ,则有x x x x x -=⋅'+≈+=1|)1(1111.tan45'≈45'≈0.01309; ln(1.002)=ln(1+0.002) ≈0.002. 10. 计算下列各根式的的近似值:(1)3996; (2)665.解 (1)设n x x f =)(, 则当|x |较小时, 有x nx f f x f 11)1()1()1(+='+≈+,987.9)10004311(101000411041000996333≈⋅⋅-≈-⋅=-=.(2)设n x x f =)(, 则当|x |较小时, 有x nx f f x f 11)1()1()1(+='+≈+, 于是0052.2)641611(26411216465666≈⋅+≈+⋅=+=.11. 计算球体体积时, 要求精确度在2%以内, 问这时测量直径D 的相对误差不能超过多少? 解 球的体积为361D V π=,D D dV ∆⋅=221π,因为计算球体体积时, 要求精度在2%以内, 所以其相对误差不超过2%, 即要求 %23612132≤∆⋅=∆⋅=DD D DD V dV ππ,所以%32≤∆D D ,也就是测量直径的相对误差不能超过%32.12. 某厂生产如图所示的扇形板, 半径R =200mm , 要求中心角α为55︒. 产品检验时, 一般用测量弦长l 的办法来间接测量中心角α, 如果测量弦长l 时的误差δ1=0.1mm , 问此而引起的中心角测量误差δx 是多少?解 由2sin 2αR l =得400arcsin 22arcsin2l R l ==α,当α=55︒时,2sin 2αR l ==400sin27.5︒≈184.7,δ 'α=|α'l |⋅δl l l δ⋅⋅-⋅=4001)400(1122. 当l =184.7, δ l =0.1时,00056.01.04001)4007.184(1122≈⋅⋅-⋅=αδ(弧度).总 习 题 二1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)f (x )在点x 0可导是f (x )在点x 0连续的____________条件. f (x )在点x 0连续是f (x )在点x 0可导的____________条件.(2) f (x )在点x 0的左导数f -'(x 0)及右导数f +'(x 0)都存在且相等是f (x )在点x 0可导的_______条件.(3) f (x )在点x 0可导是f (x )在点x 0可微的____________条件. 解 (1)充分, 必要. (2) 充分必要. (3) 充分必要.2. 选择下述题中给出的四个结论中一个正确的结论:设f (x )在x =a 的某个邻域内有定义, 则f (x )在x =a 处可导的一个充分条件是( ).(A ))]()1([lim a f ha f h h -++∞→存在; (B )hh a f h a f h )()2(lim0+-+→存在;(C )hh a f h a f h 2)()(lim 0--+→存在; (D )hh a f a f h )()(lim 0--→存在. 解 正确结论是D . 提示:xa f x a f h a f h a f h h a f a f x h h ∆-∆+=---=--→∆→→)()(lim )()(lim )()(lim000(∆x =-h ). 3. 设有一根细棒, 取棒的一端作为原点, 棒上任一点的做标x 为, 于是分布在区间[0, x ]上细棒的质量m 是x 的函数m =m (x ),应怎样确定细棒在点x 0处的线密度(对于均匀细棒来说, 单位长度细棒的质量叫做这细棒的线密度)?解 ∆m =m (x 0+∆x )-m (x 0).在区间[x 0, x 0+∆x ]上的平均线密度为xx m x x m xm ∆-∆+=∆∆=)()(00ρ.于是, 在点x 0处的线密度为)()()(lim lim 0000x m xx m x x m xm x x '=∆-∆+=∆∆=→∆→∆ρ.4. 根据导数的定义, 求x x f 1)(=的导数. 解20001)(1lim)(lim 11lim x x x x x x x x x x x x x y x x x -=∆+-=∆+∆∆-=∆-∆+='→∆→∆→∆.5. 求下列函数f (x )的f -'(0)及f +'(0),又f '(0)是否存在?(1)⎩⎨⎧≥+<=0)1ln(0sin )(x x x x x f ;(2)⎪⎩⎪⎨⎧=≠+=0 00 1)(1x x e x x f x.解 (1)因为10sin lim 0)0()(lim )0(00=-=--='--→→-xx x f x f f x x ,1ln )1ln(lim 0)1ln(lim 0)0()(lim )0(1000==+=-+=--='+++→→→+e x xx x f x f f x x x x ,而且f -'(0) = f +'(0), 所以f '(0)存在, 且f '(0)=1. (2)因为111lim 01lim 0)0()(lim )0(10100=+=--+=--='---→→→-xx xx x e x e x x f x f f ,011lim 001lim 0)0()(lim )0(10100=+=--+=--='+++→→→+xx xx x e x e x x f x f f ,而f -'(0)≠ f +'(0), 所以f '(0)不存在.6. 讨论函数⎪⎩⎪⎨⎧=≠=0001sin )(x x xx x f 在x =0处的连续性与可导性. 解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续;因为极限xx x x x f x f x x x 1sin lim 01sin lim )0()(lim000→→→=-=-不存在, 所以f (x )在x =0处不可导.7. 求下列函数的导数:(1) y =arcsin(sin x ); (2)xx y -+=11arctan ;(3)x x x y tan ln cos 2tan ln ⋅-=;(4))1ln(2x x e e y ++=;(5)x x y =(x >0) . 解(1)|cos |cos cos sin 11)(sin sin 1122x x x xx x y =⋅-='⋅-='.(2)222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='.(3))(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(4)xxx x x x x x x x x e e e e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='. (5)x xy ln 1ln =, x x x x y y 11ln 112⋅+-=', )ln 1()1ln 1(222x x x x x x x y xx -=+-='.8. 求下列函数的二阶导数: (1)y =cos 2x ⋅ln x ; (2)21x xy -=.解 (1)xx x x xx x x x y 1cos ln 2sin 1cos ln sin cos 222⋅+⋅-=⋅+⋅-=',221cos 1sin cos 212sin ln 2cos 2x x x x x x x x x y ⋅-⋅-⋅-⋅-='' 22cos2sin 2ln 2cos 2xx x x x x --⋅-=.(2)232222)1(111--=---⋅--='x xx xx x y 52252)1(3)2()1(23x x x x y -=-⋅--=''-.9. 求下列函数的n 阶导数: (1)m x y +=1; (2)xx y +-=11.解 (1)m mx x y 1)1(1+=+=,11)1(1-+='m x m y , 21)1)(11(1-+-=''m x m m y , 31)1)(21)(11(1-+--='''m x mm m y , ⋅ ⋅ ⋅,n m n x n mm m m y-++-⋅⋅⋅--=1)()1)(11( )21)(11(1.(2)1)1(2111-++-=+-=x xx y ,y '=2(-1)(1+x )-2, y ''=2(-1)(-2)(1+x )-3, y '''=2(-1)(-2)(-3)(1+x )-4, ⋅ ⋅ ⋅, 1)1()()1(!)1(2)1)(( )3)(2)(1(2++-+-=+-⋅⋅⋅---=n n n n x n x n y.10. 设函数y =y (x )由方程e y +xy =e 所确定, 求y ''(0).解 方程两边求导得e y y '+y +xy '=0, —— (1) 于是 ye x y y +-=';2)()1()()(y y y y e x y e y e x y e x y y +'+-+'-='+-=''. ——(2)当x =0时, 由原方程得y (0)=1, 由(1)式得ey 1)0(-=', 由(2)式得21)0(ey =''. 11. 求下列由参数方程所确定的函数的一阶导数dxdy及二阶导数22dxyd :(1)⎩⎨⎧==θθ33sin cos a y a x ;(2)⎩⎨⎧=+=ty t x arctan 1ln 2.解(1)θθθθθθθtan )sin (cos 3cos sin 3)cos ()sin (2233-=-=''=a a a a dx dy ,θθθθθθθcsc sec 31sin cos 3sec )cos ()tan (422322⋅=--=''-=aa a dx y d .(2)tt t t t t dx dy 1111]1[ln )(arctan 222=++='+'=,3222222111]1[ln )1(t t t t t t t dx y d +-=+-='+'=.12.求曲线⎩⎨⎧==-ttey e x 2在t =0相的点处的切线方程及法线方程.解t t tt t ee e e e dx dy 2212)2()(-=-=''=--.当t =0时,21-=dx dy, x =2, y =1. 所求切线的方程为)2(211--=-x y , 即x +2y -4=0;所求法线的方程为y -1=2(x -2).13. 甲船以6km/h 的速率向东行驶, 乙船以8km/h 的速率向南行驶, 在中午十二点正, 乙船位于甲船之北16km 处. 问下午一点正两船相离的速率为多少?解 设从中午十二点开始, 经过t 小时, 两船之间的距离为S , 则有 S 2=(16-8t )2+(6t )2, t t dtdS S 72)816(162+--=,St t dt dS 272)816(16+--=. 当t =1时, S =10,8.220721281-=+-==t dtdS (km/h),即下午一点正两船相离的速度为-2.8km/h .14. 利用函数的微分代替函数的增量求302.1的近似值. 解 设3)(x x f =, 则有x x f f x f ∆=∆'≈-∆+31)1()1()1(, 或x x f ∆+≈∆+311)1(于是007.102.031102.0102.133=⋅+=+=.15. 已知单摆的振动周期gl T π2=, 其中g =980 cm/s 2, l 为摆长(单位为cm). 设原摆长为20cm , 为使周期T 增大0.05s , 摆长约需加长多少? 解 因为L gLdT T ∆⋅=≈∆π,所以23.205.020=≈∆=L gLL π(cm),即摆长约需加长2.23cm .习题3-11. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cotξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 验证拉格朗日中值定理对函数y =4x 3-5x 2+x -2在区间[0, 1]上的正确性.解 因为y =4x 3-5x 2+x -2在区间[0, 1]上连续, 在(0, 1)内可导, 由拉格朗日中值定理知, 至少存在一点ξ∈(0, 1), 使001)0()1()(=--='y y y ξ. 由y '(x )=12x 2-10x +1=0得)1 ,0(12135∈±=x .因此确有)1 ,0(12135∈±=ξ, 使01)0()1()(--='y y y ξ. 3. 对函数f (x )=sin x 及F (x )=x +cos x 在区间]2,0[π上验证柯西中值定理的正确性.解 因为f (x )=sin x 及F (x )=x +cos x 在区间]2,0[π上连续, 在)2,0(π可导, 且F '(x )=1-sin x 在)2,0(π内不为0, 所以由柯西中值定理知至少存在一点)2,0(πξ∈,使得)()()0()2()0()2(ξξππF f F F f f ''=--.令)0()2()0()2()()(F F f f x F x f --=''ππ, 即22sin 1cos -=-πx x .化简得14)2(8sin 2-+-=πx . 易证114)2(802<-+-<π, 所以14)2(8sin 2-+-=πx 在)2,0(π内有解, 即确实存在)2,0(πξ∈, 使得)()()0()2()0()2(ξξππF f F F f f ''=--.4. 试证明对函数y =px 2+qx +r 应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明 因为函数y =px 2+qx +r 在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 由拉格朗日中值定理, 至少存在一点ξ∈(a , b ), 使得y (b )-y (a )=y '(ξ)(b -a ), 即(pb 2+qb +r )-(pa 2+qa +r )=(2p ξ+q )(b -a ). 化间上式得p (b -a )(b +a )=2p ξ (b -a ), 故2b a +=ξ.5. 不用求出函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f '(x )=0有几个实根, 并指出它们所在的区间.解 由于f (x )在[1, 2]上连续, 在(1, 2)内可导, 且f (1)=f (2)=0, 所以由罗尔定理可知, 存在ξ1∈(1, 2), 使f '(ξ1)=0. 同理存在ξ2∈(2, 3), 使f '(ξ2)=0; 存在ξ3∈(3, 4), 使f '(ξ3)=0. 显然ξ1、ξ2、ξ 3都是方程f '(x )=0的根. 注意到方程f '(x )=0是三次方程, 它至多能有三个实根, 现已发现它的三个实根, 故它们也就是方程f '(x )=0的全部根. 6. 证明恒等式:2arccos arcsin π=+x x (-1≤x ≤1).证明 设f (x )= arcsin x +arccos x . 因为01111)(22≡---='x x x f ,所以f (x )≡C , 其中C 是一常数.因此2arccos arcsin )0()(π=+==x x f x f , 即2arccos arcsin π=+x x .7. 若方程a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x =0有一个正根x 0, 证明方程 a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.证明 设F (x )=a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x , 由于F (x )在[0, x 0]上连续, 在(0,x 0)内可导, 且F (0)=F (x 0)=0, 根据罗尔定理, 至少存在一点ξ∈(0, x 0), 使F '(ξ)=0, 即方程a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.8. 若函数f (x )在(a , b )内具有二阶导数, 且f (x 1)=f (x 2)=f (x 3), 其中a <x 1<x 2<x 3<b , 证明:在(x 1, x 3)内至少有一点ξ, 使得f ''(ξ)=0.证明 由于f (x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f (x 1)=f (x 2), 根据罗尔定理, 至少存在一点ξ1∈(x 1, x 2), 使f '(ξ1)=0. 同理存在一点ξ2∈(x 2, x 3), 使f '(ξ2)=0.又由于f '(x )在[ξ1, ξ2]上连续, 在(ξ1, ξ2)内可导, 且f '(ξ1)=f '(ξ2)=0, 根据罗尔定理, 至少存在一点ξ ∈(ξ1, ξ2)⊂(x 1, x 3), 使f ''(ξ )=0. 9. 设a >b >0, n >1, 证明: nb n -1(a -b )<a n -b n <na n -1(a -b ) .证明 设f (x )=x n , 则f (x )在[b , a ]上连续, 在(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即a n -b n =n ξ n -1(a -b ). 因为 nb n -1(a -b )<n ξ n -1(a -b )< na n -1(a -b ), 所以 nb n -1(a -b )<a n -b n < na n -1(a -b ) . 10. 设a >b >0, 证明:bb a b a a b a -<<-ln .证明 设f (x )=ln x , 则f (x )在区间[b , a ]上连续, 在区间(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即)(1ln ln b a b a -=-ξ.因为b <ξ<a , 所以)(1ln ln )(1b a bb a b a a -<-<-,即bb a ba ab a -<<-ln .11. 证明下列不等式: (1)|arctan a -arctan b |≤|a -b |; (2)当x >1时, e x >e ⋅x .证明 (1)设f (x )=arctan x , 则f (x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使 f (b )-f (a )=f '(ξ)(b -a ), 即)(11arctan arctan 2a b a b -+=-ξ,所以||||11|arctan arctan |2a b a b a b -≤-+=-ξ, 即|arctan a -arctan b |≤|a -b |.(2)设f (x )=e x , 则f (x )在区间[1, x ]上连续, 在区间(1, x )内可导, 由拉格朗日中值定理, 存在ξ∈(1, x ), 使f (x )-f (1)=f '(ξ)(x -1), 即 e x -e =e ξ (x -1). 因为ξ >1, 所以e x -e =e ξ (x -1)>e (x -1), 即e x >e ⋅x . 12. 证明方程x 5+x -1=0只有一个正根.证明 设f (x )=x 5+x -1, 则f (x )是[0, +∞)内的连续函数.因为f (0)=-1, f (1)=1, f (0)f (1)<0, 所以函数在(0, 1)内至少有一个零点, 即x 5+x -1=0至少有一个正根.假如方程至少有两个正根, 则由罗尔定理, f '(x )存在零点, 但f '(x )=5x 4+1≠0, 矛盾. 这说明方程只能有一个正根.13. 设f (x )、g (x )在[a , b ]上连续, 在(a , b )内可导, 证明在(a , b )内有一点ξ, 使)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.解 设)()()()()(x g a gx f a f x =ϕ, 则ϕ(x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使 ϕ(b )-ϕ(a )=ϕ'(ξ)(b -a ), 即 ⎥⎦⎤⎢⎣⎡''+''-=-)()()()()(])([)(])([)()()()()()()()()(ξξξξg a g f a f g a g f a f a b a g a g a f a f b g a g b f a f .因此)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.14. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令x ex f x )()(=ϕ, 则在(-∞, +∞)内有0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ,所以在(-∞, +∞)内ϕ(x )为常数. 因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x .15. 设函数y =f (x )在x =0的某邻域内具有n 阶导数, 且f (0)=f '(0)= ⋅ ⋅ ⋅ =f (n -1)(0)=0, 试用柯西中值定理证明:!)()()(n x f x x f n nθ= (0<θ<1).证明 根据柯西中值定理 111)(0)0()()(-'=--=n n n f x f x f x x f ξξ(ξ1介于0与x 之间),2221111111)1()(0)0()()(-----''=⋅-'-'='n n n n n n f n n f f n f ξξξξξξ(ξ2介于0与ξ1之间),3332222222)2)(1()(0)1()1()0()()1()(------'''=⋅---''-''=-''n n n n n n n f n n n n f f n n f ξξξξξξ(ξ3介于0与ξ2之间),依次下去可得 !)(02 )1(2 )1()0()(2 )1()()(1)1(1)1(11)1(n f n n n n f f n n f n n n n n n n n n ξξξξξ=⋅⋅⋅⋅--⋅⋅⋅⋅--=⋅⋅⋅⋅--------(ξn 介于0与ξn -1之间), 所以!)()()(n f x x f n n nξ=.由于ξn 可以表示为ξn =θ x (0<θ<1), 所以!)()()(n x f x x f n nθ= (0<θ<1).习题3-21. 用洛必达法则求下列极限:(1)xx x )1ln(lim 0+→; (2)x ee x x x sin lim 0-→-; (3)a x a x a x --→sin sin lim ;(4)xx x 5tan 3sin lim π→; (5)22)2(sin ln limx x x -→ππ;(6)n n mma xax a x --→lim ;(7)xx x 2tan ln 7tan ln lim0+→; (8)xx x 3tan tan lim2π→; (9)xarc x x cot )11ln(lim++∞→;(10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→; (12)2120lim x x e x →;(13))1112(lim 21---→x x x ;(14)x x xa )1(lim +∞→; (15)x x x sin 0lim+→; (16)x x xtan 0)1(lim +→. 解 (1)111lim 111lim )1ln(lim000=+=+=+→→→x x xx x x x .(2)2cos lim sin lim00=+=--→-→x e e x e e x x x x x x . (3)a x ax a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x x x x x πππππ.(6)n m n m n m a x n n m m a xa n m namx nx mx a x a x -----→→===--1111lim lim .(7)22sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim 2200⋅⋅⋅⋅=+→+→x xx x x x x x 177sec 22sec lim 277tan 2tan lim 272200=⋅⋅==+→+→x x x x x x .(8)xx x x x x x x x 2222222cos 3cos lim 3133sec sec lim 3tan tan lim πππ→→→=⋅=)sin (cos 23)3sin (3cos 2lim 312x x x x x -⋅-=→πxx x cos 3cos lim 2π→-=3sin 3sin 3lim 2=---=→xx x π.(9)22221lim 11)1(111lim cot arc )11ln(lim xx x xx x x x x x x ++=+--⋅+=++∞→+∞→+∞→122lim 212lim ==+=+∞→+∞→x x x x . (10)x x x x x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→1sin lim )sin (cos 22lim00==--=→→xx x x x x x . (注: cos x ⋅ln(1+x 2)~x 2) (11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x .(12)+∞====+∞→+∞→→→1lim lim 1lim lim 21012022t t t t x x x x e t e x e e x (注: 当x →0时, +∞→=21xt . (13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x .(14)因为)1ln(lim )1(limx ax x x x e xa +∞→∞→=+,而221)(11lim 1)1ln(lim )1(ln(lim xx a x ax x a x a x x x x --⋅+=+=+∞→∞→∞→ a a a x ax x x ==+=∞→∞→1lim lim , 所以ax a x x x x e e xa ==++∞→∞→)1ln (l i m )1(l i m ..(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=, 而 xx x x x x x x x x cot csc 1lim csc ln lim ln sin lim 000⋅-==+→+→+→ 0cos sin lim 20=-=+→xx x x ,所以1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=, 而 xx x x x x x x x 2000csc 1limcot ln lim ln tan lim -==+→+→+→ 0sin lim 20=-=+→xx x , 所以 1l i m )1(l i m 0ln tan 0tan 0===-+→+→e e x x x x x x .2. 验证极限xx x x sin lim+∞→存在, 但不能用洛必达法则得出. 解1)s i n 1(l i m s i n l i m =+=+∞→∞→x x x x x x x , 极限x x x x sin lim +∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx x x x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则.3.验证极限xx x x sin 1sin lim20→存在, 但不能用洛必达法则得出.解0011sin sin lim sin 1sin lim020=⋅=⋅=→→xx x x x x x x x , 极限xx x x sin 1sin lim20→是存在的.但xx x x x x x x x cos 1cos 1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则.4. 讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0])1([)(2111x e x e x x f x x 在点x =0处的连续性.解 21)0(-=e f ,)0(lim)(lim 2121f e e x f x x ===---→-→,因为 ]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x xx x x x x x e ex x f ,而 200)1ln(lim]1)1ln(1[1lim x xx x x x x x -+=-++→+→ 21)1(21lim 2111lim00-=+-=-+=+→+→x x x x x , 所以]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x xx x x x x x e ex x f)0(21f e ==-.因此f (x )在点x =0处连续. 习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f=-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4. 2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f'''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f '(0)=-9, f ''(0)=60, f '''(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+= =1-9x +30x 3-45x 3+30x 4-9x 5+x 6. 3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为 24)4(==f ,4121)4(421=='=-x x f , 32141)4(423-=-=''=-x x f ,328383)4(425⋅=='''=-x x f , 27)4(1615)(--=x x f , 所以4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1).4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , nn nn xn x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--;kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1),。
本答案由大学生必备网 免费提供下载第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-解二:(,)(0,0)(,)(0,0)(,)(0,0)1limlim lim 4x y x y x y →→→===-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可.2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂==∂z y ∂==∂(4))ln(222z y x u ++= 解:222222222222,,u x u y u zx x y z y x y z z x y z∂∂∂===∂++∂++∂++(5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z uu u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)zx y x y x y x ∂=-++=-+∂ 4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂(3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z ∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂ 由轮换对称性, 2222222323,r r y r r z y r z r ∂-∂-==∂∂222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
1 12 2 1 2 1 1 2 2 1 2 12习题六1. 指出下列各微分方程的阶数:(1)一阶 (2)二阶 (3)三阶 (4)一阶2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy ' = 2 y , y = 5x 2 ;解:由 y = 5x 2得 y ' = 10x 代入方程得x ⋅10x = 2 ⋅ 5x 2 = 10x 2故是方程的解.(2) y ' + y = 0, y = 3sin x - 4 cos x ;解: y ' = 3cos x + 4 s in x ;y ' = -3sin x + 4 cos x 代入方程得故是方程的解.-3sin x + 4 cos x + 3sin x - 4 cos x = 0 . (3) y ' - 2 y ' + y = 0,y = x 2e x ;解: y ' = 2x e x + x 2e x = (2x + x 2 )e x,代入方程得2e x ≠ 0 . 故不是方程的解.(4) y ' - (+ ) y ' +y = 0,y ' = (2 + 4x + x 2 )e xy = C e 1x + C e 2 x .1 2 1 21 2 y ' = C e 1x + C e 2 x ,y ' = C 2e x 1+ C 2e 2 x解:1 12 21 12 2代入方程得C 2e 1x + C 2e 2 x - (+ )(C e 1x + C e 2 x ) + (C e 1x + C e 2 x) = 0. 故是方程的解.3. 在下列各题中,验证所给二元方程为所给微分方程的解:(1)(x - 2 y ) y ' = 2x - y , x 2 - xy + y 2 = C ;证:方程x 2 - xy + y 2 = C 两端对 x 求导: 2x - y - xy ' + 2 yy ' = 0 y ' =2x - y 得x - 2 y 代入微分方程,等式恒成立.故是微分方程的解.(2)(xy - x ) y ' + xy '2 + yy ' - 2 y ' = 0, y = ln(xy ). 证:方程 y = ln(xy ) 两端对 x 求导: y ' = 1 + 1y 'x y(*)y ' =得y x ( y -1) .(*)式两端对 x 再求导得x =0 ⎰ ⎰ y ' = - y ⎡ 1 +1 ⎤y -1 ⎢⎣ x 2 x 2 ( y -1)2 ⎥⎦将 y ', y ' 代入到微分方程,等式恒成立,故是微分方程的解.4. 从下列各题中的曲线族里,找出满足所给的初始条件的曲线:(1)x 2 - y 2 = C ,y = 5;解:当 x = 0 时,y =5.故 C =-25故所求曲线为: y 2- x 2= 25(2) y = (C + C x )e 2x ,y = 0, y '= 1.12x =0y ' = (C + 2C + 2C x )e 2xx =0解:212当 x =0 时,y =0 故有C 1 = 0 . 又当 x =0 时, y ' = 1.故有C 2 = 1. 故所求曲线为: y = x e 2 x. 5. 求下列各微分方程的通解:(1)xy ' - y ln y = 0 ; d y = 1 d x解:分离变量,得积分得y ln y x 1 d ln y = 1d xln y x得(2) y ' ln ln y = ln x + ln c ln y = cxy = e cx .解:分离变量,得积分得⎰ d y =⎰ d x得通解:-= -+ c .(3)(e x + y - e x )d x + (e x + y + e y )d y = 0 ;解:分离变量,得 e y1- e yd y =e y 1+ e x d x 积分得 -ln(e y -1) = ln(e x +1) - ln c 得通解为(e x +1)(e y -1) = c .(4) cos x sin y d x + sin x cos y d y = 0 ;cos x d x + cos y d y = 0解:分离变量,得 sin x sin y积分得ln sin y + ln sin x = ln cy = 0 得通解为sin y ⋅sin x = c .(5) y ' = xy ;解:分离变量,得 d y= x d x yln y = 1x 2 + c积分得得通解为(6)2x +1+ y ' = 0 ; 2 1 x 2 y = c e21(c = e c 1 )解: y ' = -2x -1积 分 得 得通解为y = ⎰ (-2x -1)d xy = -x 2 - x + c . (7)4x 3 + 2x - 3y 2 y ' = 0 ;解:分离变量,得积分得即为通解.(8) y ' = e x + y .3y 2d y = (4x 3 + 2x )d x y 3 = x 4 + x 2 + c解:分离变量,得e - y d y = e x d x⎰ e - yd y = ⎰e x d x积分得得通解为:-e - y= e x+ c . 6. 求下列各微分方程满足所给初始条件的特解:(1) y ' = e 2x - y ,解:分离变量,得x =0 ;e y d y = e 2x d x e y = 1e 2 x + c积分得以 x = 0, y = 0 代入上式得 2 . c = 1 2故方程特解为 e y = 1 (e 2 x +1)2 .(2) y 'sin x = y l n y , y x = π = e2.解:分离变量,得 d y y ln y c ⋅tan x=d x sin x 积分得x = π, y = ey = e2将 2 代入上式得c = 1tan x故所求特解为y = e2.= ⎝ ⎭ 7. 求下列齐次方程的通解:(1) xy ' - y -d y = y + 解:dx x = 0 ;u = ⇒ = u + x du令原方程变为x d x d ud x = d x x两端积分得ln(u u = ln x + ln c = cxy +x 即通解为:y += cx = cx 2(2) x d y = y ln yd x x ; d y = y ln y 解: d x x x u = yd y = u + xd u 令 x , 则d x d ud x =d x 原方程变为u (ln u -1) x 积分得ln(ln u -1) = ln x + ln cln u -1 = cx ln y-1 = cx x 即方程通解为y = x e cx +1(3)(x 2 + y 2 )d x - xy d x = 0⎛ y ⎫2d y x 2 + y 2 1+ x ⎪解:u = y d x xy y x d y = u + xd u 令x , 则 d x u + x d u d x = 1+ u 2原方程变为d x u x d u = 1 ,u d u = d x 即d x u x= + 1 x 1u 2 = ln x + ln c积分得2 y 2 x22 ln x 12 ln c 1故方程通解为y 2 = x 2 ln(cx 2 )(c = c 2 )(4)(x 3 + y 3 )d x - 3xy 2d y = 0 ;⎛y ⎫3 d y x 3 + y 3 1+ x⎪ = = ⎝ ⎭ d x 3xy 2 解:⎛ y ⎫23 ⎪ ⎝ ⎭ u = y d y = u + xd u 令x , 则 d x u +d u d x 1+ u 3x = 原方程变为d x 3u 2 3u 2 d x即1- 2u 3d u = x - 1ln(2u 3 -1) = ln x + ln c积分得 2 1y以 x 代替 u ,并整理得方程通解为 (5) d y =x + y d x x - y ;1+ y 2y 3 - x 3 = cx . d y =d x 解:x 1- yx u = y d y = u + x d u 令x , 则 d x d x u + x d u =1+ u 原方程变为d x 1- u 分离变量,得1- u 1+ u 2 d u = 1 d xx arctan u - 1ln(1+ u 2 ) = ln x + ln c积分得2 yx 1x 2 + y 2= c e2arctany1 x. (c =)c 2以 代替 u ,并整理得方程通解为到1(6) y 'c ⎪ y = 1 x yd y =d x 解:d x = x +即d y y x = v x = yv , = v+ y d v令y , 则d yd y , 原方程可变为v+ y d v= v d y y d v =即d y=d y 分离变量,得积分得即ln(v v⎛ y y= ln y - ln c .=y c⎫2- v ⎪ ⎝ ⎭ = v 2 +1 y 2 - 2 yv =yv = xc 2c 1 y 2 = 2c ⎛ x + c⎫ 以 代入上式,得⎝ 2 ⎭ 即方程通解为y 2 = 2cx + c 2. 8. 求下列各齐次方程满足所给初始条件的解:(1)( y 2 - 3x 2 )d y + 2xy d x = 0,2yx =0 ;d y = -d x解:x ⎛ y ⎫2 ⎪ ⎝ ⎭ u + x d u = - 2u令 y = ux ,则得 d x u 2 - 3u 2 - 3 d x分离变量,得u - u 3d u = x 积分得 -3ln u + ln(u -1) + ln(u +1) = ln cx u 2 -1即ln u 3 x= ln c - 3c 2 c 3 ⎰ 2 ⎰ 2 3 3 得方程通解为y 2 - x 2 = cy 3 以 x =0,y =1 代入上式得 c =1.故所求特解为y 2 - x 2 = y 3 . (2) y ' = x + y,y xy x =1 = 2.d y = u + xd u 解:设y = ux , 则 d x d x u d u = d x原方程可变为积分得x 1 u 2 = ln x + ln c 2 . 得方程通解为y 2 = 2x 2(ln x + ln c ) 以 x =1,y =2 代入上式得 c =e 2.故所求特解为y 2 = 2x 2(ln x + 2) . 9. 利用适当的变换化下列方程为齐次方程,并求出通解:(1)(2x - 5 y + 3)d x - (2x + 4 y - 6)d y = 0 解:设 x = X +1, y = Y +1 ,则原方程化为2 - 5 Yd Y =2 X - 5Y d X 2 X + 4Y = X2 + 4 YXu = Y 令X ⇒ u + X d ud X = 2 - 5u2 + 4u ⇒ - 4u + 2 d u = d X4u 2+ 7u - 2 X⇒ ln X = - 1 (8u + 7) - 3 d u2 4u + 7u - 2 = - 1 ln(4u 2 + 7u - 2) +3 d u2 2 4u + 7u - 2 = - 1 ln(4u 2 + 7u - 2) + 1 ⎛ - 1 + 4 ⎫d u2 6 ⎰ u + 2 4u -1⎪⎝ ⎭= - 1 ln(4u 2 + 7u - 2) - 1 ln 4u -1 + ln c2 6 u + 2 1⇒ 6 ln X + 3ln(4u 2 + 7u - 2) + ln 4u -1= ln c (c = c 6 )⇒ X 6 (4u 2 + 7u - 2)3 ⋅ 4u -1= cu + 22 2 1u + 2 2⇒ X 6 (4u -1)4 (u + 2)2 = c代回并整理得⇒ X 3 (4u -1)2 (u + 2) = c ,(c = )(4 y - x - 3)2 ( y + 2x - 3) = c , (c = ) .2(2)(x - y -1)d x + (4 y + x -1)d y = 0;d y = - 解:d x x - y -1 4 y + x -1 作变量替换,令 x = X +1, y = Y + 0 = Y1- Yd Y = - X - Y = - X原方程化为令Y = uX ,则得d X X + 4Yu + Xd ud X1+ 4 YX= - 1- u ⇒ X d u 1+ 4u d X= - 1+ 4u 21+ 4u分离变量,得积分得-1+ 4u 1+ 4u 2 d u = d X x11 d(1+ 4u2 )ln X = -⎰1+ 4u 2 d u - 2 ⎰1+ 4u 2 = 1 arctan 2u - 1ln(1+ 4u 2 ) + c 2 2即2 ln X + ln(1+ 4u 2 ) + arctan 2u = c⇒ ln X 2 (1+ 4u 2 ) + arctan 2u = c代回并整理得ln[4 y 2 + (x -1)2 ] + arctan 2 y x -1 = c .(3)(x + y )d x + (3x + 3y - 4)d y = 0 ;d y = d v -1解:作变量替换v = x + y , 则d x d x 原方程化为d v-1 = - d x v 3v - 4 ⇒ d v =2(v - 2) d x 3v - 4 ⇒ 3v - 4 d v = d x 2(v - 2) ⇒ 3 ⎰ d v + ⎰ 1d v = ⎰ d x 2 v - 2 ⇒ 3v + ln(v - 2) = x + c21代回并整理得 (4) d y=⇒ 3v + 2 ln(v - 2) = 2x + c , (c = 2c 1)x + 3y + 2 ln(x + y - 2) = c . 1 +1 d x x - y .d u = 1- d y 解:令u = x - y , 则d x d x1 ⎢⎰ ⎦ ⎰⎡⎰ d x ⎣ ⎦⎣ ⎦原方程可化为分离变量,得 d u = - 1 d x u u d u = -d x 1 u 2= -x + c积分得21u 2 = -2x + 2c故原方程通解为1(x - y )2= -2x + c . (c = 2c )10. 求下列线性微分方程的通解:(1) y ' + y = e -x ;解:由通解公式y = e -⎰d x⎡e - x ⋅ e ⎰d x d x + c ⎤ = e -x ⎡⎰ e -x ⋅ e x d x + c ⎤ = e -x (x + c ) ⎢⎣⎰ (2)xy ' + y = x 2 + 3x + 2 ;⎦⎥⎣ ⎦解:方程可化为由通解公式得y ' + 1 y = x + 3 + 2 x x-⎰ 1d x ⎡2⎰ 1d x ⎤ y =e x⎢⎣⎰ (x + 3 + ) ⋅ e x x d x + c ⎥⎦ = 1 ⎡⎰ (x + 3 + 2) ⋅ x d x + c ⎤x ⎢⎣ x⎥⎦ = 1 x 2 + 3 x + 2 + c . 3 2 x(3) y ' + y cos x = e -sin x ;y = e -⎰cos x d x ⎡ 解:⎣ (4) y ' = 4xy + 4x ;e -sin x ⋅ e ⎰cos x d x d x + c ⎥⎤ = e -sin x (x + c ). y = e-⎰(-4 x )d x ⎡ 4x e ⎰(-4 x )d x d x + c ⎤ = e 2 x 2⎡⎰ 4x e -2 x 2d x + c ⎤ 解:⎢⎣⎰ ⎥⎦ ⎣ ⎦ = e 2x 2(-e -2x 2+ c )= c e 2x 2-1(5)(x - 2) y ' = y + 2(x - 2)3 ; d y - 1 y = 2(x - x )2解:方程可化为d x x - 2 y = e- -1d x x -2⎢⎣⎰ -1⎤ 2(x - 2)2e x -2d x + c ⎥⎦= e ln( x -2) ⎡⎰ 2(x - 2)2e -ln( x -2)d x + c ⎤ = (x - 2) ⎡⎰ 2(x - 2)d x + c ⎤ = (x - 2)3 + c (x - 2)(6)(x 2 +1) y ' + 2xy = 4x 2..x ⎣ ⎦ ⎰ ⎥ ⎪ ⎪ ⎢⎰ ⎣ ⎦ ' 2x4x 2解:方程可化为y +x 2 +1 y =x 2 +1 -⎰ 2 x d x ⎡ 2 2 x d x ⎤ y = e x 2+1 ⎢ 4x e ⎰ x 2 +1d x + c ⎥ ⎣⎰ x 2 +1 ⎦= -ln( x 2+1) ⎡⎰ 2⎤4x 3 + c 2e⎣ 4x d x + c ⎦ =3(x+1) 11. 求下列线性微分方程满足所给初始条件的特解: (1) d y + 1 y = 1sin x , d x x x y x =π = 1 ; -⎰ 1 d x ⎡ sin x ⎰ 1d x ⎤ 11 y = e x 解:⎢⎣⎰ e xd x + c ⎥⎦= ⎡⎰sin x d x + c ⎤ = [c - cos x ] x 以 x = π, y = 1代入上式得c = π -1,y = 1(π -1- cos x )故所求特解为 x .(2) y ' + 1 (2 - 3x 2) y = 1, x 3 y x =1 = 0. 2 - 3x 2解:d x = -x -2 - 3ln x + c- 2-3x 2 2∴ y = e ⎰ x 3 d x ⎡ ⎢⎰ e 2-3x d x x 3 d x + c ⎤ = e x -2 +3ln x ⎡⎰ e - x -2-3ln x d x + c ⎤⎣ ⎦⎣ ⎦ = e x -2 ⋅ x 3 ⎛ 1 e -x -2 + c ⎫ = x 3 ⎛ c e x -2 + 1 ⎫.⎝ 2 以 x =1,y =0 代入上式,得 c = - ⎭ ⎝ 2 ⎭1 2e . y = x 3 ⎛ 1 - 1 e x -2 ⎫ 2 2e ⎪ 故所求特解为⎝ ⎭ . 12. 求下列伯努利方程的通解:(1) y ' + y = y 2 (cos x - sin x );解:令 z = y 1-2 = y -1,则有d z + (1- 2)z = (1- 2)(cos x - sin x ) ⇒ d z- z = sin x - cos x d x z = e -⎰(-1)d x ⎡ ⎣d x(sin x - cos x )e ⎰(-1)d x d x + c ⎤⎥⇒ 1= c e x - sin x y即为原方程通解.= e x ⎡⎰ e-x (sin x - cos x )d x + c ⎤ = c e x - sin x (2) y ' + 1 y = 1(1- 2x ) y 43 3 .⎰ ⎦ x x 3⎢⎰ ⎦ 1 1 2⎰解:令z = y -3 ⇒d z- z = 2x -1 d x . z = e ⎰d x⎡ ⎣(2x -1)e -⎰d x d x + c ⎤⎥ = -2x -1+ c e x⇒ y 3 (c e x - 2x -1) = 1即为原方程通解.13. 求下列各微分方程的通解:(1) y ' = x + sin x ;解:方程两边连续积分两次得y ' = 1x 2 - cos x + c2 1y = 1x 3 - sin x + c x + c(2) y ' = x e x ;解:积分得⎰61 21y ' = y ' = ⎰ x e x d x = x e x - e x + c(x e x - e x + c )d x = x e x - 2e x+ c x + c y = (x e x - 2e x + c x + c )d x = (x - 3)e x- 1 c x 2 + c x + c⎰1 2(3) y ' = y ' + x ;2 12 3解:令 p = y ' ,则原方程变为p ' = p + x , p ' - p = x ,p = e ⎰d x⎡ -⎰d x⎤ = c e x - x -1 ⎣ x e d x + c 1 ⎦ 1y = (c e x - x -1)d x = c e x - 1x 2 - x + c故11 2 2 .(4) y ' = ( y ')3 + y ' ;y ' = p d p解:设y ' = p , 则 d y原方程可化为 p d p = p 3 + p d y p ⎡d p - (1+ p 2 )⎤= 0 即⎢⎣ d y ⎥⎦ 由 p =0 知 y =c ,这是原方程的一个解.d p= 1+ p 2 ⇒ 当 p ≠ 0 时, d yd p 1+ p 2 = d y⇒ arctan p = y - c 1⇒ x = d ytan( y - c 1) = ln sin( y - c 1) - c 2'∴ y = arcsin(c e x ) + c (c = e c 2' )212(5) y ' = 1;x⎰x =1 x =1 ;(arcsin x + c )d x = x arcsin x c x + c . 1y ' = 1d x = ln x + c ' 解:⎰ x 1y = ⎰ (ln x + c 1')d x = x ln x - x + c 1'x + c 2 = x ln x + c 1 x + c 2 (c 1 = (-1+ c 1'))(6) y ' =; y ' = 解:⎰ x = arcsin x + c 1 1 2 (7)xy ' + y ' = 0 ;p ' + 1 p = 0 ⇒ d p + d x= 0解:令y ' = p ,则得 x p x ⇒ ln p + ln x = ln c 1p = c 1得 xy = c 1 d x = c ln x + c 故 ⎰ x 1 2 .(8) y 3 y ' -1 = 0 .y ' = p d p解:令 p = y ' ,则原方程可化为d y . y 3 p d p-1 = 0, p d p = y -3d y d y ⇒ 1 p 2 = - 1 y -2 + c1 ⇒ p2 = - y -2 + c2 2 2 1⇒ d y = d x ⇒ ±⎰ y d y = ⎰ d x⇒ ±= 2c 1 x + 2c 2⇒ = c x + c ⇒ c y 2 -1 = (c x + c )2.1211214. 求下列各微分方程满足所给初始条件的特解:(1) y 3 y ' +1 = 0, y = 1, y ' = 0 y ' = p d p解:令y ' = p ,则 d y , y 3 ⋅ p d p = -1 ⇒ p d p = - 1 d y原方程可化为d y y 3 ⇒ 1 p 2 = 1 y -2 + 1 c 2 2 2 1⇒ p 2 = y2 + c 11 y =x =1 x =1 ;由 x = 1, y = 1, y ' = p = 0 知, c 1 = -1,从而有' y = p =⇒y = ±d x由 x = 1, y = 1 ,得c 2 = 1 ⇒ = ± x + c 2故x 2 + y 2 = 2x 或 y =.(2)x 2 y ' + xy ' = 1, y = 0, y ' = 1 解:令 y ' = p ,则 y ' = p ' .p ' + 1 p = 1原方程可化为x x 2 -⎰ 1d x ⎡ 1 ⎰ 1 d x ⎤ 1p = e x ⎢⎣⎰ x 2 e d x + c 1 ⎥⎦ = x (ln x + c 1 )y ' = 1 (ln x + c )则x 1以 x = 1, y ' = 1代入上式得c 1 = 1y ' = 1(ln x +1)则x y = 1 ln 2x + ln x + c当 x =1 时,y =0 代入得c 2 = 0故所求特解为2 2y = 1ln 2 x + ln x 2 . (3) y ' = 1 , y x 2+1 x =0= y ' x =0 = 0 ;解: y ' = arctan x + c 1当 x = 0, y ' = 0 ,得c 1 = 0y =arctan x d x = x arctan x -xd x⎰⎰1+ x 2= x arctan x - 1ln(1+ x 2 ) + c22以 x =0,y =0 代入上式得c 2 = 0 故所求特解为 y = x arctan x - 1ln(1+ x 2 )2 .(4) y ' = y '2 +1, y x =0 = 1, y ' x =0 = 0 ;解:令 p = y ' ,则 p ' = y ' .xx =0 x =0 ;⎪x =0 x =0 .2原方程可化为p ' = p 2 +1 d pp 2 +1= d x arctan p = x + c 1 y ' = p = tan(x + c 1)以 x = 0, y ' = 0 代入上式得c 1 = k π .y = ⎰ tan(x + k π)d x = -ln cos(x + k π) + c 2以 x =0,y =1 代入上式得c 2 = 1故所求特解为y = -ln cos(x + k π) +1(5) y ' = e 2 y , y = y ' = 0 y ' = p d p解:令 y ' = p ,则原方程可化为即 d y . p d p= e 2 y d y p d p = e 2 y d y 1 p 2 = 1 e 2 y + 1 c 积分得2 2 2 1p 2 = e 2 y + c 以 x = 0, y = y ' = 0 代入上式得c 1 = -1, 则p = y ' = ± e 2 y-1= ±d xarcsin e - y = x + c c = π 以 x =0,y =0 代入得2 ,故所求特解为arcsin e - y = x + π2e - y = sin ⎛ π± x ⎫ = cos xy = ln sec x 即⎝ 2 (6) y ' = 3 ⎭ . 即 . y , y = 1, y ' = 2解:令y ' = p , y ' = p d p d y p d p1= 3y 2 原方程可化为d ye 2 y -1 123 1 2 12 3 1 p d p = 3y 2d y1 p 2= 2 y 2 + c2以 x = 0, y ' = p = 2, y = 1代入得c 1 = 03故由于 y ' = 3 积分得y ' = p = ±2 y 43> 0 . 故 y ' = 2 y 4,即d y= 2d xy414 y 4 = 2x + c 2以 x =0,y =1 代入得c 2 = 4y = ⎛ 1⎫4 x +1⎪故所求特解为⎝ 2 ⎭ .15. 求下列微分方程的通解:(1) y ' + y ' - 2 y = 0 ; 解:特征方程为r 2 + r - 2 = 0 解得r 1 = 1, r 2 = -2故原方程通解为(2) y ' + y = 0 ;解:特征方程为解得故原方程通解为y = c e x + c e-2x.r 2 +1 = 0 r 1,2 = ±iy = c 1 cos x + c 2 sin x(3)4 d 2 x d t 2- 20 d xd t + 25x = 0 ;解:特征方程为 4r 2 - 20r + 25 = 0r = r = 5解得1 225 t 故原方程通解为 x = (c 1 + c 2t )e 2 .(4) y ' - 4 y ' + 5 y = 0 ; 解:特征方程为解得故原方程通解为(5) y ' + 4 y ' + 4 y = 0 ;r 2 - 4r + 5 = 0 r 1,2 = 2 ± iy = e 2x (c cos x + csin x ) . 解:特征方程为 解得r 2 + 4r + 4 = 0r 1 = r 2 = -2y = e -2x (c + c x )故原方程通解为12y 11 2 x =0 x =0 ;1 2 1 2 x =0 x =0 2 ce x =0 x =0 1 2 x =0 x =0 .x ⎫ (6) y ' - 3y ' + 2 y = 0 .解:特征方程为解得故原方程通解为r 2 - 3r + 2 = 0 r = 1, r = 2y = c e x + c e 2x. 16. 求下列微分方程满足所给初始条件的特解:(1) y ' - 4 y ' + 3y = 0, y = 6, y ' = 10解:特征方程为解得 通解为r 2 - 4r + 3 = 0r 1 = 1, r 2 = 3y = c e x + c e 3xy ' = c e x + 3c e 3x⎧c 1 + c 2 = 6 ⇒ ⎧c 1 = 4 ⎨c + 3c = 10 ⎨c = 2 由初始条件得 ⎩ 1 2 ⎩ 2故方程所求特解为y = 4e x + 2e 3x .(2)4 y ' + 4 y ' + y = 0, y = 2, y ' = 0;解:特征方程为 4r 2 + 4r +1 = 0r = r = - 1解得 1 22- 1 x通解为y = (c 1 + c 2 x )e 2y ' = ⎛ c - - x c 1 - 2 ⎪ ⎝ ⎧c 1 = 2 2 2 ⎭ ⎧c = 2 ⎪ ⇒ 1⎨c - 1 c = 0 ⎨c = 1由初始条件得 ⎩⎪ 2 2 1 ⎩ 2- 1x故方程所求特解为y = (2 + x )e 2 .(3) y ' + 4 y ' + 29 y = 0, y = 0, y ' = 15;解:特征方程为解得 r 2 + 4r + 29 = 0 r 1,2 = -2 ± 5i通解为y = e -2x (c cos5x + c sin 5x ) y ' = e -2x [(5c - 2c ) cos 5x + (-5c - 2c ) sin 5x ]2112⎧c 1 = 0 ⇒ ⎧c 1 = 0⎨⎨ 由初始条件得 ⎩5c 2 - 2c 1 = 15 ⎩c 2 = 3 故方程所求特解为y = 3e -2x sin 5x .(4) y ' + 25 y = 0, y = 2, y ' = 5解:特征方程为解得r 2 + 25 = 0 r 1,2 = ±5i1 2121 2通解为y = c 1 cos 5x + c 2 sin 5x y ' = -5c 1 sin 5x + 5c 2 cos 5x⎧c 1 = 2 ⇒ ⎧c 1 = 2⎨⎨ 由初始条件得⎩5c 2 = 5 ⎩c 2 = 1故方程所求特解为17. 求下各微分方程的通解:(1)2 y ' + y ' - y = 2e x ;y = 2 cos 5x + sin 5x .解: 2r 2+ r -1 = 0∴ r = -1, r = 11 22得相应齐次方程的通解为y = c e -1x x+ c e 212令特解为 y * = A e x,代入原方程得解得 A = 1 , 故 y * = e x ,2 A e x + A e x - A e x = 2e x ,x故原方程通解为y = ex+ c e -x + c e 2.(2)2 y ' + 5 y ' = 5x 2 - 2x -1; 解: 2r 2+ 5r = 0r = 0, r = - 51 22- 5x对应齐次方程通解为y = c 1 + c 2e2令 y * = x (ax 2+ bx + c ) , 代入原方程得2(6ax + 2b ) + 5(3ax 2 + 2bx + c ) = 5x 2 - 2x -1比较等式两边系数得a = 1 ,b = - 3 ,c = 73 5 25 y * = 1 x 3 - 3 x 2 + 7 x则- 5x = 3 5 25 ⎛ 1 3 7 ⎫ y c + c e 2 + x 3 - x 2+ x ⎪故方程所求通解为12 ⎝3 5 25 ⎭ .(3) y ' + 3y ' + 2 y = 3x e -x ;解: r 2+ 3r + 2 = 0r 1 = -1, r 2 = -2 ,对应齐次方程通解为y = c e -x + c e -2x 令 y * = x ( Ax + B )e -x代入原方程得(2 Ax + B + 2 A )e -x = 3x e -x⎪ 1 2 12A = 3, B = -3解得 2 y * = ⎛ 3x 2 - 3x ⎫e -x则⎝ 2 ⎭ y = c e -x + c e -2x+ ⎛ 3 x 2 - 3x ⎫e -x1 2⎪ 故所求通解为⎝ 2 ⎭ .(4) y ' - 2 y ' + 5 y = e x sin 2x ;解: r 2- 2r + 5 = 0r 1,2 = 1± 2i相应齐次方程的通解为y = e x (c cos2x + c sin 2x ) 令 y * = x e x( A cos 2x + B sin 2x ) ,代入原方程并整理得4B cos 2x - 4 A sin 2x = sin 2xA = - 1, B = 0得4 y * = - 1x e x cos 2x则4 y = e x(c cos 2x + c 故所求通解为(5) y ' + 2 y ' + y = x ;解: r 2+ 2r +1 = 0r 1,2 = -1sin 2x ) - 1 x e xcos 2x 4 . y = (c + c x )e -x相应齐次方程通解为12令 y * = Ax + B 代入原方程得得则y = (c 2 A + Ax + B = xA = 1,B = -2y * = x - 2+ c x )e -x + x - 2故所求通解为12(6) y ' - 4 y ' + 4 y = e 2x .解: r 2- 4r + 4 = 0r 1,2 = 2y = (c + c x )e 2x对应齐次方程通解为12令 y *= Ax 2e 2 x代入原方程得2 A = 1,A = 1 2y = (c + c x )e 2 x + 1x 2e 2 x故原方程通解为1 2 2 .18. 求下列各微分方程满足已给初始条件的特解:x =π x =π ;1 2 2 (1) y ' + y + sin 2x = 0, y = 1, y ' = 1解:特征方程为得对应齐次方程通解为r 2 +1 = 0 r 1,2 = ±iy = c 1 cos x + c 2 sin x令 y *= A cos 2x + B sin 2x 代入原方程并整理得-3A cos 2x - 3B sin 2x = -sin 2xA = 0, 得B = 13 y = c 1 cos x + c 2故通解为sin x + 1 sin 2x 3 . ⎧-c 1 = 1 ⎧c 1 = -1 ⎪ ⎨-c + 2 = 1⎪ ⎨c = - 1将初始条件代入上式得⎩⎪ 2 3 ⎩⎪ 2 3 故所求特解为 y = -cos x - 1 sin x + 1sin 2x3 3 . (2) y ' -10 y ' + 9 y = e 2 x , y 解: r 2-10r + 9 = 0r 1 = 1, r 2 = 9x =0= 6 , y ' 7 x =0 = 33 7 .对应齐次方程通解为y = c e x + c e 9xA = - 1令y * = A e 2 x ,代入原方程求得 7 y = - 1e 2 x + c e x + c e 9 x则原方程通解为7 1 2c = 1 , c = 1 1 2由初始条件可求得故所求特解为y = 1 (e x + e 9 x ) - 1 e 2 x2 7 . *19. 求下列欧拉方程的通解:(1)x 2 y ' + xy ' - y = 0 解:作变换 x = e t,即 t =ln x ,原方程变为D (D -1) y + Dy - y = 0 d 2 y - =即d t 2y 0 特征方程为r 2 -1 = 0 r 1 = -1,r 2 = 1 y = c e -t + c e t = c 1+ c x 故1 2 1x 2 .(2)x 2 y ' + xy ' - 4 y = x 3 .⇒ 21 2 解:设 x = e t,则原方程化为D (D -1) y + Dy - 4 y = e 3t特征方程为r 2 - 4 = 0d 2 y -d t 2 4 y =e 3t ①故①所对应齐次方程的通解为r 1 = -2,r 2 = 2y = c e -2t + c e 2t又设 y * = A e 3t为①的特解,代入①化简得9 A - 4 A = 1 A = 1 5 ,y * = 1 e 3t5 y = c e -2t + c e 2t + 1 e 3t = c x -2 + c x 2 + 1x 3.故1 2 5 1 25。