液压缸的计算
- 格式:doc
- 大小:913.50 KB
- 文档页数:41
液压缸设计计算范文液压缸是一种利用液压力来产生线性运动的设备。
液压缸的设计计算是指在给定工作条件下,根据液压系统参数及工作要求,计算液压缸的尺寸、力学参数、压力等重要参数,以确保液压缸能够正常工作。
1.功率计算:根据所需的输出力和速度,计算液压缸的功率要求。
功率可以通过公式P=F×V/1000来计算,其中P表示功率,F表示输出力,V表示速度。
2.液压力计算:根据所需的输出力,计算液压压力的大小。
液压力可以通过公式P=F/A来计算,其中P表示液压力,F表示输出力,A表示活塞面积。
3.活塞面积计算:根据所需的液压力,计算活塞的面积。
活塞面积可以通过公式A=F/P来计算,其中A表示活塞面积,F表示输出力,P表示液压力。
4. 活塞直径计算:根据所需的活塞面积,计算活塞的直径。
活塞直径可以通过公式D= 2 × sqrt(A/π)来计算,其中D表示活塞直径,A表示活塞面积,π表示圆周率。
5.液压缸行程计算:根据工作要求和装置的限制条件,计算液压缸的最大行程。
行程可以通过设备的限制条件来确定,如设备的尺寸、行程限制等。
6.液压缸稳定性计算:根据液压缸的结构和工作要求,计算液压缸的稳定性。
稳定性计算包括校核液压缸的抗屈曲、抗剪切等能力,以确保液压缸在工作中不发生变形或破坏。
7.寿命计算:根据液压缸的设计参数和工作条件,计算液压缸的寿命。
寿命计算包括根据液压缸的设计寿命和使用条件,计算液压缸的可靠性和寿命预测。
在进行液压缸设计计算时,需要考虑以下几个重要因素:1.工作条件:包括工作压力、工作温度、介质类型等。
2.力学要求:包括输出力、速度、行程等。
3.设备限制:包括装置的尺寸、行程限制等。
4.安全要求:包括液压缸的稳定性、可靠性等。
在进行液压缸设计计算时,需要根据实际情况进行具体分析。
一般来说,液压缸的设计计算是一个复杂的工作,需要涉及力学、流体力学、材料力学等多个学科的知识,并以此为基础进行具体计算。
液压缸体内部压力计算公式液压系统是一种利用液体传递能量和控制工作机构的系统,其中液压缸是液压系统中的重要部件之一。
液压缸通过液压油的压力来产生线性运动,因此液压缸内部的压力是影响其工作性能的重要参数之一。
在液压系统中,计算液压缸内部压力是非常重要的,可以帮助工程师设计和选择合适的液压缸,保证系统的正常工作。
液压缸内部压力计算公式的推导。
液压缸内部的压力是由液压油的压力和活塞面积共同决定的。
假设液压缸的活塞面积为A,液压油的压力为P,液压缸内部的压力可以用以下公式表示:P = F/A。
其中P表示液压缸内部的压力,F表示液压缸所受到的力,A表示液压缸的活塞面积。
根据液压缸的工作原理可知,液压缸所受到的力F可以表示为:F = P × A。
将F代入液压缸内部压力的公式中,可以得到:P = (P × A) / A。
化简后可得到:P = P。
这个结果说明了液压缸内部的压力等于液压油的压力,这是由液压传动的工作原理决定的。
因此,液压缸内部压力计算公式可以简化为P = P。
液压缸内部压力计算公式的应用。
根据液压缸内部压力计算公式P = P,我们可以得出结论,液压缸内部的压力与液压油的压力成正比。
这意味着,如果液压油的压力增加,液压缸内部的压力也会增加;反之,如果液压油的压力减小,液压缸内部的压力也会减小。
在实际工程中,工程师可以根据液压缸的工作要求和系统的工作压力来选择合适的液压缸。
如果系统要求液压缸内部的压力较大,可以选择工作压力较高的液压油;如果系统要求液压缸内部的压力较小,可以选择工作压力较低的液压油。
此外,液压缸内部压力计算公式还可以用于设计和优化液压系统。
通过计算液压缸内部的压力,工程师可以确定液压缸的尺寸和工作压力,从而设计出满足系统要求的液压系统。
总结。
液压缸内部压力计算公式P = P是根据液压缸的工作原理推导出来的,它表明了液压缸内部的压力与液压油的压力成正比。
这个公式在液压系统的设计和选择中具有重要的应用价值,可以帮助工程师设计和选择合适的液压缸,保证系统的正常工作。
液压缸计算公式液压缸是一种常见的液压传动装置,广泛应用于各个行业。
液压缸的计算公式是用来计算液压缸的力和速度的。
下面将详细介绍液压缸的计算公式以及其应用。
液压缸的计算公式主要包括液压缸的力计算公式和速度计算公式。
液压缸的力计算公式可以通过以下公式得出:F = P × A其中,F表示液压缸的输出力,P表示液压缸的工作压力,A表示液压缸的有效工作面积。
液压缸的工作压力可以通过液压系统的设计压力确定,液压缸的有效工作面积可以通过液压缸的结构参数计算得出。
通过这个公式,可以很方便地计算出液压缸的输出力。
液压缸的速度计算公式可以通过以下公式得出:V = (Q × 1000) / A其中,V表示液压缸的运动速度,Q表示液压缸的流量,A表示液压缸的有效工作面积。
液压缸的流量可以通过液压系统的流量计算得出。
通过这个公式,可以计算出液压缸的运动速度。
液压缸的计算公式的应用非常广泛。
在液压系统的设计和工程中,液压缸的计算公式可以用来确定液压缸的尺寸和工作参数,从而满足系统的工作要求。
在机械制造和工程维修中,液压缸的计算公式可以用来评估液压缸的工作性能和故障排除。
液压缸的计算公式还可以用来优化液压系统的设计。
通过合理选择液压缸的尺寸和工作参数,可以提高液压系统的效率和稳定性。
同时,液压缸的计算公式也可以用来对液压系统进行性能测试和评估,为系统的优化提供依据。
液压缸的计算公式是液压系统设计和工程应用中的重要工具。
通过合理应用这些公式,可以方便地计算液压缸的力和速度,从而满足系统的工作要求。
液压缸的计算公式的应用范围广泛,对于液压系统的设计、制造和维修都具有重要意义。
希望本文的介绍对读者有所帮助。
液压缸设计计算说明 系统压力为1p =25 MPa本系统中有顶弯缸、拉伸缸以及压弯缸。
以下为这三种液压缸的设计计算。
一、 顶弯缸 1 基本参数的确定(1)按推力F 计算缸筒内径D根据公式 3.5710D -=⨯ ① 其中,推力F=120KN系统压力1p =25 MPa带入①式,计算得D= 78.2mm ,圆整为D = 80 mm (2)活塞杆直径d 的确定确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。
若速比为ϕ,则d = ② 取ϕ=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm8050D d ϕ===1.6 (3)最小导向长度H 的确定对一般的液压缸,最小导向长度H 应满足202L DH ≥+ ③ 其中,L 为液压缸行程,L=500mm带入③式,计算得H=65mm (4)活塞宽度B 的确定活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm (5)导向套滑动面长度A 的确定在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm (6)隔套长度C 的确定 根据公式2A BC H +=-⑦ 代入数据,解得C=10mm 2 结构强度计算与稳定校核 (1)缸筒外径缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1假设此液压缸为厚壁缸筒,则壁厚1]2D δ=⑧ 液压缸筒材料选用45号钢。
其抗拉强度为σb =600MPa 其中许用应力[]b nσσ=,n为安全系数,取n=5将数据带入⑧式,计算得δ=8.76mm故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有 D 1=100mm ,缸筒壁厚δ=10mm (2)液压缸的稳定性和活塞杆强度验算按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其强度要求。
液压缸的计算范文液压缸是一种将液压能转化为机械能的设备,广泛应用于工业生产中,包括汽车制造、建筑工程、农业机械等领域。
液压缸的计算包括力学计算、液压计算和参数选择等方面。
下面将详细介绍液压缸的计算方法。
一、力学计算:液压缸的力学计算主要涉及材料的最大抗拉强度、扭矩计算、弹簧力计算和轴的挠度计算等。
1.最大抗拉强度计算液压缸的寿命与承载能力有关,材料的最大抗拉强度是评估其承载能力的重要指标。
液压缸的最大抗拉强度的计算公式为:最大抗拉强度=材料的抗拉强度×空心面积。
2.扭矩计算扭矩是一个对液压缸的瞬时力矩的评估。
液压缸的扭矩计算公式为:扭矩=力矩×转速。
3.弹簧力计算弹簧力是指液压缸在运动过程中受到的弹簧的力。
液压缸的弹簧力计算公式为:弹簧力=弹簧常数×表示位移的参数。
4.轴的挠度计算轴的挠度是指轴在承受力时的变形程度。
液压缸的轴的挠度计算公式为:挠度=(力×长度^3)/(弹性模量×断面惯量)。
二、液压计算:液压计算是液压缸设计中的重要过程,主要涉及液压缸的压力计算、液体流量计算和功率计算等。
1.压力计算液压缸的压力计算是指在给定的液体流量和缸的截面积下,计算液压缸所需的压力。
压力计算公式为:压力=力/面积。
2.流量计算液压缸的流量计算是指在给定的工作压力下,计算液压缸所需的液体流量。
流量计算公式为:流量=需要的液体流量/时间。
3.功率计算液压缸的功率计算是指在给定的压力和流量下,计算液压缸的功率。
功率计算公式为:功率=压力×流量。
三、参数选择:液压缸的参数选择是确保其正常工作的关键步骤,主要包括推力、速度、行程、缸筒直径和活塞杆直径等参数的选择。
1.推力的选择液压缸的推力是指在给定的工作条件下,液压缸所能提供的最大力。
推力的选择应满足工作条件所需的最小信号力。
2.速度的选择液压缸的速度是指液压缸的活塞在单位时间内的位移速度。
速度的选择应满足工作条件所需的最大速度。
液压缸标准值计算公式液压缸是一种常见的液压传动元件,广泛应用于各种机械设备中。
在设计和选择液压缸时,需要计算出液压缸的标准值,以确保其性能和使用效果。
本文将介绍液压缸标准值的计算公式,帮助读者更好地理解液压缸的工作原理和设计方法。
液压缸标准值的计算公式主要包括液压缸的推力、速度和功率等参数。
在计算这些参数时,需要考虑液压缸的工作压力、有效面积、活塞直径、活塞杆直径等因素。
下面将分别介绍液压缸推力、速度和功率的计算公式。
1. 液压缸推力的计算公式。
液压缸的推力是指液压缸在工作过程中所能产生的推力大小。
液压缸推力的计算公式为:F = P × A。
其中,F表示液压缸的推力,单位为牛顿(N);P表示液压缸的工作压力,单位为帕斯卡(Pa);A表示液压缸的有效面积,单位为平方米(m²)。
根据这个公式,我们可以通过液压缸的工作压力和有效面积来计算出液压缸的推力大小。
在实际应用中,需要根据具体的工作要求和负载情况来选择合适的液压缸推力,以确保液压缸能够正常工作。
2. 液压缸速度的计算公式。
液压缸的速度是指液压缸在工作过程中的运动速度。
液压缸速度的计算公式为:V = Q / A。
其中,V表示液压缸的速度,单位为米每秒(m/s);Q表示液压缸的流量,单位为立方米每秒(m³/s);A表示液压缸的有效面积,单位为平方米(m²)。
根据这个公式,我们可以通过液压缸的流量和有效面积来计算出液压缸的速度大小。
在实际应用中,需要根据具体的工作要求和运动速度来选择合适的液压缸速度,以确保液压缸能够满足工作需求。
3. 液压缸功率的计算公式。
液压缸的功率是指液压缸在工作过程中所需的功率大小。
液压缸功率的计算公式为:P = F × V。
其中,P表示液压缸的功率,单位为瓦特(W);F表示液压缸的推力,单位为牛顿(N);V表示液压缸的速度,单位为米每秒(m/s)。
根据这个公式,我们可以通过液压缸的推力和速度来计算出液压缸所需的功率大小。
液压缸内径公式液压缸是一种常见的液压传动元件,广泛应用于各种机械设备中。
液压缸内径是液压缸的一个重要参数,它对液压缸的性能和工作效果有着重要影响。
本文将从液压缸内径的定义、计算公式、影响因素等方面进行介绍和分析。
一、液压缸内径的定义液压缸内径指液压缸活塞工作时与缸体内壁之间的最小距离。
液压缸内径的大小决定了液压缸的工作压力、力矩和速度等参数。
一般情况下,液压缸内径越大,液压缸的工作能力越强。
二、液压缸内径的计算公式液压缸内径的计算需要综合考虑液压缸的工作压力、工作行程、负载条件等因素。
常用的液压缸内径计算公式如下:内径= 2 × 力 / (π × 工作压力)其中,力为液压缸需要输出的力,工作压力为液压缸的工作压力。
三、影响液压缸内径的因素1. 工作压力:液压缸内径的选择与液压缸的工作压力直接相关。
工作压力越大,液压缸内径应越大,以保证液压缸的工作能力。
2. 工作行程:液压缸内径的大小还与液压缸的工作行程有关。
工作行程越大,液压缸内径应越大,以满足液压缸在不同位置的工作需求。
3. 负载条件:液压缸内径的选择还需要考虑负载条件。
负载越大,液压缸内径应越大,以满足液压缸输出足够的力。
四、液压缸内径的选择液压缸内径的选择需要根据具体的工作条件和要求来进行确定。
一般来说,可以根据以下几个步骤进行选择:1. 确定工作压力:根据液压系统的设计要求和工作条件,确定液压缸的工作压力。
2. 确定工作行程:根据机械设备的工作要求和工作空间,确定液压缸的工作行程。
3. 确定负载条件:根据机械设备的负载要求和工作特点,确定液压缸的负载条件。
4. 根据计算公式计算内径:根据以上确定的参数,使用液压缸内径的计算公式计算出合适的内径值。
5. 选择合适的内径规格:根据计算得出的内径值,选择与之相近的标准内径规格。
五、总结液压缸内径是液压缸的重要参数,它对液压缸的工作性能有着重要影响。
本文从液压缸内径的定义、计算公式、影响因素等方面进行了介绍和分析。
液压缸缸体长度的计算公式
液压缸缸体长度的计算公式是根据液压系统中的工作压力、缸体直径和活塞杆长度来确定的。
液压缸是一种用液压力驱动的推拉装置,广泛应用于各种工程和机械设备中。
液压缸的缸体长度计算公式如下:
缸体长度 = 活塞杆长度 + 2 ×缸体壁厚
其中,活塞杆长度指的是液压缸活塞杆的长度,缸体壁厚是液压缸缸体壁的厚度,通常为设计要求的一小部分。
这个公式的基本原理是根据液压系统的工作压力和活塞杆的长度确定液压缸的推力需求,然后根据推力需求确定缸体的尺寸。
活塞杆长度是由液压缸的应用需求和操作环境决定的;缸体壁厚是为了保证液压缸的结构强度和安全性而设计的。
在实际应用中,还需考虑液压缸的材质和制造工艺,以及缸体与其他部件的连接方式,从而综合考虑各种因素来确定液压缸的合适长度。
此外,还需进行合理的安全余量设计,以确保液压缸在工作过程中的稳定性和可靠性。
总之,液压缸缸体长度的计算公式是基于液压系统的工作压力、活塞杆长度和缸体壁厚来确定的。
这个公式可以为液压缸的设计和制造提供参考,并确保液压缸在工作过程中具备所需的推拉能力和结构强度。
液压缸计算公式液压缸计算公式1、液压缸内径和活塞杆直径的确定液压缸的材料选为Q235⽆缝钢管,活塞杆的材料选为Q235 液压缸内径:4,F4== D,3.14,,pF:负载⼒ (N)2A:⽆杆腔⾯积 () mmP:供油压⼒ (MPa) D:缸筒内径 (mm) :缸筒外径 (mm) D1 2、缸筒壁厚计算π×,??ηδσψµ1)当δ/D?0.08时pDmax,,(mm) 02,p2)当δ/D=0.08~0.3时pDmax,,(mm) 02.3,-3ppmax3)当δ/D?0.3时,,,,0.4pDpmax,,,,(mm) 0,,2,1.3p,pmax,,,b,, pnδ:缸筒壁厚(mm),:缸筒材料强度要求的最⼩值(mm) 0:缸筒内最⾼⼯作压⼒(MPa) pmax:缸筒材料的许⽤应⼒(MPa) ,p:缸筒材料的抗拉强度(MPa) ,b:缸筒材料屈服点(MPa) ,sn:安全系数3 缸筒壁厚验算22,(D,D)s1(MPa) PN,0.352D1D1P,2.3,lg rLsDPN:额定压⼒:缸筒发⽣完全塑性变形的压⼒(MPa) PrL:缸筒耐压试验压⼒(MPa) PrE:缸筒材料弹性模量(MPa):缸筒材料泊松⽐ =0.3 ,同时额定压⼒也应该与完全塑性变形压⼒有⼀定的⽐例范围,以避免塑性变形的发⽣,即:,,(MPa) PN,0.35~0.42PrL4 缸筒径向变形量22,,DPDD,1r,,D,,,,(mm) 22,,EDD,1,,变形量?D不应超过密封圈允许范围5 缸筒爆破压⼒D1PE,2.3,lg(MPa) bD6 缸筒底部厚度Pmax,(mm) ,0.433D12,P:计算厚度处直径(mm) D27 缸筒头部法兰厚度4Fbh,(mm) ,(r,d),aLPF:法兰在缸筒最⼤内压下所承受轴向⼒(N)b:连接螺钉孔的中⼼到法兰内圆的距离(mm):法兰外圆的半径(mm) ra:螺钉孔直径 dL如不考虑螺钉孔,则:Fb4h,(mm) ,r,aP8 螺纹强度计算螺纹处拉应⼒KF,, (MPa) ,22d,D,,14螺纹处切应⼒KKFd10,, (MPa) 330.2(d,D)1合成应⼒22,,,,3,,, nP,s,许⽤应⼒ ,Pn0F:螺纹处承受的最⼤拉⼒ :螺纹外径 (mm) d0:螺纹底径 (mm) d1K:拧紧螺纹系数,不变载荷取K=1.25~1.5,变载荷取K=2.5~4 :螺纹连接的摩擦因数,=0.07~0.2,平均取=0.12 KKK111 :螺纹材料屈服点(MPa) ,s:安全系数,取=1.2~2.5 nn009 缸筒法兰连接螺栓强度计算螺栓螺纹处拉应⼒KF, (MPa) ,,2dz14螺纹处切应⼒KKFd10, (MPa) ,30.2dz1合成应⼒22,,,,3,,1.3,,, nPz:螺栓数量10、缸筒卡键连接卡键的切应⼒(A处)2,D1PmaxPDmax14,,, (MPa) ,Dl4l1卡键侧⾯的挤压应⼒2,D1P2maxPDmax14, ,,c22,,D(D,2h)h(2D,h)1121,44 hhh卡键尺⼨⼀般取h=δ,l=h, ,,122验算缸筒在A断⾯上的拉应⼒2,D1P2maxPDmax14,,, (MPa) 2222,,,(D,h)-D(D,h),D11 411、缸筒与端部焊接焊缝应⼒计算F,b (MPa) ,,,,n22,,Dd,,114D:缸筒外径 (mm) 1d:焊缝底径 (mm) 1:焊接效率,取=0.7 ,,:焊条抗拉强度 (MPa) ,bn:安全系数,参照缸筒壁的安全系数选取如⽤⾓焊F2 ,,Dh,1h—焊⾓宽度 (mm)12、活塞杆强度计算1)活塞杆在稳定⼯况下,如果只承受轴向推⼒或拉⼒,可以近似的⽤直杆承受拉压载荷的简单强度计算公式进⾏计算:F (MPa) ,,,,P,2d42)如果活塞杆所承受的弯曲⼒矩(如偏⼼载荷等),则计算式:,,FM,,,,,,, (MPa) P,,AWd,,3)活塞杆上螺纹、退⼑槽等部位是活塞杆的危险截⾯,危险截⾯的合成应⼒应该满⾜:F21.8,,,, (MPa) nP2d2对于活塞杆上有卡键槽的断⾯,除计算拉应⼒外,还要计算校核卡键对槽壁的挤压应⼒:F42,,,, pp2,,,,ddc,,2,13F:活塞杆的作⽤⼒(N)d:活塞杆直径 (mm):材料许⽤应⼒,⽆缝钢管=100~110MPa, ,,PP中碳钢(调质)=400MPa ,P 2:活塞杆断⾯积 () mmAd3W:活塞杆断⾯模数 () mmM:活塞杆所承受弯曲⼒矩(N.m):活塞杆的拉⼒ (N) F2:危险截⾯的直径 (mm) d2:卡键槽处外圆直径 (mm) d1:卡键槽处内圆直径 (mm) d3c:卡键挤压⾯倒⾓ (mm) ,:材料的许⽤挤压应⼒(MPa) pp13、活塞杆弯曲稳定⾏计算活塞杆细长⽐计算L4B,, d:⽀铰中⼼到⽿环中⼼距离(油缸活塞杆完全伸出时的安装距); LB1)若活塞杆所受的载荷⼒完全在活塞杆的轴线上,则按下式验算: F1FKF, 1nk26EI,,101F, (N) K22KLBE5E,,1.8,10(MPa) 1,,,,1,a1,b4d,44I,,0.049dm圆截⾯:() 64F:活塞杆弯曲失稳临界压缩⼒ (N) K:安全系数,通常取=3.5~6 nnKKK:液压缸安装及导向系数(见机械设计⼿册5卷21-292) :实际弹性模量(MPa) E1a:材料组织缺陷系数,钢材⼀般取a?1/12 b:活塞杆截⾯不均匀系数,⼀般取b?1/135E:材料弹性模量,钢材 (MPa) E,2.1,104I:活塞杆横截⾯惯性矩(m)2:活塞杆截⾯⾯积 (m) Ade:受⼒偏⼼量 (m):活塞杆材料屈服点(MPa) ,sS:⾏程 (m)2)若活塞杆所受的载荷⼒偏⼼时,推⼒与⽀承的反作⽤⼒不完全F1处在中线上,则按下式验算:6,A,10SdF, (N) K81,esec,d2FLKB,a,其中: 06EI,10aaa⼀端固定,另⼀端⾃由=1,两端球铰=0.5,两端固定=0.25, 000 a⼀端固定,另⼀端球铰=0.35 0 14、缸的最⼩导向长度SDH,,202(mm) 导向套滑动⾯的长度1)在缸径?80mm时A=(0.6~1)D 2)在缸径,80mm时A=(0.6~1)d 活塞宽度取B=(0.6~1)D 15、圆柱螺旋压缩弹簧计算材料直径:PKCn d,1.6,P4C,10.615K,,或按照机械设计⼿册选取(5卷11-28) 4C,4CD ⼀般初假定C-5~8 C,d有效圈数:'4PGdFdn n,,38PDP'n弹簧刚度4GdGDP',, 348Dn8Cn总圈数n,n,x1x:1/2 (见机械设计⼿册第5卷 11-18)节距:H(1~2)d,0t, n间距:,,t,d⾃由⾼度: H,(n,1)d 0最⼩⼯作载荷时⾼度:H,H-F 10134PDPC8n8nP111FF,,,或者 114P'GdGD最⼤⼯作载荷时的⾼度H,H-Fn0n34PDPC8n8nPnnn或者 FF,,,1n4P'GdGD⼯作极限载荷下的⾼度H,H-Fj0j34PDPCP8n8njjjF或者 F,,,1j4P'GdGD弹簧稳定性验算⾼径⽐:H0b, D应满⾜下列要求两端固定 b?5.3 ⼀端固定,另⼀端回转 b?3.7 两端回转 b?2.6 当⾼径⽐⼤于上述数值时,按照下式计算: P,CP'H,P CB0n P:弹簧的临界载荷 (N) CC:不稳定系数 (见机械设计⼿册第5卷 11-19) BP:最⼤⼯作载荷 (N) n强度验算:,,,0.750minS,,S安全系数 P,max: 弹簧在脉动循环载荷下的剪切疲劳强度, ,0(见机械设计⼿册第5卷 11-19)8KD,: 最⼤载荷产⽣的最⼤切应⼒, ,P,maxnmax3,d8KD,: 最⼩载荷产⽣的最⼩切应⼒, ,P,min1min3,d:许⽤安全系数当弹簧的设计计算和材料实验精度⾼时,取 SP=1.3~1.7 ,当精确度低时,取 =1.8~2.2 SSPP,S静强度: 安全系数 S,,SP,max:弹簧材料的屈服极限 ,S15 系统温升的验算在整个⼯作循环中,⼯进阶段所占的时间最长,为了简化计算,主要考虑⼯进时的发热量。
液压系统计算公式1.液压缸的力和速度计算:液压缸的力和速度计算可以通过液压系统的压力和流量来求解。
液压缸的力计算公式为:F=P×A其中,F表示液压缸的力(单位为N),P表示液压系统的工作压力(单位为Pa),A表示液压缸的有效工作面积(单位为㎡)。
液压缸的速度计算公式为:v=Q/(A×1000)其中,v表示液压缸的速度(单位为m/s),Q表示液压系统的流量(单位为L/min),A表示液压缸的有效工作面积(单位为㎡)。
这里将液压系统的流量单位转换为升每分钟(L/min)是因为速度的单位为米每秒(m/s)。
2.液体流量计算:液体流量计算主要是用于选择液压泵和计算液压系统的流量。
液体流量计算公式为:Q=A×v×1000其中,Q表示液体的流量(单位为L/min),A表示液压缸的有效工作面积(单位为㎡),v表示液体的速度(单位为m/s)。
这里将液体的速度单位转换为米每秒(m/s)是因为流量的单位为升每分钟(L/min)。
3.泵和马达的工作参数计算:液压系统中的泵和马达是系统的核心部件,其工作参数计算涉及到流量、压力、功率等方面。
泵的工作参数计算公式为:Pump Power (KW) = (Flow Rate (L/min) × Pressure (Bar)) ÷ 600其中,Pump Power表示泵的功率(单位为千瓦,KW),Flow Rate表示泵的流量(单位为L/min),Pressure表示泵的压力(单位为巴,Bar)。
马达的工作参数计算公式为:Motor Power (KW) = (Torque (Nm) × Speed (RPM)) ÷ 9550其中,Motor Power表示马达的功率(单位为千瓦,KW),Torque表示马达的扭矩(单位为牛顿米,Nm),Speed表示马达的转速(单位为转每分钟,RPM)。
4.液体管道的压力损失计算:液体管道的压力损失计算主要用于确定液体输送过程中的管道直径和管道长度。
1、液压缸内径和活塞杆直径的确定液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径:p F D π4==⨯⨯14.34= F :负载力 (N )A :无杆腔面积 (2mm )P :供油压力 (MPa)D :缸筒内径 (mm)1D :缸筒外径 (mm)2、缸筒壁厚计算π×/≤≥ηδσψμ1)当δ/D ≤0.08时pD p σδ2max 0>(mm ) 2)当δ/D=0.08~0.3时maxmax 03-3.2p D p p σδ≥(mm ) 3)当δ/D ≥0.3时⎪⎪⎭⎫ ⎝⎛-+≥max max 03.14.02p p D p p σσδ(mm ) n bp σσ=δ:缸筒壁厚(mm )0δ:缸筒材料强度要求的最小值(mm )m ax p :缸筒内最高工作压力(MPa )p σ:缸筒材料的许用应力(MPa )b σ:缸筒材料的抗拉强度(MPa )s σ:缸筒材料屈服点(MPa )n :安全系数3 缸筒壁厚验算21221s )(35.0D D D PN -≤σ(MPa) D D P s rL 1lg3.2σ≤ PN :额定压力rL P :缸筒发生完全塑性变形的压力(MPa)r P :缸筒耐压试验压力(MPa)E :缸筒材料弹性模量(MPa)ν:缸筒材料泊松比 =0.3同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免塑性变形的发生,即:()rL P PN 42.0~35.0≤(MPa)4 缸筒径向变形量⎪⎪⎭⎫ ⎝⎛+-+=∆ν221221D D D D E DP D r (mm )变形量△D 不应超过密封圈允许范围5 缸筒爆破压力DD PE b 1lg 3.2σ=(MPa)6 缸筒底部厚度P P D σδmax 21433.0≥(mm )2D :计算厚度处直径(mm )7 缸筒头部法兰厚度PL a d r Fb h σπ)(4-=(mm ) F :法兰在缸筒最大内压下所承受轴向力(N )b :连接螺钉孔的中心到法兰内圆的距离(mm )a r :法兰外圆的半径(mm )L d :螺钉孔直径如不考虑螺钉孔,则:Pa r Fb h σπ4=(mm ) 8 螺纹强度计算螺纹处拉应力()2214D d KF-=πσ (MPa)螺纹处切应力)(2.033101D d KFd K -=τ (MPa) 合成应力P n στσσ≤+=223 许用应力0sn P σσ=F :螺纹处承受的最大拉力0d :螺纹外径 (mm )1d :螺纹底径 (mm )K :拧紧螺纹系数,不变载荷取K=1.25~1.5,变载荷取K=2.5~4 1K :螺纹连接的摩擦因数,1K =0.07~0.2,平均取1K =0.12s σ:螺纹材料屈服点(MPa )0n :安全系数,取0n =1.2~2.59 缸筒法兰连接螺栓强度计算螺栓螺纹处拉应力zd KF214πσ= (MPa )螺纹处切应力zd KFd K 31012.0=τ (MPa)合成应力P n σστσσ≤≈+=3.1322z :螺栓数量10、缸筒卡键连接卡键的切应力(A 处)lD P l D D P 441max 121max ==ππτ (MPa)卡键侧面的挤压应力 )2(h 4)2(44121max 2212121max h D D P h D D D P c -=--=πππσ 卡键尺寸一般取h=δ,l=h,2h h h 21==验算缸筒在A 断面上的拉应力[]22121max 22121max )(4-)(4D h D D P D h D D P --=-=ππσ (MPa)11、缸筒与端部焊接焊缝应力计算()n d D Fb σηπσ≤-=21214 (MPa)1D :缸筒外径 (mm )1d :焊缝底径 (mm )η:焊接效率,取η=0.7b σ:焊条抗拉强度 (MPa)n :安全系数,参照缸筒壁的安全系数选取如用角焊ησh D F 12= h —焊角宽度 (mm )12、活塞杆强度计算1)活塞杆在稳定工况下,如果只承受轴向推力或拉力,可以近似的用直杆承受拉压载荷的简单强度计算公式进行计算:P d Fσπσ≤=24 (MPa)2)如果活塞杆所承受的弯曲力矩(如偏心载荷等),则计算式: P d W M A F σσ≤⎪⎪⎭⎫⎝⎛+= (MPa) 3)活塞杆上螺纹、退刀槽等部位是活塞杆的危险截面,危险截面的合成应力应该满足:P n F σσ≤≈222d 8.1 (MPa) 对于活塞杆上有卡键槽的断面,除计算拉应力外,还要计算校核卡键对槽壁的挤压应力:()[]pp c d d F σπσ≤+-=243212 F :活塞杆的作用力(N )d :活塞杆直径 (mm )P σ:材料许用应力,无缝钢管P σ=100~110MPa ,中碳钢(调质)P σ=400MPad A :活塞杆断面积 (2mm )W :活塞杆断面模数 (3mm )M :活塞杆所承受弯曲力矩(N.m )2F :活塞杆的拉力 (N )2d :危险截面的直径 (mm )1d :卡键槽处外圆直径 (mm )3d :卡键槽处内圆直径 (mm )c :卡键挤压面倒角 (mm )pp σ:材料的许用挤压应力(MPa )13、活塞杆弯曲稳定行计算活塞杆细长比计算 dL B 4=λ B L :支铰中心到耳环中心距离(油缸活塞杆完全伸出时的安装距);1)若活塞杆所受的载荷力1F 完全在活塞杆的轴线上,则按下式验算:kK n F F ≤1 2261210B K L K I E F ⨯=π (N )()()51108.111⨯=++=b a E E (MPa ) 圆截面:44049.064d d I ==π(4m )K F :活塞杆弯曲失稳临界压缩力 (N )K n :安全系数,通常取K n =3.5~6K :液压缸安装及导向系数(见机械设计手册5卷21-292) 1E :实际弹性模量(MPa )a :材料组织缺陷系数,钢材一般取a ≈1/12b :活塞杆截面不均匀系数,一般取b ≈1/13E :材料弹性模量,钢材 5101.2⨯=E (MPa )I :活塞杆横截面惯性矩(4m )d A :活塞杆截面面积 (2m )e :受力偏心量 (m )s σ:活塞杆材料屈服点(MPa )S :行程 (m )2)若活塞杆所受的载荷力1F 偏心时,推力与支承的反作用力不完全处在中线上,则按下式验算:βσsec 81106e d A F d S K +⨯= (N )其中:62010⨯=EI L F a B K β 一端固定,另一端自由0a =1,两端球铰0a =0.5,两端固定0a =0.25, 一端固定,另一端球铰0a =0.3514、 缸的最小导向长度 220D S H +≥(mm )导向套滑动面的长度1)在缸径≤80mm 时A=(0.6~1)D2)在缸径>80mm 时A=(0.6~1)d活塞宽度取B=(0.6~1)D15、圆柱螺旋压缩弹簧计算材料直径:P KC P d τn 6.1≥ CC C K 615.04414+--= 或按照机械设计手册选取(5卷11-28) d DC = 一般初假定C-5~8有效圈数:'8'd 3n n4P P D P F Gd n ==弹簧刚度n C GDn D G P 43488d '==总圈数x n +=1nx :1/2 (见机械设计手册第5卷 11-18) 节距:n dH t )2~1(0-=间距:d t -=δ自由高度:d n H )(10+=最小工作载荷时高度:101-F H H =GD C P Gd D P F 414311n 8n 8==或者'11P P F =最大工作载荷时的高度n n F H H -0=GD C P Gd D P F n n 443n n 8n 8==或者'n1P P F = 工作极限载荷下的高度j j F H H -0=GDC P GdD P F j j 443j n 8n 8==或者'j 1P P F =弹簧稳定性验算 高径比:DH b 0=应满足下列要求两端固定 b ≤5.3 一端固定,另一端回转 b ≤3.7 两端回转 b ≤2.6 当高径比大于上述数值时,按照下式计算:n B C P H P C P >0'=C P :弹簧的临界载荷 (N )B C :不稳定系数 (见机械设计手册第5卷 11-19) n P :最大工作载荷 (N )强度验算: 安全系数 P S S ≥+=maxmin075.0τττ0τ: 弹簧在脉动循环载荷下的剪切疲劳强度,(见机械设计手册第5卷 11-19)m ax τ: 最大载荷产生的最大切应力 n 3max 8P d KDπτ=, m in τ: 最小载荷产生的最小切应力 13in8P d KD m πτ=, P S :许用安全系数 当弹簧的设计计算和材料实验精度高时,取 P S =1.3~1.7 , 当精确度低时,取 P S =1.8~2.2静强度: 安全系数P SS S ≥=maxττ S τ:弹簧材料的屈服极限15 系统温升的验算在整个工作循环中,工进阶段所占的时间最长,为了简化计算,主要考虑工进时的发热量。
液压缸出力计算液压缸是液力机械中最常用的装置之一,广泛应用于工业生产线、农业机械和建设工地等领域。
液压缸的主要作用是将液压油压缩成高压液体,通过高压液体的作用力将柱塞推动,并转化为线性运动能力。
该装置不仅结构简单,误差小,而且运动平稳,噪音少,可以有效地满足不同行业的需求。
然而,液压缸的出力计算与设计并不是一件简单的工作。
本文对液压缸出力的计算公式、影响因素以及设计原则进行分析和探讨,旨在帮助读者更好地理解液压缸的性能特点、优缺点以及适用范围。
一、液压缸出力计算公式液压缸的出力是指液压缸能够输出的最大力量值,计量单位为牛顿(N)或者千克力(kgf)。
液压缸出力的计算公式包括两个关键参数:液压缸的有效面积和液压油的压力,因此,液压缸的出力可以表示为:F = P × A其中,F 表示液压缸的出力,P 表示液压缸伸缩出杆的液压油压力,A 表示液压缸有效面积。
在实际使用中,设计者需要根据实际需要确定液压缸的出力,并通过对以上公式中的参数进行计算。
例如,如果液压缸的有效面积为 100 平方厘米,液压油压力为 50 兆帕,那么该液压缸的出力为:F = P × A = 50MPa × (100cm)^2 = 50000N = 5102kgf液压缸出力的计算公式并不复杂,但是设计者需要对于液压系统的实际工作状态、液压油的流量和热特性等因素进行考虑,以确保液压缸的出力在实际工作中达到所需的要求。
二、影响液压缸出力的因素液压缸的出力计算需要考虑多种因素,其中包括以下几个方面的因素:1、液压缸的工作压力液压缸的工作压力是指液压油在液压缸内部产生的压力。
当工作压力越大时,液压缸的出力也越大。
然而,过高的工作压力会导致能量损失和系统故障,因此,通常液压系统会设定一个合理的工作压力范围。
2、液压缸的有效面积液压缸的有效面积是指柱塞和容器内壁之间有效区域的面积,通常是通过测量液压缸内部的几何尺寸来计算的。
液压缸效率计算公式液压缸的效率计算通常涉及到输出力与输入能量之间的比较。
液压缸的效率η(eta)可以通过以下公式计算:η= (输出有用功/ 输入液压能) × 100%对于液压缸,其输出有用功是指活塞在克服负载做功时产生的机械功,可以用活塞推力F乘以有效行程S来表示:输出有用功(W_out)= F × S输入液压能是供给液压缸的压力P乘以泵输送给液压缸的流量Q,再乘以单位时间(通常是秒),转换成能量形式:输入液压能(W_in)= P × Q × t因此,液压缸的效率可以表达为:η= (F × S) / (P × Q × t) × 100%但实际上,由于液压系统中存在泄漏、摩擦损失以及热损失等因素,液压缸的实际工作效率会低于理论值。
若考虑液压系统的总效率,即包括了泵、管路、阀件和执行器在内的所有元件效率,则液压缸的有效功率传递效率可简化为:η_total = η_cylinder × η_pump × η_system其中:1)“η_cylinder”是液压缸本身的机械效率。
2)“η_pump”是液压泵的机械效率。
3)“η_system”是整个液压系统的效率,包括管道传输效率和控制元件效率。
如果仅考虑液压缸本身的效率,并且不涉及速度变化(即忽略流量的影响,只考虑力和位移),则可以简化为:η_cylinder = (F × S) / (A × P × S)这里:1)“F” 是作用在活塞上的力(N)。
2)“S” 是活塞的有效行程(m)。
3)“A” 是活塞的有效面积(m²)。
4)“P” 是液压缸工作时油液的压力(Pa 或N/m²)。
但由于实际工况复杂,往往需要综合考虑多种因素来精确计算液压缸的实际效率。
第一部分总体计算1、压力油液作用在单位面积上的压强Pa式中:F——作用在活塞上的载荷,NA——活塞的有效工作面积,从上式可知,压力值的建立是载荷的存在而产生的。
在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。
换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。
额定压力(公称压力)PN,是指液压缸能用以长期工作的压力。
最高允许压力,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。
通常规定为:MPa。
耐压实验压力,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。
通常规定为:MPa。
液压缸压力等级见表1。
表1 液压缸压力等级单位MPa压力范围0~2.5 >2.5~8 >8~16 >16~32 >32 级别低压中压中高压高压超高压2、流量单位时间内油液通过缸筒有效截面的体积:L/min由于L 则L/min对于单活塞杆液压缸:当活塞杆伸出时当活塞杆缩回时式中:V——液压缸活塞一次行程中所消耗的油液体积,L;t——液压缸活塞一次行程所需的时间,min;D——液压缸缸径,m;d——活塞杆直径,m;——活塞运动速度,m/min。
3、速比液压缸活塞往复运动时的速度之比:式中:——活塞杆的伸出速度,m/min;——活塞杆的缩回速度,m/min;D——液压缸缸径,m;d——活塞杆直径,m。
计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。
速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。
4、液压缸的理论推力和拉力活塞杆伸出时的理推力:N活塞杆缩回时的理论拉力:N式中:——活塞无杆腔有效面积,;——活塞有杆腔有效面积,;P——工作压力,MPa;D——液压缸缸径,m;d——活塞杆直径,m。
5、液压缸的最大允许行程活塞行程S,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。
为了计算行程,应首先计算出活塞的最大允许计算长度。
3液压缸的设计及计算3.1液压缸的负载力分析和计算本课题任务要求设备的主要系统性能参数为: 铝合金板材的横截面积为2400mm 铝合金板材的强度极限为212/kg mm 型材长度1000mm ≤ (1)工作载荷R F常见的工作载荷为活塞杆上所受的挤压力,弹力,拉力等,在这里我们可得 铝合金板材所受的最大外力为:4604101201048F A KN σ-=⨯=⨯⨯⨯= (3-1)式中 0σ----强度极限,Pa ; A -----截面面积,2m 。
由上式得液压缸所受工作载荷约为48KN(2)单活塞杆双作用缸液压缸作伸出运动时的一般模型如图3-1所示,其阻力F 或所需提供的液压力可表示为2L a f p F F F F F F μ=++++ (3-2)式中 L F -----作用在活塞上的工作阻力,N ; a F -----液压缸起动(或制动)时的惯性力,N ; f F -----运动部件处的摩擦阻力,N ;G F -----运动部件的自重(含活塞和活塞杆自重),N ;F μ-----液压缸活塞及活塞杆处的密封摩擦阻力,N ;通常以液压缸的机械效率来反映,一般取机械效率 0.95m η=;2p F -----回油管背压阻力,N 。
在上述诸阻力中,在不同条件下是不同的,因此液压缸的工作阻力往往是变化的。
因为此处液压缸只是作拉伸板材变形作用,故其运动速度较小,惯性力和摩擦阻力都较小,得50F KN ≤ (3-3)3.2液压缸的液压力计算和工作压力选择根据表4-3 根据负载选择压力,初选系统压力为8MPa 根据表4-5 液压缸速比与工作压力的关系,得出速比ϕ=1.33d = (3-4)式中 d -----活塞杆直径,mm ;D -----液压缸内径,mm 。
根据表4-4 液压缸输出液压力,选择液压缸的内径140D mm =,活塞杆直径70d mm =2114F A p D p F π==≥ (3-5) 2222()'4F A p D d p F π==-≥ (3-6)式中 1F -----作用在活塞上的液压力(推力),N ;2F -----作用爱活塞杆侧环形面积上的液压力(拉力),N ; p -----进液腔压力(产生推力时液压缸无杆腔进液;产生拉力时有杆腔进液),Pa ;1A -----活塞(无杆腔)面积,2m ;2A -----有杆腔面积(活塞杆侧环形面积),222()4A D d π=-,2m ;D -----液压缸内径(活塞外径),m ;d-----活塞杆直径,m;F-----被推动的负载阻力(与F反向),N;1'F-----被拉动的负载阻(与F反向),N。
2因为本课题主要是拉力作用,所以用公式(3-5)得:3.3液压缸综合结构参数及安全系数的选择活塞外径D和活塞杆直径d是液压缸的基本结构参数,D与d的选择与液压缸的负载和速度要求相关;选择出适当的工作压力和供液流量满足负载和速度要求后,D和d可初步确定下来。
除D和d外,液压缸的结构参数尚有活塞行程S、导向距离H和油口直径d等。
液压缸的行程应根据工作需要设定,为简化制造工艺和节约制造成本,应采用标准化行程尺寸系列参数。
为减小活塞杆伸出时与缸体轴线的偏斜,液压缸应有合理的导向长度。
3.4缸筒设计与计算3.4.1缸筒与缸盖的连接方式端盖分为前端盖和后端盖。
前端盖将活塞杆(柱塞)腔封闭,并起着为活塞杆导向、密封和防尘之作用。
后端盖即缸底一端封闭,通常起着将液压缸与其他机件的作用。
缸筒与端盖常见的连接方式有8种:拉杆式、法兰式、焊接式、内螺纹式、外螺纹式、内卡环式、外卡环式和钢丝挡圈式,其中焊接式只适应缸筒与后端盖的连接。
3.4.2对缸筒的要求缸筒是液压缸的主要零件,有时还是液压缸的直接做功部件(活塞杆或柱塞固定时);它与端盖、活塞(柱塞)构成密封容腔,用以容纳压力油液、驱动负载而做功,因而对其有强度、刚度、密封等方面的要求。
3.4.3缸筒的材料选择缸筒的毛坯普遍采用退火的冷拔或热轧的无缝钢管,市场上已有内孔经过珩磨或内孔经过精加工的半成品,只需要按所要求的长度切割无缝钢管,材料有20、35、45号钢和27SiMn合金钢。
3.4.4缸筒的计算本课题中液压缸承受压力负载,缸筒内径可根据下式求出:D=(3-7)式中F-----拉力负载(取最大值),N;2p-----供液压力(假定回液压力为大气压),Pa;d-----活塞杆直径,m。
由于该式中活塞杆直径为未定值,可根据确定的速度比ϕ及将()221/=-代入可求D值,再进一步确定活塞杆直径d。
D和d应圆整d Dϕϕ到标准系列尺寸值。
0.1055D m===圆整取0.125D m=在初步确定缸筒内径D后,下一步的工作是确定液压缸的壁厚δ。
当液压缸为薄壁液压缸(/0.08Dδ≤),δ可按下式计算:[]max2p Dδσ=(3-8)式中maxp-----液压缸最高(或设计或额定)工作压力,MPa;D-----液压缸筒内径(活塞外径),m;[]σ-----缸筒材料的许用应力,MPa。
对于脆性材料,许用应力[]σ可表示为[]bbnσσ=(3-9)式中bσ-----材料的抗拉强度或断裂强度(表4-13);bn-----安全系数,通常可取n=5,见表4-14 。
[]6001205bbMPanσσ===因为[]max0.0330.082pDδσ==≤所以[]max80.1250.00420.00422120p Dm mδσ⨯===≈⨯通过上述计算,可得液压缸缸筒外径1D为12D Dδ=+(3-10)120.12520.0040.133D D mδ=+=+⨯=3.4.5缸筒壁厚的验算计算求得缸筒壁厚δ值后,还应进行一下4个方面的验算,以保证液压缸安全可靠的工作。
(1) 液压缸的额定工作压力n p 应低于一定的极限值,以保证工作安全,即()22120.35s n D D p Dσ-≤ (3-11)式中 1,D D -----液压缸外径和内径,m 或cm ; s σ -----缸筒材料的屈服强度,MPa 。
8n p MPa =()()22221max 220.356000.1330.1250.3527.7400.125s D D p MPa Dσ-⨯⨯-===所以max n p p ≤(2) 为了避免缸筒工作时发生塑性变形,液压缸的额定工作压力n p 应与塑性变形压力rL p 有一定的比例关系:()0.350.42n rL p p ≤: (3-12) 12.3lgrL s D p D σ≤ (3-13) 10.1332.3lg 2.31600lg 37.3410.125rL s D p MPa D σ≤=⨯⨯=0.350.3537.34113.069n rL p p MPa ≤⨯=⨯=因为813.069n p MPa MPa =<(3) 缸筒的径向变形量D ∆ 值应该在允许范围内,而不能超过密封件允许的范围:221221r p D D D D v E D D ⎛⎫+∆=+ ⎪-⎝⎭ (3-14) 式中 r p -----液压缸耐压试验压力,MPa ,取20r p MPa = ; E -----缸筒材料的弹性模数,MPa ;v -----缸筒材料的泊松比,对钢材0.3v =。
2222122221200.1250.1330.1250.30.00032120000.1330.125r p D D D D v m E D D ⎛⎫⎛⎫+⨯+∆=+=⨯+= ⎪ ⎪--⎝⎭⎝⎭ (4) 为确保液压缸安全的使用,缸筒的爆裂压力E p 应大于耐压试验压力r p12.3lgE b r D p p Dσ=> (3-15) 10.1332.3lg2.3600lg 37.179200.125E b D p MPa MPa D σ⎛⎫==⨯⨯=> ⎪⎝⎭所以缸筒壁厚符合哟求。
3.4.6缸筒底部厚度缸底结构形式有四种:a. 平面缸底,有凹口,无孔; b .平面缸底,无口;c .半椭球形缸底;d .半环形缸底。
本课题选择b. 平面缸底,无口。
0.433h = (3-16)式中 D -----缸底止口外径,mm ; 0d -----油口直径, mm ; p -----工作压力,MPa ;[]σ----材料许用应力安全系数(3n ≥ ),MPa 。
0.4330.43312515.248h mm ==⨯=3.4.7缸筒头部法兰厚度选择螺钉连接法兰,法兰厚度h 为h =(3-17)式中 h -----法兰厚度,mm ; F -----法兰受力总和,N ;()22244HF d p d d q ππ=+- ;cp d ----密封环平均直径,m ;()12cp H d d d =+ ; p -----工作压力,Pa ;d -----密封环内径,m ,0.1d m = ; H d ----密封环外径,m ,H d = ;q -----附加密封压力,Pa ,若采用金属材料时,q 值即屈服极限点; 0D ----螺钉孔分布圆直径,m ; []σ---法兰材料的许用应力,Pa 。
()()222262260.1258100.13560.125810115.54444HF d p d d q KNππππ=+-=⨯⨯⨯+⨯-⨯⨯=()()110.1250.13560.130322cp H d d d m =+=⨯+=0.0101h m ===圆整取10mm 3.4.8缸筒-缸盖的连接计算缸筒与缸盖采用螺栓连接,螺纹处拉应力为214KFd Zσπ=(3-18)螺纹处的切应力为210210.2K KFd d Zτ= (3-19) 合应力[]n σσ= (3-20)式中 K -----螺纹拧紧系数,静载时,取 1.25 1.5K =: ,动载时,取 2.54K =: ; 1K ----螺纹内摩擦系数,一般取10.12K = ; 0d ----螺纹外径,m ;1d ----螺纹内径,m ,采用普通螺纹时,10 1.0825d d t =- ; t -----螺纹螺距,m ; Z ----螺栓数量 ;[]σ---螺纹材料的许用应力,Pa ,[]/s n σσ≤ 。
这里选择6个06,1d mm t mm == 的螺栓。
10 1.08250.006 1.08250.0010.0049d d t mm =-=-⨯=322144 1.51010132.570.00496KF MPa d Z σππ⨯⨯⨯===⨯⨯ 232102210.12 1.510100.0060.00220.20.20.00496K KFd MPa d Z τ⨯⨯⨯⨯===⨯⨯ 合应力132.57n MPaσ===[]/500/2250s n MPa σσ≤==所以132.57250n MPa MPa σ=≤即[]n σσ≤3.5活塞组件设计3.5.1活塞设计(1)活塞的结构形式和密封件形式活塞的密封件形式要根据液压缸的设计(额定)压力、速度和温度等工作条件来选择,而选择的密封件形式则决定了活塞的结构形式。