坐标系及其变换-完成
- 格式:ppt
- 大小:490.50 KB
- 文档页数:18
坐标系的平移、旋转变换——超详细在数学和物理学中,坐标系的平移和旋转变换是非常重要的概念。
它们被广泛应用于几何学、物理学、工程学等领域,用于描述物体在空间中的位置和方向。
本文将深入探讨坐标系的平移和旋转变换,包括其基本概念、数学表示、应用示例等内容,以便读者能够全面了解这一重要的数学概念。
1. 坐标系的基本概念。
坐标系是用来描述空间中点的工具。
在二维空间中,我们通常用笛卡尔坐标系来描述点的位置,它由两个相互垂直的坐标轴组成。
在三维空间中,我们通常使用三维笛卡尔坐标系,它由三个相互垂直的坐标轴组成。
坐标系的原点是坐标轴的交点,用来表示零点位置。
2. 平移变换。
平移变换是指将坐标系中的点沿着某个方向移动一定的距离。
在二维空间中,平移变换可以表示为:x' = x + a.y' = y + b.其中(x, y)是原始点的坐标,(x', y')是平移后点的坐标,(a, b)是平移的距离。
在三维空间中,平移变换可以表示为:x' = x + a.y' = y + b.z' = z + c.其中(x, y, z)是原始点的坐标,(x', y', z')是平移后点的坐标,(a, b, c)是平移的距离。
3. 旋转变换。
旋转变换是指将坐标系中的点绕着原点或其他中心点旋转一定的角度。
在二维空间中,旋转变换可以表示为:x' = xcosθ ysinθ。
y' = xsinθ + ycosθ。
其中(x, y)是原始点的坐标,(x', y')是旋转后点的坐标,θ是旋转的角度。
在三维空间中,旋转变换可以表示为旋转矩阵的形式,这里不做详细展开。
4. 应用示例。
坐标系的平移和旋转变换在计算机图形学、机器人学、航天航空等领域有着广泛的应用。
比如,在计算机图形学中,我们可以通过平移和旋转变换来实现物体的移动和旋转;在机器人学中,坐标系的变换可以用来描述机器人末端执行器的运动轨迹;在航天航空领域,我们可以通过坐标系的变换来描述飞行器的姿态变化。
初中数学平面直角坐标系与坐标变换平面直角坐标系是数学中常用的坐标系之一,用于描述二维平面上的点的位置。
学会使用平面直角坐标系及其坐标变换,对于数学的学习和解题能力的提高至关重要。
本文将介绍平面直角坐标系的概念、性质以及常用的坐标变换方法。
一、平面直角坐标系平面直角坐标系是由一个平面上的两个相互垂直的直线(通常称为x轴和y轴)所确定的。
x轴和y轴的交点称为原点O,它是平面直角坐标系的起点。
在平面直角坐标系中,每个点都可以用一个有序数对(x, y)来表示,其中x代表点在x轴上的坐标,y代表点在y轴上的坐标。
二、平面直角坐标系的性质1. 坐标轴:平面直角坐标系中的x轴和y轴互相垂直,且相交于原点O。
x轴是水平方向的,y轴是垂直方向的。
2. 坐标轴的正方向:x轴从左往右延伸,正方向是从左往右;y轴从下往上延伸,正方向是从下往上。
3. 坐标轴的刻度:x轴和y轴上的刻度表示数值,用来表示点在坐标轴上的位置。
沿x轴和y轴的正方向,每个刻度之间的距离相等。
4. 坐标轴的单位:坐标轴上的单位长度可以自行确定,一般用数值表示。
5. 坐标变换:平面直角坐标系可以通过平移、旋转等方式进行坐标变换,不改变原点的位置和坐标轴的方向。
三、坐标变换1. 平移变换:平移变换是平面直角坐标系中最基本的坐标变换。
平移变换只改变点的位置,不改变点的坐标值。
假设有一个点A(x, y),平移变换后的点A'的坐标为(x+a, y+b),其中a和b分别表示平移的横向和纵向距离。
例题:已知点A(2, 3),对平面直角坐标系进行平移变换,使得点A'的坐标为(-1, 4),求平移的向量。
解答:设平移的向量为(a, b),根据平移变换的定义可得:-1 = 2 + a4 = 3 + b解方程组可得 a = -3,b = 1。
因此,平移的向量为(-3, 1)。
2. 旋转变换:旋转变换是将平面直角坐标系绕原点进行旋转的变换。
旋转变换可以按顺时针或逆时针方向进行。
第三讲坐标变换的原理和实现方法坐标变换是计算机图形学领域中的重要概念之一,它可以用来描述物体在平面或者三维空间中的位置和方向。
在计算机图形学中,常常需要将物体从一个坐标系变换到另一个坐标系,以便于进行操作、渲染或者显示。
1.坐标变换的原理在进行坐标变换之前,首先需要给定一个参考坐标系,通常称之为世界坐标系。
然后,需要确定一个局部坐标系,用来表示参考坐标系中的一些物体。
局部坐标系通常是以物体的一些点为原点,以物体一些方向为坐标轴的。
坐标变换的原理可以归结为两个步骤:平移和旋转。
平移是指将物体沿着参考坐标系的一些方向移动一定的距离。
平移可以用一个向量表示,这个向量称为平移向量。
在平移过程中,物体的位置发生了变化,但是物体的方向不会改变。
旋转是指将物体沿着参考坐标系的一些轴进行旋转。
旋转可以用一个旋转矩阵表示,这个矩阵称为旋转矩阵。
在旋转过程中,物体的位置不变,但是物体的方向发生了变化。
2.实现方法实现坐标变换的方法有很多种,下面介绍几种常用的方法。
(1)矩阵变换法矩阵变换法是坐标变换的一种常用方法,它通过矩阵的乘法来实现坐标的转换。
首先,需要将物体的坐标变换矩阵相乘,得到变换后的坐标。
然后,将变换后的坐标赋给物体的顶点,即可实现物体的坐标变换。
矩阵变换法可以实现平移、旋转、缩放等各种变换。
(2)四元数插值法四元数插值法是一种基于四元数的坐标变换方法,它通过插值四元数来实现物体的平滑旋转。
四元数插值法可以避免欧拉角存在的万向节锁问题,保留了旋转矩阵的简洁性。
四元数插值法适用于需要平滑旋转过程的场景,比如游戏中的角色动画。
(3)欧拉角变换法欧拉角变换法是一种将物体从一个坐标系变换到另一个坐标系的方法,它通过欧拉角来表示物体的旋转角度。
欧拉角变换法可以实现物体的绕固定轴旋转,比如绕x轴、y轴或z轴旋转。
欧拉角变换法的优点是简单易懂,但是在实际应用中容易出现万向节锁问题。
(4)四元数变换法四元数变换法是一种将物体从一个坐标系变换到另一个坐标系的方法,它通过四元数来表示物体的旋转。
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5上式表明了 2种基本坐标系之间的关系。
加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
直角坐标系和坐标变换直角坐标系是描述平面或空间中点位置的一种常用坐标系统。
它由两条互相垂直的坐标轴组成,通常被称为x轴和y轴。
坐标轴上的数值表示了点在对应轴上的位置,从而确定了点在整个坐标系中的位置。
而坐标变换则是通过一定的规则将点在一个坐标系中的表示转变为另一个坐标系中的表示。
一、直角坐标系直角坐标系是一种二维坐标系,由水平的x轴和垂直的y轴构成。
x轴和y轴的交点称为原点,通常用O表示。
在直角坐标系中,每个点都可以用一个有序数对(x, y)表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
x轴和y轴的正方向上,数值逐渐增大。
在直角坐标系中,可以通过距离和角度来描述点和图形的性质。
例如,两点之间的距离可以使用勾股定理计算,而斜率可以帮助我们理解直线的倾斜程度。
二、坐标变换坐标变换是指将点在一个坐标系中的表示转变为另一个坐标系中的表示。
常见的坐标变换包括平移、旋转、缩放和镜像等。
1. 平移平移是指将一个点在坐标系中沿着某个方向移动一定距离。
如果要将一个点P(x, y)沿着x轴方向平移a个单位,y坐标保持不变,则新坐标是P(x+a, y);如果要将点P沿着y轴方向平移b个单位,x坐标保持不变,则新坐标是P(x, y+b)。
2. 旋转旋转是指将一个点或图形绕某个中心点按一定角度进行旋转。
在二维直角坐标系中,可以使用旋转矩阵对点进行旋转。
设点P(x, y)绕原点逆时针旋转θ角度,则新坐标是P'(x', y'),其中:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ3. 缩放缩放是指将一个点或图形按照一定比例进行放大或缩小。
在二维直角坐标系中,可以使用缩放矩阵对点进行缩放。
设点P(x, y)按照比例s 进行缩放,则新坐标是P'(x', y'),其中:x' = s * xy' = s * y4. 镜像镜像是指将一个点或图形关于某个轴或面对称翻转。
1 天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。
天球直角坐标系天球坐标系天球球面坐标系坐标系地球直角坐标系地球坐标系地球大地坐标系常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。
在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。
1 天球空间直角坐标系的定义地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。
则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。
春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交点)2 天球球面坐标系的定义地球质心O为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天球经度(赤经)测量基准——基准子午面,赤道为天球纬度测量基准而建立球面坐标。
空间点的位置在天球坐标系下的表述为(r,α,δ)。
天球空间直角坐标系与天球球面坐标系的关系可用图2-1表示:岁差和章动的影响岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。
章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。
极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。
地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。
前者导致岁差和章动,后者导致极移。
协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬时春分点的方向,经过瞬时的岁差和章动改正后,分别作为X轴和Z轴的指向,由此建立的坐标系称为协议天球坐标系。
3 地球坐标系地球直角坐标系和地球大地坐标系的转换其中:过椭球面上一点的法线,可作无限个法截面,其中一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈称为卯酉圈。
7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系 大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;上式表明了 2种基本坐标系之间的关系。
BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
❝§3-1 球面坐标系、坐标变换的意义与一般公式❝§3-2 决定新极Q 的地理坐标φ0,λ0❝§3-3 地理坐标φ,λ换算为球面极坐标α,Z❝球面余弦公式Ac b c b a cos sin sin cos cos cos ⋅⋅+⋅=Cc B b A a sin sin sin sin sin sin ==Bc a c a b cos sin sin cos cos cos ⋅⋅+⋅=Cb a b ac cos sin sin cos cos cos ⋅⋅+⋅=❝球面正弦公式sinacos B =cos b sin c -sin b cos c cos A❝球面边正弦与邻角余弦之积公式球面三角形的基本公式边的余弦公式定理:球面三角形任意边的余弦等于其它两边余弦的乘积加上这两边的正弦及其夹角余弦的连乘积。
Ac b c b a cos sin sin cos cos cos +=正弦公式定理:球面三角形各边的正弦和对角的正弦成正比。
Cc B b A a sin sin sin sin sin sin ==一、球面坐标系、坐标变换为在球面上确定点位可是需要采用不同的坐标系。
制图实践中常使用的有地理坐标系(φ、λ),球面坐标系(a, z)和球面直角坐标系(x,y)。
目前以上三种坐标系在测绘技术上应用最为广泛。
三者之间可以进行简单的相互换算。
如下图,其中K 为球面上一点地理坐标为,球面极坐标为。
P 是地理坐标系极点,Q 是球面极坐标系新极点。
二、坐标变换的一般公式()λϕ,()00λϕ,()z ,α由地理坐标系到球面极坐标系之间的变换:()000cos cos cos sin sin cos λλϕϕϕϕ-+=z 在球面三角形PQA ,由边的余弦公式有:()()ϕϕ--=︒︒90cos 90cos cos 0z ()()()00cos 90sin 90sin λλϕϕ---+︒︒即式中φ0、λ0是球面坐标原点Q的地理坐标()000cos sin cos cos sin cos sin λλϕϕϕϕ--=a z )sin(cos sin sin 0λλϕ-=a z 由第一正余弦公式有()()ϕϕ--=︒︒90cos 90sin cos sin 0a z ()()()00cos 90sin 90cos λλϕϕ----︒︒即由正弦公式有()a z sin 90sin )sin(sin 0ϕλλ-=-︒由此得到:()000cos cos cos sin sin cos λλϕϕϕϕ-+=z ()()0000cos sin cos cos sin sin cos λλϕϕϕϕλλϕ---=tga由球面极坐标到地理坐标之间的变换:a z z cos sin cos cos sin sin 00ϕϕϕ+=在球面三角形PKQ ,由余弦公式有:()()zcos 90cos 90cos 0ϕϕ-=-︒︒()αϕcos sin 90sin 0z -+︒即式中φ0、λ0是球面坐标原点Q的地理坐标()αϕϕλλϕcos sin sin cos cos cos cos 000z z -=-)sin(cos sin sin 0λλϕ-=a z 由第一正余弦公式有()()()z cos 90sin cos 90sin 00ϕλλϕ-=--︒︒()αϕcos sin 90cos 0z --︒即由正弦公式有()a z sin 90sin )sin(sin 0ϕλλ-=-︒由此得到:αϕϕϕcos sin cos cos sin sin 00z z +=()zz tg sin cos sin cos cos sin cos 000αϕϕαϕλλ-=-由地理坐标到球面直角坐标间的变换:如图POP 1为中央经线,其经度为,新极点Q 位于赤道上,其经度为球面上点A 地理坐标为,,过A 点作垂直圈QAB 与中央经线交于B ,令BO=x,,BA =y 则A 的球面直角坐标为(x ,y)0λ︒+900λϕλ在球面直角三角形PBA 有()()()0cos 9090ctg ctg x λλφ︒︒-=--()()0sin 90sin sin λλϕ--=︒y 于是得到由地理坐标到球面直角坐标的变换公式为()0sec λλϕ-=tg tgx ()0sin cos sin λλϕ-=y在球面直角三角形PBA 有()()yx cos 90cos 90cos -=-︒︒ϕ()()090sin λλ-=-︒tgyctg x 于是得到yx cos sin sin =ϕ()xtgy tg sec 0=-λλ在一般情况下,大多数地图投影都采用地理坐标表示球面位置建立平面直角坐标与的关系。
§2-2 常用坐标系及其变换坐标系的定义:坐标系是量测物体的质心或质点在空间的相对位置,以及物体在空间的相对方位所使用的基准线组。
引入坐标系的目的:1 确切地描述飞行器的运动状态。
2 研究飞行器运动参数的变化规律。
1 惯性坐标系定义:一、常用坐标系的定义¾近程导弹飞行力学中,忽略地球的自转和公转,将与地球固连的坐标系看作惯性坐标系。
¾远程导弹飞行力学中,应考虑地球自转,将以地心为原点,坐标轴不随地球自转而转动的坐标系看作惯性坐标系。
在空间位置不变或作直线运动的坐标系。
实际应用时应注意的问题:2 直角坐标系定义:又称“笛卡儿坐标系”,轴线互相垂直的坐标系。
原点:发射点(发射飞行器时的惯性中心上)地面坐标系()轴:指向任何方向,通常取指向目标的方向。
轴:轴:d ddOXY Z O d OY d OX d OZ 与轴垂直,并位于过O 点的铅垂面内,指向上方。
d OX 与、轴垂直并组成右手坐标系。
dOX d OY特点:固连于地球表面,随地球一起转动可以看作惯性系。
由于有翼导弹飞行距离小、飞行时间短,因此可以把地球看作静止的,并把地球表面看作平面,此时可以将地面系看作惯性系。
对于近程导弹来说,可以认为重力与Y轴平行,方向相反。
地面,取包含发射点的水平面或称切平面。
基准面:目的:决定飞行器重心移动的规律、空间的姿态、导弹速度方向。
原点:导弹的质心。
弹体坐标系()轴:沿纵轴,指向头部为正。
轴:轴:111OX Y Z O 1OY 1OX 1OZ 与轴垂直,并位于纵向对称平面内,指向上方为正。
1OX 弹体纵向对成平面垂直,并与、轴组成右手坐标系。
1OX 1OY特点:与弹体固连,相对于弹体不动;动坐标系。
目的:决定导弹相对于地面坐标系的姿态;把导弹旋转运动方程投影到该坐标系上,可以使方程式简单清晰。
导弹气动力矩三个分量沿此系分解;常用于研究导弹的稳定性和操纵性。
原点:导弹的质心。
弹道固连系()轴:与飞行速度方向一致。
坐标系转换方法-回复如何进行坐标系转换?在地理信息系统(GIS)和数学中,坐标系转换是将一个坐标系中的坐标转换为另一个坐标系的过程。
由于地球是一个三维球体,不同的地理位置使用不同的坐标系统来表示其地理位置信息。
在进行坐标系转换时,我们需要了解待转换的坐标系和目标坐标系,以及所使用的转换方法。
下面将介绍一些常见的坐标系转换方法。
1. 七参数转换法七参数转换法是一种常用的坐标系转换方法,适用于平面坐标系和高程坐标系的转换。
这种方法通过引入七个参数(平移参数、旋转参数和尺度参数)来实现坐标系之间的转换。
通过使用这些参数,可以将一个坐标系的坐标转换为另一个坐标系的坐标。
七参数转换法比较灵活,适用于不同的坐标系之间的转换。
2. 三参数转换法三参数转换法是一种简单的坐标系转换方法,适用于平面坐标系之间的转换。
这种方法通过引入三个参数(平移参数和尺度参数)来实现坐标系之间的转换。
三参数转换法常用于地图投影的转换,例如将高斯-克吕格投影转换为经纬度坐标系。
3. 四参数转换法四参数转换法是一种常用的坐标系转换方法,适用于二维平面坐标系的转换。
这种方法通过引入四个参数(平移参数)来实现坐标系之间的转换。
四参数转换法常用于地图的平移和旋转变换,可以将一个坐标系的坐标转换为另一个坐标系的坐标。
4. 常用坐标系转换软件和工具在进行坐标系转换时,可以使用各种软件和工具来辅助完成转换过程。
一些常用的坐标系转换软件包括ArcGIS、QGIS和MATLAB等。
这些软件提供了丰富的功能和工具,可以进行坐标系定义、转换参数设置和坐标转换等操作。
此外,还有一些在线坐标转换工具可供使用,如国家测绘地理信息局的坐标转换工具等。
5. 坐标系转换的注意事项在进行坐标系转换时,需要注意以下几个问题:- 坐标系的定义:了解待转换的坐标系和目标坐标系的定义,包括坐标原点、坐标单位和坐标轴方向等。
不同的坐标系可能使用不同的定义方式,因此在转换时需要准确理解坐标系的定义。
坐标系的转换方法和步骤一、数据说明坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。
若得七参数就需要在一个地区提供3个以上的公共点坐标对(即坐标下x、y、z和下x、y、z),可以向地方测绘局获取。
二、“”转“”的操作步骤启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_.WT”、“演示数据_.WL”、“演示数据_.WP”打开,如图1所示:图11、单击“投影转换”“菜单下“S坐标系转换”“命令,系统弹出“转换坐标值”“话框,如图2所示:图2⑴、在“输入”一栏中,坐标系设置为“”,单位设置为“线类单位-米”;⑵、在“输出”一栏中,坐标系设置为“”,单位设置为“线类单位-米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中,输入下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入下对应的公共点的(x、y、z),如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来;然后单击“确定”按钮;图32、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示;图4在“坐标系选项”一栏中,设置各项参数如下:源坐标系:;目的坐标系:;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4所示;单击“修改项”按钮,输入转换关系,并单击“确定”按钮;接下来就是文件投影的操作过程了。