2011年宁夏中考数学试题及答案(word制图)
- 格式:docx
- 大小:212.18 KB
- 文档页数:13
20、(2011•宁夏)考点:列表法与树状图法。
.解答:解:(1)画树状图得:∴一共有18中等可能的情况;(2)∵当S<2时的有5种情况,.∴当S<2时的概率为518四、解答题(共48分)21、=0.3,解答:解:(1)40÷0.2=200,m=60200故答案为:200.0.3;(2)圆心角的度数是:360×0.2=72°;(3)对市民“创建精神文明城市“应该加大宣传力度.22、考点:平行四边形的判定;全等三角形的判定与性质。
分析:因为AE=CF,DF=BE,DF∥BE,所以可根据SAS判定△ADF≌△CBE,即有AD=BC,AD ∥BC,故可根据一组对边平行且相等的四边形是平行四边形进行判定.解答:证明:∵DF∥BE∴∠DFA=∠BEC∵DF=BE,EF=EF∴AF=CE∵AE=CF∴△ADF≌△CBE(SAS)∴AD=BC∴∠DAC=∠BCA∴AD∥BC∴四边形ABCD是平行四边形.23分析:(1)要证明PD是⊙O的切线只要证明∠DPO=90°即可;(2)连接AP,根据已知可求得BP的长,从而可求得BC的长.解答:证明:(1)∵AB=AC,∴∠C=∠B,又∵OP=OB,∠OPB=∠B,∴∠C=∠OPB,∴OP∥AD;又∵PD⊥AC于D,∴∠ADP=90°,∴∠DPO=90°,∴PD是⊙O的切线.解:(2)连接AP,∵AB是直径,∴∠APB=90°;∵AB=AC=2,∠CAB=120°,∴∠BAP=60°,∴BP=3,∴BC=23.24、解答:解:如图1:∵∠C=90°,∠A=30°,BC=2,∴AC=23,∵点A在y=6x上,∴A(3,23),即OC=3,OB=2﹣3,OD=23﹣3,∴S1=12(OD+AC)•OC,=12(23﹣3+23)×3,=6﹣332.如图2:BC=2,AC=23,B(3,2),∴AO=23﹣3,OD=2﹣3,S2=12(OD+BC)•OC,=12(2﹣3+2)×3,=6﹣332.所以S1=S2.25、(2011•宁夏)解答:解:(1)甲由A到B时的函数解析式是:y=(1112﹣112)x,即y=56x;甲到达B所用时间是:20÷(1112﹣112)=24分钟,甲由B到A所用时间是:20÷(1112+112)=20分钟,∴设由B到A函数解析式是:y=kx+b,∵点(24,20)与(44,0)在此函数图象上,∴24k+b=20 44k+b=0,解得:k=﹣1 b=44,∴由B到A函数解析式是:y=﹣x+44,(2)乙由A到B时的函数解析式是:y=(712﹣112)x,即y=12x;根据题意得:y=﹣x+44 y=12x,解得:x=883,则经过883小时相遇.26、(2011•宁夏)考点:翻折变换(折叠问题);二次函数的最值;等腰三角形的性质;相似三角形的判定与性质。
宁夏中考数学试卷及解析2011年宁夏中考数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1、(2011•宁夏)计算a2+3a2的结果是()A、3a2B、4a2C、3a4D、4a4考点:合并同类项。
分析:本题考查整式的加法运算,实质上就是合并同类项,根据运算法则计算即可.解答:解:a2+3a2=4a2.故选B.点评:整式的加减运算实际上就是合并同类项,这是各地中考的常考点.2、(2011•宁夏)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AB的长是()A、2B、4C、2D、4考点:矩形的性质;等边三角形的判定与性质。
分析:本题的关键是本题的关键是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答:解:∵在矩形ABCD中,AO=AC,DO=BD,AC=BD,∴AO=DO,又∵∠AOD=60°,∴∠ADB=60°,∴∠ABD=30°,∴=tan30°,即=,∴AB=2.故选C.点评:本题考查了矩形的性质和锐角三角函数关系,具有一定的综合性,难度不大属于基础性题目.3、(2011•宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是()A、5cmB、6cmC、7cmD、8cm考点:等腰梯形的性质;等边三角形的判定与性质;平行四边形的判定与性质。
专题:计算题。
分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案.解答:解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD=4cm,∴BC=4cm+2cm=6cm.故选B.点评:本题主要考查对等腰梯形的性质,平行四边形的性质和判定,全等等边三角形的性质和判定等知识点的理解和掌握,把等腰梯形转化成平行四边形和等边三角形是解此题的关键.4、(2011•宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是()A、B、C、D、考点:由实际问题抽象出二元一次方程组。
A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。
宁夏中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。
每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母填入题后的括号内。
)1. 下列哪个选项是不等式2x-3>0的解集?A. x<1.5B. x>1.5C. x<-1.5D. x>-1.5答案:B2. 已知函数y=2x+1,当x=2时,y的值为:A. 5B. 4C. 3D. 2答案:A3. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 20cmD. 15cm答案:A4. 计算下列哪个表达式的结果为0?A. 3×0C. 3+0D. 3-3答案:A5. 一个数的平方是16,那么这个数是:A. 4B. 8C. -4D. 4或-4答案:D6. 已知一个等腰三角形的两个底角相等,且每个底角的度数为45°,那么顶角的度数是:A. 90°B. 45°C. 60°D. 30°答案:A7. 计算下列哪个表达式的结果为-1?A. 1-2B. 2-3C. 3-4D. 4-5答案:A8. 一个长方形的长是10cm,宽是5cm,那么它的周长是:A. 30cmB. 20cmC. 15cm答案:A9. 已知一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边的长度是:A. 5cmB. 7cmC. 6cmD. 8cm答案:A10. 计算下列哪个表达式的结果为1?A. 1+0B. 0+1C. 1-0D. 0-1答案:A二、填空题(本题共5小题,每小题4分,共20分。
请将答案直接写在题后的横线上。
)1. 一个数的绝对值是5,那么这个数可能是________。
答案:±52. 圆的周长公式是________。
答案:2πr3. 一个直角三角形的两条直角边长分别为a和b,斜边长为c,根据勾股定理,c²=________。
答案:a²+b²4. 已知一个数的平方根是2,那么这个数是________。
宁夏回族自治区初中毕业暨高中阶段招生考试数学试题参考答案1.B 【解析】本题考查整式的加减,整式加减的实质是合并同类项,合并同类项时字母及其指数不变,系数相加减,a 2+3a 2=4a 2,所以本题选B .2.C 【解析】本题考查矩形的性质及锐角三角两数值的应用.根据矩形的性质可知∠DBA=30 °,AB=3AD=23,本题选C .3.B 【解析】本题考查等腰梯形的性质,30°角所对的直角边等于斜边的一半.作DE ⊥BC 于E ,AF ⊥BC 于F ,由CD=4.∠B=∠C=60°,得BF=CE=2,所以等腰梯形的下底是2+2+2=6,本题选B .4.B 【解析】本题考查数字问题,列方程解应用题,若个位数字为x 代表x ,十位数字为y 代表10y ,百位数字为b 代表100b .根据题意得⎩⎨⎧+=++=+yx x y y x 1018108,本题选B5.B 【解析】本题考查正方体的空间立体图形与平面展开图的对应关系,解决这种类型试题的一般方法:一是根据正方体展开图的特点,通过空间想象得出答案;二是通过动手折叠或展开正方体确定准确结果;三是注意无公共顶点的不相邻的面.本题可确定和“创”相对的字是“明”,故本题选B .6.C 【解析】本题考查圆与圆的位置关系,设两圆的半径分别为R ,r ,两圆心的距离为d ,当圆心距d >R+r 时,两圆外离;当圆心距d =R+r 时,两圆外切;当圆心距R 一r <d <R+r 时,两圆相交;当圆心距d =R —r 时,两圆内切;当圆心距d <R —r 时,两圆内含.此两圆相切可能是外切也可能是内切,所以圆心距为2或8,本题选C .7.D 【解析】本题考查平均数、方差的计算,A x =(176+175+174+171+174)÷5=174,B x =(170+173+171+174+182)÷5=174;2A s =51[(176—174)2+(175—174)2+(174—174)2+(171—174)2+(174—174)2]=514,2B s =51 [(170—174)2+(173—174)2+(171—174)2+(174—174)2+(182—174)2]=18,所以A x =B x ,2A s <2B s ,故本题选D .8.B 【解析】本题考查图形的旋转变换,先根据题意画出旋转后的图形,再根据图形写出点的坐标,将△ABO 绕点O 按逆时针方向旋转90°,得到点A’,B ’的坐标分别为(一4,1)、(一1,2),故本题选B .9.a (a +1)(a 一1) 【解析】本题考查因式分解,因式分解的步骤:一提公因式;二用公式.a 3一a =a (a 2—1)=a (a +1)(a 一1).10.4一2【解析】本题考查学生的数形结合水平,根据题意画出草图,然后计算.AB 的距离为2一2,所以BC 的距离为2一2,所以C 点的坐标为2+2一2=4一2.11.(0,1)【解析】本题考查线段的平移,由点A 的对应点C 的坐标能够得到平移规律为向右平移5个单位,再向上平移3个单位,把点B 的坐标向右平移5个单位,再向上平移3个单位,得到点D 的坐标为(0,1).12.40【解析】本题考查学生列不等式解决实际问题的水平,设最多为x 人,则15x +300≤900,解得x ≤40,所以参加这次活动的学生人数最多是40.13.36(1一m %)2=25【解析】本题考查列方程解决实际问题的水平,根据题意得36(1一m %)2=25.14.350【解析】本题考查圆中角的关系及等腰三角形的性质,∠OAB=∠B =∠D=350. 15.10【解析】本题考查平行线分线段成比例,由DE//AB ,得524=+===AB CD CD CA CD AB AB DE ,解得AB=10 16.9.42【解析】本题考查三视图的识别与计算,首先根据三视图判断此几何体为圆锥,圆锥底面圆周长为2π,面积为π,侧面面积为21×底面圆周长×母线长=21×2π×2=2π,所以这个几何体的全面积为π+2π=3π≈9.42.17.本题考查实数的计算,注意负指数幂等于正指数幂的倒数;非零数的零次方等于1.解:原式:1—3×33+9一(2一3) (4分) =1一3+9—2+3 =8. (6分)18.本题考查分式方程的解法,首先两边乘以最简公分母,化分式方程为整式方程,然后解整式方程,最后要检验.解:两边同乘(x 一1)(x +2),得x (x +2)一(x 一1)(x +2)=3(x 一1), (2分) 整理得2x =5,解得x =25. (5分) 经检验x =25是原方程的根. (6分) 19.本题考查不等式组的解法,首先解两个不等式,再根据数轴或两不等式的解集写出不等式组的解集.解:解①得x ≥1, (2分) 解②得x <8, (4分)∴不等式组的解集为1≤x <8. (6分) 20.本题考查用列表法或画树状图法求概率.解:(1)用列表法:x S y 123456—2 一1 0 1 2 3 4 一1 0 1 2 3 4 5 1234567(4分) 或画树状图:(4分)(2)由列表或画树状图知S 的所有可能情况有18种,其中S<2的有5种, ∴P (S<2)=185. (6分) 21.本题考查统计的相关概念、计算及利用统计知识指导社会生活. 解:(1)抽取的样本容量为200,表中m 的值为0.3.(2分)(2)“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数为。
中国校长网ADEO2121-2008年仙桃市,潜江市,江汉,油田初中毕业生学业考试数学试题亲爱的同学,相信在本场考试中,你的数学知识水平和探究能力一定会有很好的发挥.特别提醒你要仔细审题,先易后难.祝你取得好成绩!并请你注意以下几点:1.答卷前,请你用钢笔(圆珠笔)将自己的姓名、准考证号填在密封线内.2.答选择题时,请将答案直接填在选择题答题表中.3.试卷共8页,满分120分,考试时间120分钟.一、选择题(本大题共有8个小题,每小题3分,满分24分.)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入上面选择题答题表中相应题号下的方格内,填错或不填均为零分. 1.2-的倒数是A. 2B.C. 2-D.2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A. 1110437.0⨯ B. 10104.4⨯ C. 101037.4⨯ D. 9107.43⨯3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是4.对于反比例函数xk y 2=(0≠k ),下列说法不正确的是A. 它的图象分布在第一、三象限B. 点(k ,k )在它的图象上C. 它的图象是中心对称图形D. y 随x 的增大而增大5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD的延长线于点E ,则下列式子不成立的是得分 评卷人正方体 长方体 圆柱 圆锥 A B C D(第8题图)A. DE DA =B. CE BD =C. 90=∠EAC °D. E ABC ∠=∠26.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 27.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图象大致是8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠),那么这个圆锥的高为A.3cmB.4cmC.21cmD.62cm二、填空题(本大题共8个小题,每小题3分,满分24分)将结果直接填写在每题的横线上.9.分解因式:92-x = .10.化简211xx x -÷的结果是 .11. “五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180元的运动服,打折后他比按标价购买节省了 元.得分 评卷人40%5=R (图1)(图2)y–1 33O x(第6题图)P1 60% stAOs tBOsDOstCOt (第7题图) A BC DE. F.P.·12. 关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为13.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2= 度.14.2008年6月2日,奥运火炬在荆州古城传递,208名火炬手参加了火炬传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,60,80,70,90,100,则这组数据的中位数是 .15.如图,矩形ABCD 的面积为5,它的两条对角线交于点1O ,以AB 、1AO 为两邻边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积为 .16.如图,ABC ∆中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD ∆与ABC ∆ 全等,那么点D 的坐标是 .三、解答题(本大题共9个小题,满分72分.)17.(本题满分5分)计算:20)21(8)21(3--+-+-得 分 评 卷 人(第13题图)A BC1O D 1C2O2C……(第15题图)xyO A B C (第16题图)0.1元 135° 自备90° 0.2元 0.3元-1-2 -3 12318.(本题满分5分)解不等式组⎪⎩⎪⎨⎧>+-≥+x x x 12102 并把解集表示在下面的数轴上.19. (本题满分7分)为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制生产销售使用塑料购物袋的通知”(简称“限塑令”),并从2008年6月1日起正式实施.小宇同学为了了解“限塑令”后使用购物袋的情况,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是 ;(2)请补全条形统计图,并说明扇形统计图中20⋅元部分所对应的圆心角是 度0.3元部分所对应的圆心角是 度;(3)若6月8日到该市场购物的人数有3000人次,则该市场需销售塑料购物袋多少个?并根据调查情况,谈谈你的看法.20.(本题满分7分)得 分 评 卷 人得 分 评 卷 人得 分 评 卷 人类别10 20 30 40 50 0人数453312AB CD 在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°;(2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°;(3)量出A 、B 两点间的距离为4.5米. 请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)21. (本题满分8分)A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.22. (本题满分8分)如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且BAC D ∠=∠.得 分 评 卷 人得 分评 卷 人(1)求证:AD 是半圆O 的切线;(2)若2=BC ,2=CE ,求AD 的长.23. (本题满分10分)小华将一张矩形纸片(如图1)沿对角线CA 剪开,得到两张三角形纸片(如图2),其中α=∠ACB ,然后将这两张三角形纸片按如图3所示的位置摆放,∆EFD 纸片的直角顶点D 落在∆ACB 纸片的斜边AC 上,直角边DF 落在AC 所在的直线上.(1) 若ED 与BC 相交于点G ,取AG 的中点M ,连接MB 、MD ,当∆EFD 纸片沿CA 方向平移时(如图3),请你观察、测量MB 、MD 的长度,猜想并写出MB 与MD 的数量关系,然后证明你的猜想;(2) 在(1)的条件下,求出BMD ∠的大小(用含α的式子表示),并说明当45=α°时, BMD ∆是什么三角形?(3) 在图3的基础上,将∆EFD 纸片绕点C 逆时针旋转一定的角度(旋转角度小于90°),此时CGD ∆变成CHD ∆,同样取AH 的中点M ,连接MB 、MD (如图4),请继续探究MB 与MD 的数量关系和BMD ∠的大小,直接写出你的猜想,不需要证明,并说明α为何值时,BMD ∆为等边三角形.得 分 评 卷 人ABCA BCD EF 图1图2A BCDE FGM 图3ABCDEFMH图410 20 30 40 50 0x (元/件)y (万件))60,20(A)28,36(B 60 )28,40(C24.(本题满分10分)的销售量1y (万件)与纪念品的价格x (元/件)之间的函数图象如图所示,该公司纪念品的生产数量2y (万件)与纪念品的价格x (元/件)近似满足函数关系式85232+-=x y .,若每件纪念品的价格不小于20元,且不大于40元.请解答下列问题:(1) 求1y 与x 的函数关系式,并写出x 的取值范围;(2) 当价格x 为何值时,使得纪念品产销平衡(生产量与销售量相等);(3) 当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?25.(本题满分12分)如图,直角梯形OABC 中,AB ∥OC ,O 为坐标原点,点A 在y 轴得 分 评 卷 人得 分 评 卷 人正半轴上,点C 在x 轴正半轴上,点B 坐标为(2,23),∠BCO = 60°,BC OH ⊥于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度.设点P 运动的时间为t 秒.(1) 求OH 的长;(2) 若OPQ ∆的面积为S (平方单位). 求S 与t 之间的函数关系式.并求t 为何值时,OPQ ∆的面积最大,最大值是多少?(3) 设PQ 与OB 交于点M .①当△OPM 为等腰三角形时,求(2)中S 的值.②探究线段OM 长度的最大值是多少,直接写出结论.参考答案及评分标准说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分. 一、选择题(每小题3分,共24分) 1—8 D C B D B A B CA BH OQPy xMC二、填空题(每小题3分,共24分)9. )3)(3(-+x x 10.x -1 11. 36 12.2-13. 90 14. 75 15.n2516.)14(-, )31(,- )1,1(--(第14题不写单位不扣分)三、解答题(共72分)17.(5分)解:原式=42213-++ ………………………………………………(3分)=22………………………………………………………………(5分) 18.(5分)解:02≥+x 的解集是:2-≥xx x >+-121的解集是:1<x 所以原不等式的解集是:12<≤-x ………………………………………(3分)解集表示如图…………………………………………………………………(5分)19.(7分)解:(1)120……………………………………………………………………(1分)(2)条形统计图,如图所示,…………………………………………………… (2分)0.2元的圆心角是99°,0.3元的圆心角是36°…………………(4分)(3)该市场需销售塑料购物袋的个数是1875120753000=⨯………………(6分)只要谈的看法涉及环保、节能等方面,且观念积极向上,即可给分……(7分)20.(7分)(1)解:在ACD Rt ∆中,035tan CDAD =在BCD Rt ∆中,045tan CDBD =而5.4=-BD AD即5.445tan 35tan 00=-CDCD …………………………………………(5分)解得:5.10=CD所以大树的高为5.10米………………………………………………(7分)类别10 20 3040 50 0人数453312· 。
1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。
2011年宁夏中考数学试题及答案(word制图)D则圆心距O 1O 2的值是( )A .2或4B .6或8C .2或8D .4或67. 某校A 、B 两队10名参加篮球比赛的队员的身高(单位:cm )如下表所示:设两队队员身高的平均数分别为Ax ,Bx ,身高的方差分别为2AS ,2BS ,则正确的选项是( )A .A x =Bx ,2A S >2B SB .A x <Bx ,2A S <2BSC .Ax >B x ,2AS >2BSD .Ax =Bx ,2A S <2BS8. 如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0), 如果将△ABO 绕点O 按逆时针方向旋转90︒,得到△A 'B 'O , 那么点A '、B '的对应点的坐标是( )A .A '(-4,2)、B '(-1,1) B .A '(-4,1)、B '(-1,2)C .A '(-4,1)、B '(-1,1)D .A '(-4,2)、B '(-1,2)二、填空题9. 分解因式:a 3-a =__________.10. 数轴上A 、B 两点对应的实数分别是2和2,若点A关于点B的对称点为点C .则点C所对应的实数为__________.11. 若线段CD是由线段AB平移得到的,点A (-2,3)的对176 175 174 171 174 170 173 171 174 182B 队 A 队 1号 2号 3号 4号 5号第8题图OAB xy应点为C (3,6),则点B (-5,-2)的对应点D的坐标是__________.12. 在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车需300元,每个学生活动期间所需经费15元,则参加这次活动的学生人数最多为__________.13. 某商场在促销活动中,将原价36元的商品,连续两次降价m %后售价为25元.根据题意可列方程为__________.14. 如图,点A 、D 在⊙O 上,BC 是⊙O 的直径,若∠D =35︒,则∠OAB 的度数是__________.15. 如图,在△ABC 中,DE ∥AB ,CD ︰DA =2︰3,DE =4,则AB 的长为__________.16. 如图是一个几何体的三视图,这个几何体的全面积为__________.(π取3.14) 三、解答题17. 计算:23)31(30tan 320112---+︒--第16题图2 2 22222左视图 俯视图主视图第15题图AEBCD第14题图O ABD18. 解方程:2311+=--x x x19. 解不等式组⎩⎪⎨⎪⎧7-x 3-x ≤1,8-x +22>3.20. 有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片.将其混合后,正面朝下放置在桌面上.从中随机地抽取一张,把卡片正面上的数字记为y;然后计算出S =x+y的值.(1)用树状图或列表法表示出S的所有可能情况;(2)求出当S<2时的概率.21. 我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“从未听说”五个等级,统计后的数据整理如下表:等级 非常了解 比较了解 基本了解 不太了解 从未听说频数 4060483616频率0.2 m 0.24 0.18 0.08(1)本次问卷调查抽取的样本容量为__________,表中m 的值为__________;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.22. 已知,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,BE=DF ,BE ∥DF .求证:四边形ABCD 是平行四边形.第22题图BC DA E F第21题图非常了解从未听说 不太了解基本了解比较了解23. 在△ABC 中,AB =AC .以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D .(1)求证:PD 是⊙O 的切线;(2)若∠CAB =120︒,AB =2,求BC 的值.24. 在Rt △ABC 中,∠C =90︒,∠A =30︒,BC =2.若将此直角三角形的一条直角边BC 或AC 与x 轴重合,使点A 或点B 刚好在反比例函数xy 6=(x >0)的图象上时,设△ABC 在第一第23题图D A BCPO象限部分的面积分别记做S 1、S 2(如图1,图2所示),D 是斜边与y 轴的交点,通过计算比较S 1、S 2的大小.25. 甲、乙两人分别乘不同的冲锋舟同时从A 地逆流而上前往B 地.甲所乘冲锋舟在静水中的速度为1112千米/OCD ABxyS 1OADBCxyS 2分钟,甲到达B 地立即返回,乙所乘冲锋舟在静水中的速度为712千米/分钟.已知A 、B 两地的距离为20千米,水流速度为112千米/分钟,甲、乙乘冲锋舟行驶的距离y(千米)与所用时间x (分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y 与x 之间的函数关系式;(2)甲、乙两人同时出发后,经过多少分钟相遇?O20y (千米)26. 在等腰△ABC 中,AB =AC =5,BC =6.动点M 、N 分别在两腰AB、AC 上(M 不与A 、B 重合,N 不与A 、C 重合),且MN∥BC .将△AMN 沿MN所在的直线折叠,使点A 的对应点为P .(1)当MN 为何值时,点P 恰好落在BC 上?(2)设MN =x ,△MNP 与等腰△ABC 重叠部分的面积为y,试写出y 与x 的函数关系式.当x 为何值时,y 的值最大,最大值是多少?A B CMNP第26题图2011年宁夏中考数学试题参考答案一、选择题题号 1 2 3 4 5 678答案 B C B B B C D B 二、填空题9. a (a +1)(a -1);10. 4-2;11. (0,1);12. 40;13. 36(1-m %)2=25;14. 35︒;15. 10;16. 9.42. 三、解答题17. 解:原式=2393331-++⨯- =818. 解:11-+-x x x =23+x 11-x =23+x ∴3x -3=x +22x =5 x =25经检验x =25是原方程的解. 【也可以利用去分母的方式解方程】 19. 解:由不等式组37x--x ≤1得x ≥1, 由8-22+x >3得x <8 ∴原不等式组的解为1≤x <8. 20. (1)列表法1 2 3 4 5 6-2 -1 0 1 2 3 4-1 01 2 3 4 512 3 4 5 6 7树状图(2)P (S <2)=185 21. (1)样本容量为200,表中m 的值为0.3. (2)0.2×360︒=72︒. (3)言之有理即可. 22. 证明:(方法一)∵BE ∥DF ,∴∠BEC =∠DFA ,即∠AEB =∠CFD . 在△AEB 和△CFD 中 ⎩⎨⎧AE =CF ,∠AEB =∠CFD ,BE =DF .∴△AEB ≌△CFD (SAS ). ∴AB =CD ∠BAE =∠DCF ,∴AB ∥CD ,即四边形ABCD 是平行四边形. (方法二)1 2 3 4 5 6-2 -1 1 y S -2 -1 1 -2 -1 1 -2 -1 1 -2 -1 1 -2 -1 1 开始-1 0 2 0 1 3 1 2 4 2 3 5 3 4 6 4 5 7x第22题图 B C DA EF∵BE ∥DF , ∴∠BEC =∠DFA . ∵AE =CF , ∴AF =CE .在△BEC 和△DFA 中⎩⎨⎧AF =CE ,∠BEC =∠FDA ,BE =DF .∴△BEC ≌△DFA (SAS ). ∴BC =DA ,∠BCE =∠DAF ,∴BC ∥DA ,即四边形ABCD 是平行四边形. (方法三)【利用对角线处理,证明略】23. (1)证明:如图1,连结OP ,则OP =OB ,∴∠B =∠OPB .∵AB =AC ,∴∠C =∠B =∠OPB , ∴OP ∥AC . ∵PD ⊥AC 于点D ,∴PD ⊥OP 于点P ,即PD 是⊙O 的切线.(2)解:如图2,连结AP .∵AB 为⊙O 的直径, ∴AD ⊥BC .∵AB =AC ,∠CAB =120︒, ∴∠BAP =21∠CAB =60︒, BC =2BP .第23题图1 D A B CPO第23题图2D AB CPO在Rt △ABP 中,BP =AB ·sin60︒=3, ∴BC =23.24. 解:如图1∵点A 在反比例函数xy 6=(x >0)的图象上, ∴x A ·y A =6.在Rt △ABC 中,∠C =90︒,∠A =30︒,BC =2.∴AB =23,即y A =23, ∴x A =3,即OB =3. ∴OC =2-3,OD =3·(2-3)=23-3 S 1=213(23-3+23)=6-233.如图2∵点B 在反比例函数xy 6=(∴x B ·y B =6. ∴y B =2,∴x B =3,即OC =3. ∵AC =23, ∴OA =23-3, OD =2-3S 2=23(2-3+2)=6-233.∴S 1=S 2.25. 解:(1)甲从A 地逆流而上到达B 地所需时间为20÷(1211-121)=24(分钟), OCD ABxyS 1OAD BCxyS 2∴这段路程对应的函数关系式为y =65x (0<x ≤24).甲从B 地返回到达A 地所需时间为 20÷(1211+121)=20(分钟), 设这段路程所对应的函数关系式为y =kx +b . 将(24,20),(44,0)代入得⎩⎨⎧24k +b =20,44k +b =0.解得⎩⎨⎧k =-1,b =44. 即函数关系式为y =-x +44(24<x ≤44) 综上所述y 与x 之间的函数关系式为y =⎩⎨⎧56x (0<x ≤24),-x +44 (24<x ≤44).(2)乙从A 地逆流而上到达B 地所需时间为20÷(127-121)=40(分钟), ∴这段路程对应的函数关系式为y =21x (0<x ≤40). ⎩⎨⎧y =-x +44,y =12x .解得⎩⎪⎨⎪⎧x =883,y =443. 即甲、乙两人同时出发后,经过388分钟相遇. 26. 解:(1)如图1,连结AP ,交MN 于点O .由折叠可知,AO =21AP .∵MN ∥BC ,点P 恰好落在BC 上,【此时MN 相当于△ABC 的中位线】 ∴MN =21BC =3.(2)当点P 不落在△ABC 外时(0.O20 y (千米)A MN第26题图1O连结AP 交MN 于点O ,延长AP 交BC 于点D . 由折叠可知AD ⊥MN , ∵MN ∥BC , ∴AD ⊥BC . ∵AD =2235 =4, ∴S △ABC =12 ∴y =S △MPN =S △AMN=2)6(x ·S △ABC=31x 2. 此时,函数有最大值3.当点P 落在△ABC 外时(3<x ≤6),如图3.AO =32x ,OD =4-32x ,PD =34x -4,EF =2(34x -4)·43=2x -6, ∴y =S 四边形MEFN =21(MN +EF )·OD =21(x +2x -6)·(4-32x ) =(3x -6)(2-31x ) =(x -2)(6-x ) =-x 2+8x -12 =-(x -4)2+4当x =4时,y 有最大值,最大值为4. 综上所述,当x =4时,y 有最大值,最大值为4.ABCM N 第26题图3D OE F。
西北5省自治区2011年中考数学专题5:数量和位置变化一、选择题1. (宁夏自治区3分)如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90°,得到△A′B′O′,那么点A′、B′的对应点的坐标是A 、A′(﹣4,2),B′(﹣1,1)B 、A′(﹣4,1),B′(﹣1,2)C 、A′(﹣4,1),B′(﹣1,1)D 、A′(﹣4,2),B′(﹣1,2)【答案】D 。
【考点】坐标与图形的旋转变化。
【分析】∵图形旋转后大小不变,∴OA=OA′=221417+=。
∴A、D 显然错误;同理OB=OB′=22215+=。
∴C 错误。
故选D 。
2.(甘肃兰州4分)点M (﹣sin60°,cos60°)关于x 轴对称的点的坐标是 A. (32, 12) B. (32-,12-) C. (32-,12) D. (12-,32-) 【答案】B 。
【考点】特殊角的三角函数值,关于x 轴对称的点的坐标特征。
【分析】根据特殊三角函数值求出M 点坐标,再根据对称性解答: ∵sin60°=32,cos60°=12,∴点M (32-,12)。
∵点P (m ,n )关于x 轴对称点的坐标P′(m ,﹣n ),∴M 关于x 轴的对称点的坐标是(12-,32-)。
故选B 。
3.(青海西宁3分)如图,△DEF 经过怎样的平移得到△ABCA .把△DEF 向左平移4个单位,再向下平移2个单位B .把△DEF 向右平移4个单位,再向下平移2个单位C .把△DEF 向右平移4个单位,再向上平移2个单位D .把△DEF 向左平移4个单位,再向上平移2个单位【答案】A 。
【考点】平移的性质。
【分析】根据网格图形的特点,结合图形找出对应点的平移变换规律,△DEF 向左平移4个单位,向下平移2个单位,即可得到△ABC。
故选A 。
2011年宁夏中考数学试卷一、选择题(每小题3分,共24分)1、(2011•宁夏)计算a2+3a2的结果是()A、3a2B、4a2C、3a4D、4a4考点:合并同类项。
分析:本题考查整式的加法运算,实质上就是合并同类项,根据运算法则计算即可.解答:解:a2+3a2=4a2.故选B.点评:整式的加减运算实际上就是合并同类项,这是各地中考的常考点.2、(2011•宁夏)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AB的长是()A、2B、4C、2D、4考点:矩形的性质;等边三角形的判定与性质。
分析:本题的关键是本题的关键是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答:解:∵在矩形ABCD中,AO=AC,DO=BD,AC=BD,∴AO=DO,又∵∠AOD=60°,∴∠ADB=60°,∴∠ABD=30°,∴=tan30°,即=,∴AB=2.故选C.点评:本题考查了矩形的性质和锐角三角函数关系,具有一定的综合性,难度不大属于基础性题目.3、(2011•宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是()A、5cmB、6cmC、7cmD、8cm考点:等腰梯形的性质;等边三角形的判定与性质;平行四边形的判定与性质。
专题:计算题。
分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案.解答:解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD=4cm,∴BC=4cm+2cm=6cm.故选B.点评:本题主要考查对等腰梯形的性质,平行四边形的性质和判定,全等等边三角形的性质和判定等知识点的理解和掌握,把等腰梯形转化成平行四边形和等边三角形是解此题的关键.4、(2011•宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是()A、B、C、D、考点:由实际问题抽象出二元一次方程组。
宁夏回族自治区2010年初中毕业暨高中阶段招生数学试题参考答案及评分标准说明:1.除本参考答案外,其它正确解法可根据评分标准相应给分。
2.涉及计算的题,允许合理省略非关键步骤。
3.以下解答中右端所注的分数,表示考生正确做到这步应得的累计分。
一、选择题(3分×8=24分)二、填空题(3分×8=24分)9. )1)(1(+-a a a ; 10. 4-2; 11. (0,1); 12. 40; 13. 36(1-2%)m =25; 14.35°; 15. 10; 16. 9.42. 三.解答题(共24分) 17.解: 原式=1-3×33+9-(2-3) ---------------------------4分 =1-3+9-2+3=8 ------------------------------------------ 6分18. 解:两边同乘)2)(1(+-x x ,得 )1(3)2)(1()2(-=+--+x x x x x ---2分 整理得:52=x解得,25=x -----------------------------------------5分 经检验25=x 是原方程的根 -----------------------------------------6分19. 解:解①得 x ≥1 --------------------------------------2分 解②得 x <8 ---------------------------------------4分∴不等式组的解集为 1≤x <8 --------------------------------6分--------------4分或画树状图:--------------4分(2)由列表或画树状图知s 的所有可能情况有18种,其中S <2的有5种 ∴P(S <2)=185--------------------------------6分 四、解答题(共48分)21. 解:(1)抽取的样本容量为200,表中m 的值为0.3. ------ 2分 (2)“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数为3600.272⨯= --------------------------4分(3)结合表中统计的数据,利用统计的语言叙述合理 ---------6分 22. (方法一)∵DF ∥BE ∴∠DF A =∠BEC∴∠DFC =∠BEA ……………………………………………………… 2分 在△ABE 和△CDF 中∵DF =BE ∠DFC =∠BEA AE=CF△ABE ≌△CDF (SAS ) ………………………………………………3分∴∠EAB =∠FCD; AB=CDF EDC∴AB∥CD∴四边形ABCD是平行四边形…………………………………………6分(方法二)∵DF∥BE∴∠DF A=∠BEC ……………………………………………………2分∵AE=CF∴AE+EF=CF+EF即AF=CE在△AFD和△CEB中∵DF=BE∠DF A=∠BEC AF=CE∴△AFD≌△CEB(SAS)…………………………………………3分∴AD=CB ∠DAF=∠BCE∴AD∥CB∴四边形ABCD是平行四边形…………………………6分23.(1)证明:连结OP,则OP=OB.∴∠OBP=∠OPBAB AC=,∴∠OBP=∠C.∴∠OPB=∠C∴OP∥AC ………………………………3分∵PD⊥AC,∴∠DP⊥OP.∴PD是⊙O的切线.………………………………5分(2)连接AP,则AP⊥BC在Rt△APB中∠ABP=30°∴BP=AB×COS30°=3………………………………7分∴BC=2BP=23…………………………………………8分24. 解:在R t△ABC中,∵∠C=90°, ∠A=30°,BC=2 ∴AC=oBC30tan=23…1分在图1中,∵点A在反比例函数xy6=(0)x>的图象上∴A点的横坐标326=x=3∴OC=3, BO=2-3………………………………2分在R t△BOD中,∠DBO=60° DO=BO×tan60°=332-…………………3分1s=21)(21=⋅+OCACOD[32)332(+-]×3=3236-………4分在图2中,∵点B在反比例函数xy6=(0)x>的图象上∴B点的横坐标26=x=3∴OC=3, AO=23-3 ………………………5分在R t△AOD中∠DAO=30°DO=AO×tan30°=(23-3)×33=2-3……………6分2s=OCBCOD⋅+)(21=21[2)32(+-]×33236-=………………7分∴21ss=………………………………………………………………8分的面积为6另法:在图1中,过A作A E⊥y轴于点E,则矩形AEOC∵点A在反比例函数xy6=(0)x>的图象上∴A点的横坐标326=x=3∴AE= OC =3积为6在图2中,过B作B E⊥y轴于点E,则矩形BEOC的面∵点B在反比例函数xy6=(0)x>的图象上∴B点的横坐标26=x=3∴OC=3, AO=23-3在R t△AOD中∠DAO=30°DO=AO×tan30°=(23-3)×33=2-3O DA BC MNP DO FEABCM N P ∴DE =OE -OD =3 ∴△AED ≌△BED ∴S AED ∆= S BED ∆ ∵S 1=6- S AED ∆ 2S =6- S BED ∆ ∴S 1=2S25. 解:(1)甲从A 地到B 地:x y =1211211- 即x y 65= ……………………………… 2分甲从A 地到达B 地所用时间: 20÷65=24(分钟)∴0≤x <24时,x y 65= …………………3分甲从B 地回到A 地所用时间:20÷(1211211+)=20(分钟) 设甲从B 地回到A 地的函数关系式为k b kx y (+=≠0),将(24,20)、 (44,0)中的坐标分别代入k b kx y (+=≠0)得 k =-1,b =44∴24≤x ≤44时,44+-=x y …………… 6分(2)解法一:设甲、乙两人出发x 分钟后相遇,根据题意,得(x )121127-+()1211211+×(x -24)=20……………………………8分 解得 388=x ∴甲、乙两人出发388分钟后相遇 ……………10分解法二:乙从A 地到B 的的函数关系式为 x y 21=解方程组…………………………………………8分解得388=x ∴甲、乙两人出发388分钟后相遇 ……………10分 26. 解:(1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线 ∴ 当MN =21BC =3时, 点P 在BC 上 …………………………………2分 (2)由已知得△ABC 底边上的高h=2235-=4①当0<x ≤3时,如图,连接AP 并延长交BC 于点D ,AD 与MN 交于点O由△AMN ∽△ABC ,得 AO =x 32 y = S PMN ∆= S AMN ∆=2313221x x x =⋅⋅ 即231x y =当x =3时,y 的值最大,最大值是3 ……………… 5分②当3<x <6时,设△PMN 与BC 相交于交于点E 、F ,AP 与BC 相交于D 由①中知,AO =x 32 ∴AP =x 34PD =AP -AD =434-x ∵△PEF ∽△ABC∴22)4434()(-==∆∆x AD PD S S ABCPEF即9)3(2-=∆∆x S S ABC PEF ∵S ABC ∆=12 ∴S PEF ∆=2)3(34-x y = S PMN ∆- S PEF ∆=22)3(3431--x x =1282-+-x x ……………… 8分当4=x 时,y 的值最大,最大值是4……………………………………10分x y 21= 44+-=x y。
宁夏回族自治区2008年初中毕业暨高中阶段招生数学试卷注意事项1 . 考试时间120分钟,全卷总分120分.2 . 答题前将密封线内的项目填写清楚.3 . 答卷一律使用黑、蓝钢笔或圆珠笔.4 .凡使用答题卡的考生,答卷前务必将答题卡上的有关项目填写清楚.选择题的每小题选出答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净 后,再选涂其他答案. 不使用答题卡的考生,将选择题的答案答在试卷上.1.的绝对值是( )31A . -3 B.-32. 根据国务院抗震救灾总指挥部权威发布:截止2008年6月13日12时,全国共接受国内外社会各界捐赠款物总计 455.02亿元.455.02亿元用科学记数法表示为()、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)C . 35.甲、乙两名学生 10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差2 2S 甲=0.006,乙10次立定跳远成绩的方差 S 乙=0.035,则()8——A . 4.5502 X 0 兀10 一C . 4.5502 X 0 兀 3.下列各式运算正确的是()4 c3A . 2 =-2B . 2 =64.下列分解因式正确的是()2 A . 2x -xy -x = 2x(x - y 「1)B . 4.5502 XI09 元 D . 4.5502 X 011 元 2 3C . 2 22B . -D .A •甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C •甲、乙两人的成绩一样稳定D .甲、乙两人成绩的稳定性不能比较6.平行四边形ABCD 中,AC , BD 是两条对角线,如果添加一个条件,即可推出平行四边 形ABCD 是矩形,那么这个条件是( )9. 计算:5、.2-、..8= ____ .10. 女口图,AB // CD , AC 丄 BC , Z BAC =65 ° 则/ BCD =11.某市对一段全长 1500米的道路进行改造.原计划每天修X 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的 2倍还多35米,那么修这条路实际用了 ________ 天.12. 学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取 了 100名学生调查他们的身高,得到身高频数分布表如下:型号 身高(x /cm ) 人数(频数)小号 145 < x V 155 22 中号 155 w x V 165 45 大号165 w x V 175 28 特大号175 w x V 1855已知该校七年级学生有 800名,那么中号校服应订制 ___________ 套.13. ____________________________ 从-1, 1, 2三个数中任取一个,作为一次函数 y=k x +3的k 值,则所得一次函数中 y 随x 的增大而增大的概率是 .A . AB=BCB . AC=BDC . AC 丄 BDD . AB 丄 BD k 7.反比例函数y (k >0)的部分图象如图所示,A 、B 是图象上两x的面积为S 2,则S 1和S 2的大小关系为()A . S i > S 2B . S i = S 2C . S i V S 2D . 无法确定&已知O O 1和。
西北5省自治区2011年中考数学专题10:四边形一、选择题1. (陕西省3分)如图,在ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,它们相交于点G,延长BE交CD的延长线于点H,则图中相似三角形共有A、2对B、3对C、4对D、5对【答案】C。
【考点】平行四边形的性质,相似三角形的判定。
【分析】由四边形ABCD是平行四边形,根据平行四边形的性质,利用相似三角形的判定定理,对各对三角形逐一分析:∵在ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,∴△AGB∽△HGF,△HED∽△HBC,△HED∽△EBA,△AEB∽△HBC,共4对。
故选C。
2.(宁夏自治区3分)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AB的长是A.2 B.4 C.2 3 D.4 3【答案】C。
【考点】矩形的性质,等边三角形的判定和性质,直角三角形两锐角的关系,锐角三角函数定义,特殊角的三角函数值。
【分析】∵在矩形ABCD中,AO=12AC,DO=12BD,AC=BD(矩形的性质),∴AO=DO(等量代换)。
又∵∠AOD=60°,∴△AOD是等边三角形(等边三角形的判定)。
∴∠ADB=60°(等边三角形的性质)。
∴∠ABD=30°(直角三角形两锐角互余)。
∴ADtan30AB︒=(正切函数定义),即323AB=(特殊角的三角函数值)。
∴AB=23。
故选C。
3.(宁夏自治区3分)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是A、5cmB、6cmC、7cmD、8cm【答案】B。
【考点】等腰梯形的性质,平行四边形的判定和性质,平行的性质,等边三角形的判定和性质。
【分析】过D 作DE∥AB 交BC 于E ,∵DE∥AB,AD∥BC,∴四边形ABED 是平行四边形(平行四边形的定义)。
2011年宁夏中考数学试题一、选择题1.计算a 2 + 3a 2的结果是()A . 3a 2B . 4a 2C . 3a 4D . 4a 4 B、A2. 如图,矩形ABCD 的两条对角线相交于点 O ,/ AOD = 60 , AD = 2,贝U AB 的长是()C 第2题图 DA . 2B . 4C . 2/3D . 4/33. 等腰梯形的上底是 2cm ,腰长是4cm , 一个底角是60 ,则等腰梯形的- 下底是( )A . 5cmB . 6cmC . 7 cmD . 8cm4. 一个两位数的十位数字与个位数字的和是 8,把这个两位数加上 18,结果恰好成为数字对调后组成的 两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是()x y 8x y 8A .B .xy 18 yxx 10y 18 10x yx y 8x y 8C .D .10x y 18 yx10(x y) yx5. 将"创建文明城市”六个字分别写在一个正方体的六个面上 这个正方体的平面展开图如图所示,那么在这个正方体中 和“创”相对的字是()A .文B .明C .城D .市 6. 已知O O i 、O O 2的半径分别是r i = 3、r 2= 5.若两圆相切 A . 2 或 4 B . 6 或 8 C . 2 或 8 D . 4 或 67. 某校A 、B 两队10名参加篮球比赛的队员的身高 (单位:cm )如下表所示:1号 2号 3号 4号 5号A 队 176 175 174 171 174B 队 170 173 171 174 182X A ,X B ,身高的方差分别为 S A , S B ,则正确的选项是()8.如图,△ ABO 的顶点坐标分别为 A (1,4)、B ( 2, 1)、O ( 0, 0), 如果将△ ABO 绕点O 按逆时针方向旋转 90 ,得到△ ABO , 那么点A 、B 的对应点的坐标是() A . A ( — 4,2)、B ( — 1, 1) k hh 1 1 1^111B . A ( — 4,1)、B ( —1,2) I1VV|C . A ( — 4,1)、B ( — 1, 1) 1' 1 (* O 1 Y-亠n AD . A ( — 4,2)、B ( —1,2) 第8题图二、填空题9. _______________________ 分解因式:a 3 — a = . 10.数轴上A 、B 两点对应的实数分别是 2和2,若点A 关于点B 的对称点为点 C .则点C 所对应的实数为 __________ .创 建文 明 城市,则圆心距O 1O 2的值是()设两队队员身高的平均数分别为A . X A = XB , S A > S BX A V X B , S A VC . X A > X BX A = X Bs B11. 若线段CD是由线段AB平移得到的,点A( - 2,3)的对应点为C(3,6),则点B( —5, —2)的对应点D 的坐标是___________ .12. 在一次社会实践活动中,某班可筹集到的活动经费最多900元•此次活动租车需300元,每个学生活动期间所需经费15元,则参加这次活动的学生人数最多为 _____________ .13某商场在促销活动中,将原价36元的商品,连续两次降价m%后售价为25元.根据题意可列方程为14.如图,点A、D在O O 上, BC是O O的直径,若/ D = 35 ,则/ OAB的度数是____________15.如图,在厶ABC 中,DE// AB, CD : DA= 2 : 3, DE= 4,则AB 的长为 _______16•如图是一个几何体的三视图,这个几何体的全面积为_____________ .(取3.14)三、解答题17•计算:2。
110洵30(扪西2x18.解方程:1x 1—x w1,19.解不等式组8—x+ 22> 3.第14题图第15题图第16题图20. 有一个均匀的正六面体,六个面上分别标有数字 1,2,3,4 5,6,随机地抛掷一次,把朝上一面的数字记 为x ;另有三张背面完全相同,正面上分别写有数字- 2, - 1,1的卡片•将其混合后,正面朝下放置在桌面上 从中随机地抽取一张,把卡片正面上的数字记为 y ;然后计算出 S = x + y 的值•(1)用树状图或列表法表示出 S 的所有可能情况;(2)求出当S <2时的概率•21.我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查 ,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“从未听说”五个等级,统计后 的数据整理如下表:等级 非常了解比较了解基本了解不太了解从未听说频数P 40 6048 「36 16「 频率 0.2 m 0.24 0.18 0.08(1) _ 本次问卷调查抽取的样本容量为 ,表中的值为 ; (2) 根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议22.已知,E 、F 是四边形ABCD 的对角线AC 上的两点,AE = CF , BE = DF 第BE 虺DF . 求证:四边形ABCD 是平行四边形.23.在厶ABC 中,AB = AC .以AB 为直径的O O 交BC 于点P , PD 丄AC 于点D .(1)求证:PD 是O O 的切线;非常了解 从未听说不太了解比较了解基本了解△DC(2)若/ CAB= 120 , AB= 2,求BC 的值.24在Rt△ ABC中,/ C= 90 , / A= 30 , BC= 2.若将此直角三角形的一条直角边BC或AC与x轴重合,使点A或点B刚好在反比例函数y -(x> 0)的图象上时,设厶ABC在第一象限部分的面积分别x25.甲、乙两人分别乘不同的冲锋舟同时从A地逆流而上前往B地.甲所乘冲锋舟在静水中的速度为12千米/分钟,甲到达B地立即返回,乙所乘冲锋舟在静水中的速度为$千米/分钟.已知A、B两地的距离121为20千米,水流速度为*千米/分钟,甲、乙乘冲锋舟行驶的距离y(千米)与所用时间x(分钟)之间的函数图象如图所示•(1 )求甲所乘冲锋舟在行驶的整个过程中,y与x之间的函数关系式;(2)甲、乙两人同时出发后,经过多少分钟相遇?26.在等腰△ ABC中,AB= AC= 5, BC= 6.动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN // BC.将厶AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC 上?第26题图(2)设MN = x, △ MNP与等腰△ ABC重叠部分的面积为y,试写出y与x的函数关系式.当x为何值时,y的值最大,最大值是多少?2011年宁夏中考数学试题参考答案一、选择题二、填空题9. a(a + 1)( a—1) ; 10. 4—、2 ;11. (0,1) ;12. 40; 13. 36(1 —m%)2 =25; 14. 35 ; 15. 10; 16. 9. 42.三、解答题17. 解:原式=1 3 — 9 ,3 23=818. 解:=丄x 1 x 21 = 3x 1 x 23x—3 = x+ 22x= 55x=—2经检验x=-是原方程的解.2【也可以利用去分母的方式解方程】19. 解:由不等式组乙乜—x< 1得x> 1,3由8—注> 3得x v 82•••原不等式组的解为1< x v 8.20. (1)列表法210123410123451234567树状图⑵ PS = 1821. (1)样本容量为200,表中m的值为0.3.(2)0. 2X 360 = 72 .(3)言之有理即可.22. 证明:(方法一)v BE// DF,•••/ BEC=Z DFA,即/ AEB=Z CFD.AE= CF, B 第22题图 C/ AEB=Z CFD,BE= DF.•△AEB^A CFD(SAS).•A B= CD/ BAE=Z DCF,•A B / CD,即四边形ABCD是平行四边形.(方法二)s -1 0201 3124235346457在厶AEB和厶CFD D29v BE // DF, •••/ BEC =Z DFA . v AE = CF,• AF = CE.在厶BEC 和厶DFA 中 AF = CE ,/ BEC =Z FDA , BE = DF .• △ BEg A DFA(SAS).• B C = DA, / BCE =Z DAF,• B C // DA,即四边形ABCD 是平行四边形. (方法三)【利用对角线处理,证明略】23.( 1)证明:如图 1,连结 0P,则 0P = OB, •/ B =Z OPB .• OP // AC .v PD 丄AC 于点D,• PD 丄OP 于点P,即PD 是O O 的切线.(2)解:如图2,连结AP.v AB = AC, Z CAB = 120 , • Z BAP =丄 Z CAB = 60 ,BC = 2BP.v AB = AC, ••Z C =Z B =ZOpB 3题图i在Rt A ABP 中,BP=AB • sin60 = , 3,「• BC= 2 3.24. 解:如图1•••点A在反比例函数y 6(X>0)的图象上,X二X A• y A= 6.在Rt A ABC 中,/ C = 90 , / A= 3Q , BC=2.AB= 2 . 3 ,即y A= 2 3,X A= •、3 ,即0B=、. 3 .OD= .3 • (2— .3) = 2 .3 —3图1 S i = —3 (2^ 3 —3 + 213)= 6——r;3 .2 2如图2•••点B在反比例函数y二X B• y B= 6.二y B = 2,二X B = 3,即0C=3.•/ AC= 2 3,•••0A= 2 3 —3,0D=2— 3S2= 3 (2 —. 3 + 2) = 6 —3』3.2 2• S—= S2.25. 解:(1)甲从A地逆流而上到达B地所需时间为20 + (—1—丄)=24(分钟),12 12•••这段路程对应的函数关系式为y= 5x(O v x<24).6| y(千米)甲从B地返回到达A地所需时间为20r J2 + 占)=20(分钟),O设这段路程所对应的函数关系式为y= kx+ b.将(24, 20),( 44,0)代入得44k+b=0°,解得b=44,44k+b = 0. b=44.即函数关系式为y= —x+ 44( 24< x< 44)综上所述y与x之间的函数关系式为|x ( 0< x< 24),-x+44 ( 24< x< 44).(2)乙从A地逆流而上到达B地所需时间为20+ (-—丄)=40(分钟),12 12•••这段路程对应的函数关系式为y=十(0< x<40).y=y = —x+44,1 解得y=2x.x=y=8844"3.26.即甲、乙两人同时出发后,经过88分钟相遇.解:(1)如图1,连结AP,交MN于点O.由折叠可知,AO= 1AP.2T MN // BC,点P恰好落在BC 上,【此时MN相当于△ ABC的中位线】连结AP交MN于点0,延长AP交BC于点D.由折叠可知AD丄MN,v MN // BC,••• AD丄BC.v AD= 5 32= 4,• S\ ABC= 12 •- y= S AMPN = S^AMN=(X)2 S ABC=-x2.此时,函数有最大值3.当点P落在△ ABC外时(3v x< 6),如图3.2 2 4 4A0飞X,0D= 4—齐PD= &4厲=2”4)=—x2+ 8x- 12=-(x-4)2+ 4当x=4时,y有最大值,最大值为4.综上所述,当x= 4时,y有最大值,最大值为4-=2x-6,4第26题图3=(x- 2)( 6-x)。