历年宁夏省中考数学试题(含答案)
- 格式:doc
- 大小:456.00 KB
- 文档页数:22
宁夏12年初中毕业暨高中阶段招生考试数 学试题一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1 .下列运算正确的是()22/2、3536 9/小2、2.2A . 3 a - a = 3B . (a ) = aC . a a = aD . (2a ) = 4a2 .根据人民网-宁夏频道2012年1月18日报道,2011年宁夏地区生产总值为 2060亿元,比上年增长 12%, 增速高于全国平均水平.2060亿元保留两个有效数字用科学记数法表示为( ) 9 一3 一—10 一11 一A . 2.0 X 10 兀B . 2.1 X 10 兀C . 2.1 X 10 兀D . 2.1 X 10 兀3 .一个等腰三角形两边的长分别为 4和9,那么这个三角形的周长是()A . 13B . 17C . 22D . 17 或 224、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路•她去学校共用了 16分钟.假设小颖上坡路的小羊A 在草地上的最大活动区域面积是() 7. 一个几何体的三视图如图所示,网格中小正方形的边长均为 积的是( )A . 24.0 B. 62.8 C. 74.28. 运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费 30元,1.5倍,若设甲种雪糕的价格为 x 元,根据题意3x 5y 1200 60x 60y 1.23x 5y 1.2■60x 常 y 1200A .B .C .D .x y 16x y 16 x y 16x y 16题意可列方程组为() 5•如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了 y 分钟,根据A (羊只能在草地上活动),那么17 A.—12Tim 217 2B. — n m25 C.——n m 4J 712Ttm 26•如图,AB 为O O 的直径, PD 切O O 于点C ,交AB 的延长线于D ,且 CO=CD ,则/ ACP=(A . 30oB . 45oC . 60oD . 67.5o1,那么下列选项中最接近这个几何体的侧面D. 113.0 可列方程为().40 3020 4030A .B.——1.5x xx 1.5x30 40203040 C .D.-—第5题第6题 第7题甲种雪糕比乙种雪糕多 20根.乙种雪糕价格是甲种雪糕价格的2020x 1.5x 1.5x、填空题(每小题 3分,共24 分)19.当a时,分式 有意义•a 210. 已知菱形的边长为 6, —个内角为60°,则菱形较短的对角线长是 11. 已知a、b 为两个连续的整数,且 a < 11< b ,则a b 12.点B (- 3,4)关于y 轴的对称点为 A ,则点A 的坐标是 13 .在△ ABC 中/ C=90 °,AB=5,4515. 如图,在矩形 ABCD中,对角线 AC 、BD 相较于 O,DE 丄AC 于E ,Z EDC :/ EDA=1 : 2,且AC=10,贝U DE 的长度是 _____________ .16. 如图,将等边厶ABC 沿BC 方向平移得到△ A 1B 1C 1 .若BC = 3,S PB 1C - 3,贝U BB 1 = ________三、解答题(共24分) 17. (6 分) 计算:12j2?sin45( 2012)° 1 v'2| ( -) 218. (6 分)BC=4,贝U tanA= ____ 方向,在B 岛的北偏西化简,求值:x 2 2x 2x 1,其中x= . 225°ACB第15题精品文档419. (6 分)2x 1>(x 1)解不等式组 1 x x 112 320. (6 分)某商场为了吸引顾客, 设计了一种促销活动, 在一个不透明的箱子里放有 4个相同的小球,在球上分别标 有“ 0元”、“ 10元”、“20元”、“30元”的字样,规定:顾客在本商场同一天内,每消费满 200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回) •商场根据两小球所标金额的和,返还相应价格的购物券,可以重新在本商场消费•某顾客刚好消费200元.(1) 该顾客至少可得到 ________ 元购物券,至多可得到 ____________ 元购物券; (2) 请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.四、解答题(共48 分)21.( 6 分)商场对每个营业员在当月某种商品销售件数统 解答下列问题(1) 设营业员的月销售件数为 x (单位:件),商场规定: 不称职;当15W x v 20时为基本称职;当20w xv 25 25时为优秀.试求出优秀营业员人数所占百分比;(2) 根据(1)中规定,计算所有优秀和称职的营 件数的中位数和众数;(3) 为了调动营业员的工作积极性,商场决定制定 励标准,凡达到或超过这个标准的营业员将受到奖 所有优秀和称职的营业员中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?并简述其理由计如下:当x v 15时为 为称职;当x > 业员中月销售 月销售件数奖 励。
1宁夏回族自治区2010年初中毕业暨高中阶段招生数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.下列运算正确的是 ( ) A .236a a a ⋅= B .532a a a ÷= C .235a a a += D .235()a a =2.把多项式322x x x -+分解因式结果正确的是 ( ) A .2(2)x x x - B .2(2)x x - C .(1)(1)x x x +- D .2(1)x x -3. 把61万用科学记数法可表示为 ( ) A .4101.6⨯ B .5101.6⨯ C .5100.6⨯ D . 41061⨯4.用一个平面去截一个几何体,不能截得三角形截面的几何体是 ( ) A .圆柱 B .圆锥 C .三棱柱 D .正方形5.为了解居民节约用水的情况,增强居民的节水意识,下表是某个单元的住户当月用水量的调查结果:则关于这12户居民月用水量,下列说法错误..的是 ( ) A .中位数 6方 B .众数6方 C .极差8方 D .平均数5方6.点A 、B 、C 是平面内不在同一条直线上的三点,点D 是平面内任意一点,若A 、B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D 有 ( ) A .1个 B .2个 C .3个 D .4个7.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式( ) A .2(1)3y x =--+ B .2(1)3y x =-++ C .2(1)3y x =--- D .2(1)3y x =-+-. 8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x 元、y 元,则下列方程组正确的是 ( ) A .⎩⎨⎧+⨯=-++=+)201(100401(101(100000000y x y x B .⎩⎨⎧⨯=++-=+00000020100)401(101(100y x y x C .⎩⎨⎧+⨯=++-=+201(100)401()101(100000000y x y x D .⎩⎨⎧⨯=-++=+0000020100)401()101(100y x y x 二、填空题(每小题3分,共24分) 9.若分式12-x 与1互为相反数,则x 的值是 . 10.如图,BC ⊥AE ,垂足为C ,过C 作CD ∥AB .若∠ECD =48°则∠B = .11.矩形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是 .12.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折. 如果用27元钱,最多可以购买该商品的件数是 . 13.若关于x 的不等式组⎩⎨⎧>>m x x 2的解集是2>x ,则m 的取值范围是 . 14.将半径为10cm ,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是 . 15.如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是 米.16.关于对位似图形的表述,下列命题正确的是 .(只填序号)① 相似图形一定是位似图形,位似图形一定是相似图形; ② 位似图形一定有位似中心;③ 如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④ 位似图形上任意两点与位似中心的距离之比等于位似比.三、解答题(共24分) 17.(6分) 计算:011( 3.14)()12π--+---.18.(6分)解不等式组3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩ .EDC B A219.(6分)先化简,再求代数式的值:222111a a a a a+⎛⎫-÷ ⎪-+-⎝⎭ ,其中1a =. 20.(6分)在一个不透明的盒子里,装有3个写有字母A 、2个写有字母B 和1个写有字母C 的小球, 它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下字母后放回盒子,摇匀后再随机取出一个小球,记下字母.请你用画树状图或列表的方法,求摸出的两个小球上分别写有字母B 、C 的概率.四、解答题(共48分)21.(6分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市24000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a 和b 所表示的数分别为:a = ,b = ; (2)请在图中,补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市24000名九年级考生数学成绩为优秀的学生约有多少名?22.(6分)已知:正方形ABCD 中,E 、F 分别是边CD 、DA 上的点,且CE =DF ,AE 与BF 交于点M .(1)求证:△ABF ≌△DAE ;(2)找出图中与△ABM 相似的所有三角形(不添加任何辅助线).23.(8分)如图,已知:⊙O 的直径AB 与弦AC 的夹角∠A =30°,过点C 作⊙O 的切线交AB 的延长线于点P .(1) 求证:AC =CP ;(2) 若PC =6,求图中阴影部分的面积(结果精确到0.1). 1.73= 3.14π=)24.(8分)如图,已知:一次函数:4y x =-+的图像与反比例函数:2y x=(0)x >的图像分别交于A 、B 两点,点M 是一次函数图像在第一象限部分上的任意一点,过M 分别向x 轴、y 轴作垂线,垂足分别为M 1、M 2,设矩形MM 1OM 2的面积为S 1;点N 为反比例函数图像上任意一点,过N 分别向x 轴、y 轴作垂线,垂足分别为N 1、N 2,设矩形NN 1ON 2的面积为S 2;(1)若设点M 的坐标为(x ,y ),请写出S 1关于x 的函数表达式,并求x 取何值时,S 1的最大值;(2)观察图形,通过确定x 的取值,试比较S 1、S 2的大小.M FE D CBAAP325.(10分)小明想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.26. (10分)在△ABC 中,∠BAC =45°,AD ⊥BC 于D ,将△ABD 沿AB 所在的直线折叠,使点D 落在点E 处;将△ACD 沿AC 所在的直线折叠,使点D 落在点F 处,分别延长EB 、FC 使其交于点M . (1)判断四边形AEMF 的形状,并给予证明.(2)若BD =1,CD =2,试求四边形AEMF 的面积.宁夏回族自治区2011年初中毕业暨高中阶段招生考试数 学 试 题一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 1. 计算223a a +的结果是( )A. 23a B. 24a C. 43a D. 44a 2. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =60°,AD =2,则AB 的长是( ) A .2 B .4C. D.3. 等腰梯形的上底是2cm ,腰长是4cm ,一个底角是60︒,则等腰梯形的下底是( ) A .5cm B . 6cm C . 7cm D . 8cm4. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A.B.C. D.5. 将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是( ) A . 文 B . 明 C . 城 D . 市6. 已知⊙O 1、⊙O 2的半径分别是1r =3、52=r .若两圆相切,则圆心距O 1O 2的值是( )A .2 或4B .6或8C .2或8D .4或67. 某校A 、B 两队10名参加篮球比赛的同学,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数分别为A x -,B x -,身高的方差分别为A s2,B s 2,则正确的选项是A .A x -=B x -,A s2>B s2B .A x -<B x -,A s 2<B s 2A B C D 18=+y x yx xy =+18 8=+y x y x y x +=++101810 18=+y xyx y x =+)(108=+y x yx y =++18104C .A x ->B x -,A s2>B s2D .A x -=B x -,A s2<B s28. 如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90°,得到△O B A '',那么点A 、B 的对应点'A 、'B 的坐标是( ).A .'A (-4, 2)、 'B (-1,1) B. 'A (-4,1)、 'B (-1,2) C. 'A (-4,1)、'B (-1,1) D. 'A (-4,2)、'B (-1,2)二、填空题(每小题3分,共24分)9.分解因式:a a -3= .10.数轴上A B 、两点对应的实数分别是2和2,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为 .11. 若线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (3,6),则点B (-5,-2)的对应点D 的坐标是 .12. 在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车费300元,每个学生活动期间需经费15元,则参加这次活动的学生人数最多为 . 13. 某商场在促销活动中,原价36元的商品,连续两次降价%m 后售价为25元.根据题意可列方程为 . 14. 如图,点A 、D 在⊙O 上,BC 是⊙O 的直径,若∠D = 35°,则∠OAB 的度数是 .15. 如图,在△ABC 中,DE ∥AB ,CD ︰DA =2︰3,DE =4,则AB 的长为 .16. 如图是一个几何体的三视图,这个几何体的全面积为 .(π取3.14)三、解答题(共24分)17.(6分) 计算:02011-3o30tan +2)31(--|23|-- 18.(6分)解方程:2311+=--x x x19.(6分)解不等式组20.(6分)有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x ;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y ;然后计算出S =x +y 的值.(1)用树状图或列表法表示出S 的所有可能情况; (2)求出当S <2时的概率.四、解答题(共48分)21.(6分)我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“从未听说”五个等级,统计后的数据整理如下表:(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.x x --37≤1 228+-x >35PNM CBA22.(6分)已知,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF , BE = DF , BE ∥DF . 求证:四边形ABCD 是平行四边形23.(8分)在ABC △中,AB AC =,以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D . (1)求证:PD 是⊙O 的切线;(2)若∠CAB =120°,AB =2,求BC 的值.24.(8分)在Rt △AB C 中,∠C =90°, ∠A =30°, BC =2.若将此直角三角形的一条直角边BC 或AC 与x 轴重合,使点A 或点B 恰好在反比例函数xy 6=(0)x >的图象上时,设ABC △在第一象限部分的面积分别记作1s 、2s (如图1、图2所示),D 是斜边与y 轴的交点,通过计算比较1s 、2s 的大小.25.(10分)甲、乙两人分别乘不同的冲锋舟同时从A 地逆流而上前往B 地.甲所乘冲锋舟在静水中的速度为1211千米/分钟,甲到达B 地立即返回.乙所乘冲锋舟在在静水中的速度为127千米/分钟.已知A 、B 两地的距离为20千米,水流速度为121千米/分钟,甲、乙乘冲锋舟行驶的距离y (千米)与所用时间x (分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y 与x 之间的函数关系式;(2)甲、乙两人同时出发后,经过多少分钟相遇?26.(10分) 在等腰△ABC 中,,AB =AC=5,BC =6.动点M 、N 分别在两腰AB 、AC 上(M 不与A 、B 重合,N 不与A 、C 重合),且M N ∥BC . 将△A MN 沿MN 所在的直线折叠,使点A 的对应点为P . (1)当MN 为何值时,点P 恰好落在BC 上?(2)设MN =x ,△MNP 与等边△ABC 重叠部分的面积为y .试写出y 与x 的函数关系式.当x 为何值时,y 的值最大,最大值是多少?F E D C BA6第6题宁夏回族自治区2012年初中毕业暨高中阶段招生考试 数学 试 题一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.下列运算正确的是( )A .32a -2a =3B .32)(a =5aC .⋅3a 6a =9aD .22)2(a =24a 2.根据人民网-宁夏频道2012年1月18日报道,2011年宁夏地区生产总值为2060亿元,比上年增长12%,增速高于全国平均水平.2060亿元保留两个有效数字用科学记数法表示为( )A .2.0×109元 B . 2.1×103元 C .2.1×1010元 D .2.1×1011元 3.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( ) A .13 B .17 C .22 D .17或224、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .⎩⎨⎧=+=+16120053y x y xB .⎩⎨⎧=+=+162.1605603y x y xC .⎩⎨⎧=+=+162.153y x y x D .⎩⎨⎧=+=+161200605603y x y x5.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是( ) A.1217πm 2 B.617πm 2C.425πm 2D.1277πm 26.如图,AB为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠ACP =( ) A .30 B .45 C .60 D .67.57.一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是( )A .24.0B .62.8C .74.2D .113.08.运动会上,初二 (3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为( ). A .20305.140=-x x B.205.13040=-x x C .205.14030=-x x D.20405.130=-xx 二、填空题(每小题3分,共24分) 9.当a 时,分式21+a 有意义. 10.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是 .11.已知a 、b 为两个连续的整数,且b a <<11,则a b += . 12. 点B (-3,4)关于y 轴的对称点为A ,则点A 的坐标是 . 13.在△ABC 中∠C =90°,AB =5,BC =4,则tan A =_________.14. 如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A 、B 两岛的视角∠ACB =__________度. 15.如图,在矩形ABCD 中,对角线AC 、BD 相较于O ,DE ⊥AC 于E ,∠EDC ∶∠EDA =1∶2,且AC =10,则DE 的长度是 .16.如图,将等边△ABC 沿B C 方向平移得到△A 1B 1C 1.若BC =3,31=∆C PB S ,则BB 1= .三、解答题(共24分) 17.(6分)计算: 18.(6分)化简,求值: 11222+-+--x xx x x x ,其中x=219.(6分)解不等式组 ⎪⎩⎪⎨⎧≤--+-+131211312x x x x )(>20)21(21)2012(45sin 22--+----︒∙第5题第15题第16题 A A 1 11 第7题720.(6分)某商场为了吸引顾客,设计了一种促销活动,在一个不透明的箱子里放有4个相同的小球,在球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本商场同一天内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和,返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.四、解答题(共48分)21.(6分)商场对每个营业员在当月某种商品销售件数统计如下: 解答下列问题 (1)设营业员的月销售件数为x(单位:件),商场规定:当x <15时为不称职;当15≤x <20时为基本称职;当20≤x <25为称职;当x ≥25时为优秀.试求出优秀营业员人数所占百分比; (2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数; (3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励。
宁夏银川中考数学试卷及答案一、选择题1. 计算a 2+3a 2的结果是( )A .3a 2B .4a 2C .3a 4D .4a 42. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =60,AD =2,则AB 的长是( )A .2B .4C .2 3D .4 33. 等腰梯形的上底是2cm,腰长是4cm,一个底角是60,则等腰梯形的下底是( )A .5cmB .6cmC .7cmD .8cm4. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A .⎩⎨⎧=+=+yx xy y x 188B .⎩⎨⎧+=++=+yx y x y x 1018108C .⎩⎨⎧=++=+yxy x y x 18108D .⎩⎨⎧=+=+yxy x y x )(1085. 将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的 平面展开图如图所示,那么在这个正方体中,和“创”相对的字是( )A .文B .明C .城D .市6. 已知⊙O 1、⊙O 2的半径分别是r 1=3、r 2=5.若两圆相切,则圆心距O 1O 2的值是( )A .2或4B .6或8C .2或8D .4或67. 某校A 、B 两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:设两队队员身高的平均数分别为A x ,B x ,身高的方差分别为2A S ,2B S ,则正确的选项是( )A .A x =B x ,2A S >2B S B .A x <B x ,2A S <2B SC .A x >B x ,2A S >2B SD .A x =B x ,2A S <2B S8. 如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90,得到△A BO ,176 175 174 171 174 170 173 171 174 182B 队 A 队 1号 2号 3号 4号 5号 O 第2题图ABCD 第5题图创 建 文 明 城市第8题图O ABxy那么点A 、B 的对应点的坐标是( ) A .A (-4,2)、B (-1,1)B .A (-4,1)、B (-1,2) C .A (-4,1)、B (-1,1)D .A (-4,2)、B (-1,2)二、填空题9. 分解因式:a 3-a =__________.10. 数轴上A 、B 两点对应的实数分别是2和2,若点A 关于点B 的对称点为点C .则点C 所对应的实数为__________.11. 若线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (3,6),则点B (-5,-2)的对应点D 的坐标是__________.12. 在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车需300元,每个学生活动期间所需经费15元,则参加这次活动的学生人数最多为__________. 13. 某商场在促销活动中,将原价36元的商品,连续两次降价m %后售价为25元.根据题意可列方程为__________.14. 如图,点A 、D 在⊙O 上,BC 是⊙O 的直径,若∠D =35,则∠OAB 的度数是__________.15. 如图,在△ABC 中,DE ∥AB ,CD ︰DA =2︰3,DE =4,则AB 的长为__________. 16. 如图是一个几何体的三视图,这个几何体的全面积为__________.(取3.14) 三、解答题17. 计算:23)31(30tan 320112---+︒--18. 解方程:2311+=--x x x19. 解不等式组⎩⎨⎧7-x3-x ≤1,8-x +22>3.第16题图2 2 22222左视图 俯视图主视图第15题图AE BCD第14题图O ABD20. 有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x ;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片.将其混合后,正面朝下放置在桌面上.从中随机地抽取一张,把卡片正面上的数字记为y ;然后计算出S =x +y 的值.(1)用树状图或列表法表示出S 的所有可能情况;(2)求出当S <2时的概率.21. 我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“从未听说”五个等级,统计后的数据整理如下表:等级 非常了解 比较了解 基本了解 不太了解 从未听说 频数 40 6048 36 16 频率0.2m0.240.180.08(1)本次问卷调查抽取的样本容量为__________,表中m 的值为__________;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.22. 已知,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,BE =DF ,BE ∥DF .求证:四边形ABCD 是平行四边形.23. 在△ABC 中,AB =AC .以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D .(1)求证:PD 是⊙O 的切线;(2)若∠CAB =120,AB =2,求BC 的值.第22题图BCDAE F第21题图 非常了解 从未听说 不太了解 基本了解比较了解24. 在Rt △ABC 中,∠C =90,∠A =30,BC =2.若将此直角三角形的一条直角边BC 或AC与x 轴重合,使点A 或点B 刚好在反比例函数xy 6(x >0)的图象上时,设△ABC 在第一象限部分的面积分别记做S 1、S 2(如图1,图2所示),D 是斜边与y 轴的交点,通过计算比较S 1、S 2的大小.25. 甲、乙两人分别乘不同的冲锋舟同时从A 地逆流而上前往B 地.甲所乘冲锋舟在静水中的速度为1112千米/分钟,甲到达B 地立即返回,乙所乘冲锋舟在静水中的速度为712千米/分钟.已知A 、B 两地的距离为20千米,水流速度为112千米/分钟,甲、乙乘冲锋舟行驶的距离y (千米)与所用时间x (分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y 与x 之间的函数关系式; (2)甲、乙两人同时出发后,经过多少分钟相遇?26. 在等腰△ABC 中,AB =AC =5,BC =6.动点M 、N 分别在两腰AB 、AC 上(M 不与A 、B 重合,N不与A 、C 重合),且MN ∥BC .将△AMN 沿MN 所在的直线折叠,使点A 的对应点为P .O20y (千米) OCD AB xyS 1OAD BC xyS 2第23题图DA BC PO(1)当MN 为何值时,点P 恰好落在BC 上?(2)设MN =x ,△MNP 与等腰△ABC 重叠部分的面积为y ,试写出y 与x 的函数关系式.当x 为何值时,y 的值最大,最大值是多少?参照答案一、选择题(3分×8=24分)二、填空题(3分×8=24分)9. )1)(1(+-a a a ; 10. 4-2; 11. (0,1); 12. 40; 13. 36(1-2%)m =25; 14.35°; 15. 10; 16. 9.42. 三.解答题(共24分) 17.解: 原式=1-3×33+9-(2-3) ---------------------------4分 =1-3+9-2+3=8 ------------------------------------------ 6分18. 解:两边同乘)2)(1(+-x x ,得 )1(3)2)(1()2(-=+--+x x x x x ---2分 整理得:52=xABCMNP第26题图解得,25=x -----------------------------------------5分 经检验25=x 是原方程的根 -----------------------------------------6分19. 解:解①得 x ≥1 --------------------------------------2分 解②得 x <8 ---------------------------------------4分 ∴不等式组的解集为 1≤x <8 --------------------------------6分20.(1) 用列表法:x s y123456-2 -1 0 1 2 3 4 -1 0 1 2 3 4 5 1 234567或画树状图:--------------4分(2)由列表或画树状图知s 的所有可能情况有18种,其中S <2的有5种 ∴P(S <2)=185--------------------------------6分 四、解答题(共48分)21. 解:(1)抽取的样本容量为200,表中m 的值为0.3. ------ 2分(2)“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数为3600.272⨯= --------------------------4分(3)结合表中统计的数据,利用统计的语言叙述合理 ---------6分 22. (方法一)∵DF ∥BE ∴∠DFA =∠BEC∴∠DFC =∠BEA ……………………………………………………… 2分 在△ABE 和△CDF 中∵DF =BE ∠DFC =∠BEA AE=CF△ABE ≌△CDF (SAS ) ………………………………………………3分F ED CBA∴∠EAB =∠FCD; AB=CD ∴AB ∥CD∴四边形ABCD 是平行四边形 …………………………………………6分 (方法二)∵DF ∥BE∴∠DFA =∠BEC ……………………………………………………2分 ∵AE=CF∴AE+EF=CF+EF 即AF=CE 在△AFD 和△CEB 中∵DF =BE ∠DFA =∠BEC AF =CE∴△AFD ≌△CEB (SAS ) …………………………………………3分 ∴AD =CB ∠DAF =∠BCE∴AD ∥CB ∴四边形ABCD 是平行四边形………………………… 6分 23. (1)证明:连结OP ,则OP =OB . ∴∠OBP =∠OPB AB AC =,∴∠OBP =∠C .∴∠OPB =∠C∴OP ∥AC ……………………………… 3分∵PD ⊥AC , ∴∠DP ⊥OP . ∴PD 是⊙O 的切线. ……………………………… 5分 (2)连接AP ,则AP ⊥BC在Rt △APB 中 ∠ABP =30°∴BP =AB ×COS30°=3 ………………………………7分 ∴BC =2BP =23 …………………………………………8分24. 解:在Rt △ABC 中, ∵∠C=90°, ∠A =30°,BC =2 ∴AC=oBC30tan =23…1分 在图1中, ∵点A 在反比例函数xy 6= (0)x >的图象上 ∴A 点的横坐标326=x =3∴OC=3, BO =2-3 ………………………………2分在Rt △BOD 中,∠DBO =60° DO=BO ×tan60°=332-…………………3分1s =21)(21=⋅+OC AC OD [32)332(+-]×3=3236- ………4分在图2中, ∵点B 在反比例函数xy 6= (0)x >的图象上 ∴B 点的横坐标26=x =3 ∴OC=3, AO =23-3 ……………………… 5分 在Rt △AOD 中 ∠DAO =30° DO =AO×tan30°=(23-3)×33=2-3 ……………6分 2s =OC BC OD ⋅+)(21=21[2)32(+-]×33236-= ………………7分∴ 21s s = ………………………………………………………………8分 的另法:在图1中,过A 作AE ⊥y 轴于点E ,则矩形AEOC 面积为6∵点A 在反比例函数xy 6= (0)x >的图象上 ∴A 点的横坐标326=x =3∴AE = OC =3在图2中,过B 作BE ⊥y 轴于点E ,则矩形BEOC 的面积为6∵点B 在反比例函数xy 6= (0)x >的图象上 ∴B 点的横坐标26=x =3 ∴OC =3, AO =23-3 在Rt △AOD 中 ∠DAO =30° DO =AO ×tan30°=(23-3)×33=2-3 ∴DE =OE -OD =3 ∴△AED ≌△BED ∴S AED ∆= S BED ∆ ∵S 1=6- S AED ∆ 2S =6- S BED ∆ ∴S 1=2S 25. 解:(1)甲从A 地到B 地:x y =1211211-O DA BC MNP D O FEABCM N P即x y 65=……………………………… 2分 甲从A 地到达B 地所用时间: 20÷65=24(分钟)∴0≤x <24时,x y 65= …………………3分甲从B 地回到A 地所用时间:20÷(1211211+)=20(分钟)设甲从B 地回到A 地的函数关系式为k b kx y (+=≠0),将(24,20)、 (44,0)中的坐标分别代入k b kx y (+=≠0)得 k =-1,b =44∴24≤x ≤44时,44+-=x y …………… 6分(2)解法一:设甲、乙两人出发x 分钟后相遇,根据题意,得(x )121127-+()1211211+×(x -24)=20……………………………8分 解得 388=x ∴甲、乙两人出发388分钟后相遇 ……………10分解法二:乙从A 地到B 的的函数关系式为 x y 21=解方程组…………………………………………8分解得388=x ∴甲、乙两人出发388分钟后相遇 ……………10分26. 解:(1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线 ∴ 当MN =21BC =3时, 点P 在BC 上 …………………………………2分 (2)由已知得△ABC 底边上的高h=2235-=4①当0<x ≤3时,如图,连接AP 并延长交BC 于点D ,AD 与MN 交于点O 由△AMN ∽△ABC ,得 AO =x 32 y = S PMN ∆= S AMN ∆=2313221x x x =⋅⋅ 即231x y =当x =3时,y 的值最大,最大值是3 ……………… 5分②当3<x <6时,设△PMN 与BC 相交于交于点E 、F ,AP 与BC 相交于D由①中知,AO =x 32 ∴AP =x 34 x y 21= 44+-=x yPD =AP -AD =434-x ∵△PEF ∽△ABC∴22)4434()(-==∆∆x AD PD S S ABCPEF 即9)3(2-=∆∆x S S ABC PEF ∵S ABC ∆=12 ∴S PEF ∆=2)3(34-x y = S PMN ∆- S PEF ∆=22)3(3431--x x =1282-+-x x ……………… 8分当4=x 时,y 的值最大,最大值是4……………………………………10分。
2023年宁夏回族自治区中考数学真题学校:___________姓名:___________班级:___________考号:___________....A.0.6B.0.55.估计23的值应在()A .23-B .237.在同一平面直角坐标系中,一次函数A .1y 随x 的增大而增大B .b n<C .当2x <时,12y y >D .关于x ,y 的方程组ax mx ⎧⎨二、填空题⨯网格,点16.如图是由边长为1的小正方形组成的96均在格点上.下列结论:①点D与点F关于点E中心对称;②连接FB,FC,FE,则FC平分∠③连接AG,则点B,F到线段AG的距离相等.其中正确结论的序号是.20.“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用玩具的数量多30个,且A型玩具单价是(1)求两种型号玩具的单价各是多少元?23.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分)年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x(单位:分)进行统计:七年级869479847190八年级887690788793(1)求证:AC 平分BAE ∠(2)若5AC =,tan ACE ∠25.如图,抛物线y ax =点A 的坐标是()1,0-,抛物线的对称轴是直线(1)直接写出点B 的坐标;(2)在对称轴上找一点P ,使PA PC +的值最小.求点P (3)第一象限内的抛物线上有一动点M ,过点M 作MN MN 于点Q .依题意补全图形,当2MQ CQ +的值最大时,求点26.综合与实践探究发现如图1,在ABC 中,A ∠=(1)操作发现:将ABC于点D,连接DE,DB (用含x的式子表示)(2)进一步探究发现:证明:512 BCAC-=底腰参考答案:∴45CAD ACD ∠=︒=∠,∴2cm AD CD ==,在Rt BCD 中,60BCD ∠=︒,点D与点F关于点E中心对称;故①②如图:由图可知:22==+=,3110FB FE△为等腰三角形,∴BFE∵FC经过BE的中点,∴FC平分BFE∠,故②正确;∴2==,BM FN∴点B,F到线段AG的距离相等,故综上,正确的有①②③;故答案为:①②③.【点睛】本题考查中心对称图形,勾股定理,等腰三角形的判定和性质,正方形的判定和性则:14070101809AB ππ=⨯=,过点A 作AC l ∥,BC AC ⊥于点C ∴30BAC ∠=︒,∴13529BC AB π==,即:粮袋上升的高度是的切线,∵直线DC是O⊥,∴OC DE⊥,∵AE DCO C A E,∴∥∠=∠+∠∵OCE OCF ACE∵()3,0B ,∴223332BC =+=,∵点A 关于对称轴的对称点为点∴PA PC PB PC BC +=+≥,∵()()1,0,3,0A B -,设抛物线的解析式为:y =∵()0,3C ,∴33a =-,。
宁夏中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。
每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母填入题后的括号内。
)1. 下列哪个选项是不等式2x-3>0的解集?A. x<1.5B. x>1.5C. x<-1.5D. x>-1.5答案:B2. 已知函数y=2x+1,当x=2时,y的值为:A. 5B. 4C. 3D. 2答案:A3. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 20cmD. 15cm答案:A4. 计算下列哪个表达式的结果为0?A. 3×0C. 3+0D. 3-3答案:A5. 一个数的平方是16,那么这个数是:A. 4B. 8C. -4D. 4或-4答案:D6. 已知一个等腰三角形的两个底角相等,且每个底角的度数为45°,那么顶角的度数是:A. 90°B. 45°C. 60°D. 30°答案:A7. 计算下列哪个表达式的结果为-1?A. 1-2B. 2-3C. 3-4D. 4-5答案:A8. 一个长方形的长是10cm,宽是5cm,那么它的周长是:A. 30cmB. 20cmC. 15cm答案:A9. 已知一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边的长度是:A. 5cmB. 7cmC. 6cmD. 8cm答案:A10. 计算下列哪个表达式的结果为1?A. 1+0B. 0+1C. 1-0D. 0-1答案:A二、填空题(本题共5小题,每小题4分,共20分。
请将答案直接写在题后的横线上。
)1. 一个数的绝对值是5,那么这个数可能是________。
答案:±52. 圆的周长公式是________。
答案:2πr3. 一个直角三角形的两条直角边长分别为a和b,斜边长为c,根据勾股定理,c²=________。
答案:a²+b²4. 已知一个数的平方根是2,那么这个数是________。
2022年宁夏中考数学试卷参考答案与试题解析一、选择题1.某地一天的最高气温是8℃,最低气温是﹣2℃,那么该地这天的温差是〔〕A.10℃ B.﹣10C.6℃ D.﹣6℃【解析】根据题意得:8﹣〔﹣2〕=8+2=10,那么该地这天的温差是10℃,应选A2.以下计算正确的选项是〔〕A.+=B.〔﹣a2〕2=﹣a4C.〔a﹣2〕2=a2﹣4 D.÷=〔a≥0,b>0〕【解析】A、+无法计算,故此选项错误;B、〔﹣a2〕2=a4,故此选项错误;C、〔a﹣2〕2=a2﹣4a+4,故此选项错误;D、÷=〔a≥0,b>0〕,正确.应选:D.3.x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.3【解析】,①+②得:4x+4y=20,那么x+y=5,应选C4.为响应“书香校响园〞建设的号召,在全校形成良好的阅读气氛,随机调查了局部学生平均每天阅读时间,统计结果如下列图,那么本次调查中阅读时间为的众数和中位数分别是〔〕A.2和1 B.1.25和1 C.1和1 D.1和1.25【解析】由统计图可知众数为1小时;共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1〔小时〕,那么中位数是1小时.应选C.5.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.假设EF=,BD=2,那么菱形ABCD的面积为〔〕A.2B.C.6D.8【解析】∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,应选:A.6.由假设干个相同的小正方体组合而成的一个几何体的三视图如下列图,那么组成这个几何体的小正方形个数是〔〕A.3 B.4 C.5 D.6【解析】综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.应选:C.7.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写〞大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,那么应选择的学生是〔〕甲乙丙丁8.9 9.5 9.5 8.9s20.92 0.92 1.01 1.03A.甲B.乙C.丙D.丁【解析】根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙;应选B.8.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是〔〕A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【解析】∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.应选B.二、填空题〔此题共8小题,每题3分,共24分〕9.分解因式:mn2﹣m=.【解析】mn2﹣m,=m〔n2﹣1〕,=m〔n+1〕〔n﹣1〕.10.假设二次函数y=x2﹣2x+m的图象与x轴有两个交点,那么m的取值范围是.【解析】∵二次函数y=x2﹣2x+m的图象与x轴有两个交点,∴△>0,∴4﹣4m>0,∴m<1.故答案为m<111.实数a在数轴上的位置如图,那么|a﹣3|=.【解析】由数轴上点的位置关系,得a<3.|a﹣3|=3﹣a,故答案为:3﹣a.12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,那么这个圆锥的底面圆的半径为.【解析】设这个圆锥的底面圆的半径为R,由题意:2πR=,解得R=2.故答案为2.13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,假设平行四边形ABCD的周长是16,那么EC等于.【解析】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为〔,0〕,〔0,1〕,把Rt△AOB沿着AB对折得到Rt△AO′B,那么点O′的坐标为.【解析】如图,作O′C⊥y轴于点C,∵点A,B的坐标分别为〔,0〕,〔0,1〕,∴OB=1,OA=,∴tan∠BAO==,∴∠BAO=30°,∴∠OBA=60°,∵Rt△AOB沿着AB对折得到Rt△AO′B,∴∠CBO′=60°,∴设BC=x,那么OC′=x,∴x2+〔x〕2=1,解得:x=〔负值舍去〕,∴OC=OB+BC=1+=,∴点O′的坐标为〔,〕.故答案为:〔,〕.15.正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是.【解析】如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,∵△ABC是等边三角形,∴∠A=60°,∠BOC=2∠A=120°,∵OB=OC,OE⊥BC,∴∠BOE=60°,BE=EC=3,∴sin60°=,∴OB=2,故答案为2.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,那么点P的坐标为.【解析】连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点〔,〕,∴直线EF为y=﹣3x+2,由得,∴P〔1,﹣1〕.故答案为〔1,﹣1〕.三、解答题〔此题共6道题,每题6分,共36分〕17.解不等式组.【解】,由①得,x<3,由②得,x≥2,故不等式组的解集为:2≤x<3.18.化简求值:〔〕,其中a=2+.【解】原式=[+]•+=•+==,当a=2+时,原式=+1.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔2,﹣1〕,B〔3,﹣3〕,C 〔0,﹣4〕〔1〕画出△ABC关于原点O成中心对称的△A1B1C1;〔2〕画出△A1B1C1关于y轴对称的△A2B2C2.【解】〔1〕△A1B1C1如下列图;〔2〕△A2B2C2如下列图.20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个工程的喜欢情况,整理成以下统计表,其中“√〞表示喜欢,“×〞表示不喜欢.长跑短跑跳绳跳远200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××〔1〕估计学生同时喜欢短跑和跳绳的概率;〔2〕估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个工程的概率;〔3〕如果学生喜欢长跑、那么该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?【解】〔1〕同时喜欢短跑和跳绳的概率==;〔2〕同时喜欢三个工程的概率==;〔3〕同时喜欢短跑的概率==,同时喜欢跳绳的概率==,同时喜欢跳远的概率==,∵,∴同时喜欢跳绳的可能性大.21.在等边△ABC中,点D,E分别在边BC、AC上,假设CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【解】∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,每行驶1千米,纯燃油费用比纯用电费用多0.5元.〔1〕求每行驶1千米纯用电的费用;〔2〕假设要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,那么至少用电行驶多少千米?【解】〔1〕设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;〔2〕从A地到B地油电混合行驶,用电行驶y千米,0.26y+〔﹣y〕×〔0.26+0.50〕≤39解得,y≥74,即至少用电行驶74千米.四、解答题〔此题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分〕23.△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,假设ED=EC.〔1〕求证:AB=AC;〔2〕假设AB=4,BC=2,求CD的长.【解答】〔1〕证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;〔2〕解:连接AE,∵AB为直径,∴AE⊥BC,由〔1〕知AB=AC,∴BE=CE=BC=,∵CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=〔x>0〕的图象经过OA的中点C,交AB于点D.〔1〕求反比例函数的关系式;〔2〕连接CD,求四边形CDBO的面积.【解】〔1〕∵∠ABO=90°,∠AOB=30°,OB=2,∴AB=OB=2,作CE⊥OB于E,∵∠ABO=90°,∴CE∥AB,∴OC=AC,∴OE=BE=OB=,CE=AB=1,∴C〔,1〕,∵反比例函数y=〔x>0〕的图象经过OA的中点C,∴1=,∴k=,∴反比例函数的关系式为y=;〔2〕∵OB=2,∴D的横坐标为2,代入y=得,y=,∴D〔2,〕,∴BD=,∵AB=2,∴AD=,∴S△ACD=AD•BE=××=,∴S四边形CDBO=S△AOB﹣S△ACD=OB•AB﹣=×2×2﹣=.25.某种水彩笔,在购置时,假设同时额外购置笔芯,每个优惠价为3元,使用期间,假设备用笔芯缺乏时需另外购置,每个5元.现要对在购置水彩笔时应同时购置几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购置笔芯上所需要的费用〔单位:元〕,n表示购置水彩笔的同时购置的笔芯个数.〔1〕假设n=9,求y与x的函数关系式;〔2〕假设要使这30支水彩笔“更换笔芯的个数不大于同时购置笔芯的个数〞的频率不小于0.5,确定n的最小值;〔3〕假设这30支笔在购置时,每支笔同时购置9个笔芯,或每支笔同时购置10个笔芯,分别计算这30支笔在购置笔芯所需费用的平均数,以费用最省作为选择依据,判断购置一支水彩笔的同时应购置9个还是10个笔芯.【解】〔1〕当n=9时,y==;〔2〕根据题意,“更换笔芯的个数不大于同时购置笔芯的个数〞的频率不小于0.5,那么“更换笔芯的个数不大于同时购置笔芯的个数〞的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购置笔芯的个数〞的频数=4+6+8=18>15.因此n的最小值为9.〔3〕假设每支笔同时购置9个笔芯,那么所需费用总和=〔4+6+8〕×3×9+7×〔3×9+5×1〕+5×〔3×9+5×2〕=895,假设每支笔同时购置10个笔芯,那么所需费用总和=〔4+6+8+7〕×3×10+5×〔3×10+5×1〕=925,因此应购置9个笔芯.26.在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB 向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.假设两个点同时运动的时间为x秒〔0<x≤3〕,解答以下问题:〔1〕设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;〔2〕是否存在x的值,使得QP⊥DP?试说明理由.【解】〔1〕∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,那么AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ=AD•AQ=×4x=2x,S△BPQ=BQ•BP=〔3﹣x〕x=x﹣x2,S△PCD=PC•CD=•〔4﹣x〕•3=6﹣x,=AB•BC=3×4=12,又S矩形ABCD∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣〔x﹣x2〕﹣〔6﹣x〕=x2﹣2x+6=〔x ﹣2〕2+4,即S=〔x﹣2〕2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S=,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4;〔2〕存在,理由如下:由〔1〕可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,那么∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴=,即=,解得x=〔舍去〕或x=,∴当x=时QP⊥DP.。
宁夏2022年中考数学真题试题(含解析)2022年宁夏中考数学试卷一、选择题1.某地一天的最高气温是8℃,最低气温是-2℃,则该地这天的温差是()A.10℃B.-10℃C.6℃D.-6℃2.下列计算正确的是()A。
$2+2=4$ B。
$(-a^2)^2=a^4$ C。
$\frac{a-2}{b}>0$ D。
$3\times 4=12$3.已知$x$,$y$满足方程组begin{cases} x+y=12\\ x-y=4 \end{cases}$$则$x+y$的值为()A.9B.7C.5D.34.为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1B.1.25和1C.1和1D.1和1.255.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=BD=2,则菱形ABCD的面积为()A.2B.4C.6D.86.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.67.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()begin{array}{|c|c|c|}\hline \text{学生}&\text{平均成绩}&\text{方差}\\ \hline \text{甲}&8.9&0.92\\ \hline\text{乙}&9.5&0.92\\ \hline \text{丙}&9.5&1.01\\ \hline\text{丁}&8.9&1.03\\ \hline \end{array}$$A.甲B.乙C.丙D.丁8.正比例函数$y=k\frac{1}{x}$的图象与反比例函数$y=\frac{-2}{x}$,当$y_1<y_2$时,$x$的取值范围是()的图象相交于$A$,$B$两点,其中点$B$的横坐标为A。
宁夏回族自治区2023年数学中考试卷一、单选题1.的绝对值是()A.B.C.D.2.下面是由七巧板拼成的图形(只考虑外形,忽略内部轮廓),其中轴对称图形是()A.B.C.D.3.下列计算正确的是()A.B.C.D.4.劳动委员统计了某周全班同学的家庭劳动次数(单位:次),按劳动次数分为4组:,,,,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是()A.B.C.D.5.估计的值应在()A.和4之间B.4和之间C.和5之间D.5和之间6.将一副直角三角板和一把宽度为2cm的直尺按如图方式摆放:先把和角的顶点及它们的直角边重合,再将此直角边垂直于直尺的上沿,重合的顶点落在直尺下沿上,这两个三角板的斜边分别交直尺上沿于,两点,则的长是()A.B.C.2D.7.在同一平面直角坐标系中,一次函数与的图象如图所示,则下列结论错误的是()A.随的增大而增大B.C.当时,D.关于,的方程组的解为8.如图,在中,,,.点在上,且.连接,将线段绕点顺时针旋转得到线段,连接,.则的面积是()A.B.C.D.二、填空题9.计算:.10.如图,在边长为2的正方形中,点在上,连接,.则图中阴影部分的面积是.11.方程有两个相等的实数根,则的值为.12.如图,在标有数字1,2,3,4的四宫格里任选两个小方格,则所选方格中数字之和为4的概率是.13.如图,四边形内接于,延长至点,已知,那么.14.如图,点,,在数轴上,点表示的数是,点是的中点,线段,则点表示的数是.15.如图是某种杆秤.在秤杆的点处固定提纽,点处挂秤盘,点为0刻度点.当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点,秤杆处于平衡.秤盘放入克物品后移动秤砣,当秤砣所挂位置与提扭的距离为毫米时秤杆处于平衡.测得与的几组对应数据如下表:/克024610/毫米1014182230由表中数据的规律可知,当克时,毫米.16.如图是由边长为1的小正方形组成的网格,点,,,,,,均在格点上.下列结论:①点与点关于点中心对称;②连接,,,则平分;③连接,则点,到线段的距离相等.其中正确结论的序号是.三、解答题17.计算:18.解不等式组下面是某同学的部分解答过程,请认真阅读并完成任务:解:由①得:第1步第2步第3步第4步任务一:该同学的解答过程第▲步出现了错误,错误原因是▲,不等式①的正确解集是▲;任务二:解不等式②,并写出该不等式组的解集.19.如图,已知,,分别是和上的点,.求证:四边形是平行四边形.20.“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了型和型两种玩具,已知用520元购进型玩具的数量比用175元购进型玩具的数量多30个,且型玩具单价是型玩具单价的倍.(1)求两种型号玩具的单价各是多少元?根据题意,甲、乙两名同学分别列出如下方程:甲:,解得,经检验是原方程的解.乙:,解得,经检验是原方程的解.则甲所列方程中的表示,乙所列方程中的表示;(2)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进型玩具多少个?21.给某气球充满一定质量的气体,在温度不变时,气球内气体的气压是气体体积()的反比例函数,其图象如图所示.(1)当气球内的气压超过时,气球会爆炸.若将气球近似看成一个球体,试估计气球的半径至少为多少时气球不会爆炸(球体的体积公式,取3);(2)请你利用与的关系试解释为什么超载的车辆容易爆胎.22.如图,粮库用传送带传送粮袋,大转动轮的半径为10cm,传送带与水平面成角.假设传送带与转动轮之间无滑动,当大转动轮转时,传送带上点处的粮袋上升的高度是多少?(传送带厚度忽略不计)23.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩(单位:分)进行统计:七年级86,94,79,84,71,90,76,83,90,87八年级88,76,90,78,87,93,75,87,87,79整理如下:年级平均数中位数众数方差七年级8490八年级8487根据以上信息,回答下列问题:(1)填空:,.同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由.24.如图,已知是的直径,直线是的切线,切点为,,垂足为.连接.(1)求证:平分;(2)若,,求的半径.25.如图,抛物线与轴交于,两点,与轴交于点.已知点的坐标是,抛物线的对称轴是直线.(1)直接写出点的坐标;(2)在对称轴上找一点,使的值最小.求点的坐标和的最小值;(3)第一象限内的抛物线上有一动点,过点作轴,垂足为,连接交于点.依题意补全图形,当的值最大时,求点的坐标.26.综合与实践问题背景数学小组发现国旗上五角星的五个角都是顶角为的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现如图1,在中,,.(1)操作发现:将折叠,使边落在边上,点的对应点是点,折痕交于点,连接,,则,设,,那么(用含的式子表示);(2)进一步探究发现:,这个比值被称为黄金比.在(1)的条件下试证明:;拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的是黄金三角形.如图2,在菱形中,,.求这个菱形较长对角线的长.(3)拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的是黄金三角形.如图2,在菱形中,,.求这个菱形较长对角线的长.1.C2.C3.D4.A5.C6.B7.C8.B9.10.211.12.13.7014.15.5016.①②③17.解:原式.18.解:任务一:∵,∴;∴该同学的解答过程第4步出现了错误,错误原因是不等号的方向没有发生改变,不等式①的正确解集是;故答案为:4,不等号的方向没有发生改变,;任务二:,,,;又,∴不等式组的解集为:.19.证明:,,又,,,,四边形是平行四边形.20.(1)型玩具的单价;购买型玩具的数量(2)设购进型玩具个,则购买型玩具个,由(1)中甲同学所列方程的解可知:型玩具的单价为5元,则型玩具的单价为元,由题意,得:,解得:,∵为整数,∴;答:最多购进型玩具个.21.(1)设函数关系式为,根据图象可得:,,当时,,,解得:,,随的增大而减小,要使气球不会爆炸,,此时,气球的半径至少为时,气球不会爆炸;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎.22.解:如图,设大转动轮转时,粮袋移动到点,则:,过点作,于点,∴,∴,即:粮袋上升的高度是cm.23.(1)85;87;七(2)(人),答:该校这两个年级测试成绩达到“优秀”的学生总人数为220人;(3)我认为八年级的学生掌握国家安全知识的总体水平较好,理由:因为七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,所以八年级的学生掌握防震减灾科普知识的总体水平较好.24.(1)证明:连接,∵直线是的切线,∴,∵,∴,∴,∵,∴,∴,即平分;(2)解:连接,过点O作于F,则,∵,,∴,∴,∴,∴,∴,即的半径为.25.(1)解:∵点关于对称轴的对称点为点,对称轴为直线,∴点为;(2)当时,,∴,连接,∵,∴,∵点关于对称轴的对称点为点,∴,∴当三点共线时,的值最小,为的长,设直线的解析式为:,则:,解得:,∴,∵点在抛物线的对称轴上,∴;∴点,的最小值为;(3)过点作轴,垂足为,连接交于点,如图所示,∵,设抛物线的解析式为:,∵,∴,∴,∴,设,则:,由(2)知:直线:,∴,∴,∵,∴,,∴,∴,∴,∴,∴,∴当时,有最大值,此时.26.(1)72;(2)证明:∵,∴,∵,∴,∴,∵,∴,∴,∴,整理,得:,解得:(负值已舍掉);经检验是原分式方程的解.∴;(3)解:如图,连接,延长至点,使,连接,∵在菱形中,,,∴,∴,∴,∴,∴为黄金三角形,∴,∴.即菱形的较长的对角线的长为.。
初中毕业升学考试(宁夏卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)l【解析】试题分析:分别利用二次根式混合运算法则以及积的乘方运算法则以及幂的乘方运算法则、完全平方公式计算得出答案.考点:(1)二次根式的混合运算;(2)幂的乘方与积的乘方;(3)完全平方公式【题文】已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【答案】C【解析】试题分析:方程组两方程相加求出x+y的值即可.,①+②得:4x+4y=20,则x+y=5,考点:二元一次方程组的解【题文】为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.25【答案】C【解析】试题分析:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组评卷人得分数据里的数;给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.由统计图可知阅读时间为1小数的有19人,人数最多,所以众数为1小时;总人数为40,得到中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),即可确定出中位数为1小时.考点:(1)众数;(2)条形统计图;(3)中位数【题文】菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2 B. C.6 D.8【答案】A【解析】试题分析:根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,考点:(1)菱形的性质;(2)三角形中位线定理【题文】由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A. 3B. 4C. 5D. 6【答案】C【解析】试题分析:掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.考点:由三视图判断几何体【题文】某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.99.59.58.9s20.920.921.011.03A.甲 B.乙 C.丙 D.丁【答案】B【解析】试题分析:方差是用来衡量一组数据波动大小的量,方差越大,表lC.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【答案】B【解析】试题分析:由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.考点:反比例函数与一次函数的交点问题【题文】分解因式:mn2﹣m= .【答案】m(n+1)(n﹣1)【解析】试题分析:先提取公因式m,再利用平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b)考点:提公因式法与公式法的综合运用【题文】若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是.【答案】m<1【解析】试题分析:△=0⇔抛物线与x轴只有一个交点,△>0⇔抛物线与x轴有两个交点,△<0⇔抛物线与x轴没有交点.∵二次函数y=x2﹣2x+m的图象与x轴有两个交点,∴△>0,∴4﹣4m>0,∴m<1.考点:抛物线与x轴的交点【题文】实数a在数轴上的位置如图,则|a﹣3|=.【答案】3﹣a【解析】试题分析:根据数轴上的点表示的数右边的总比左边的大,可得a与3的关系,根据差的绝对值是大数减小数,可得答案.由数轴上点的位置关系,得a<3,|a﹣3|=3﹣a,考点:实数与数轴【题文】用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为.【答案】2【解析】试题分析:设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.设这个圆锥的底面圆的半径为R,由题意:2πR=,解得R=2.考点:圆锥的计算【题文】在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于____________.【答案】2【解析】试题分析:由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;考点:平行四边形的性质【题文】如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为.【答案】(,)【解析】试题分析:作O′C⊥y轴于点C,首先根据点A,B的坐标分别为(,0),(0,1)得到∠BAO=30°,从而得出∠OBA=60°,然后根据Rt△AOB沿着AB对折得到Rt△AO′B,得到∠CBO′=60°,最后设BC=x,则OC′=x,利用勾股定理求得x的值即可求解.如图,作O′C⊥y轴于点C,∵点A,B的坐标分别为(,0),(0,1),∴OB=1,OA=,∴tan∠BAO==,∴∠BAO=30°,∴∠OBA=60°,∵Rt△AOB沿着AB对折得到Rt△AO′B,∴∠CBO′=60°,∴设BC=x,则O′C=x,∴x2+(x)2=1,解得:x=(负值舍去),所以O′C=∴OC=OB+BC=1+=,∴点O′的坐标为(,).考点:(1)翻折变换(折叠问题);(2)坐标与图形性质【题文】已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是.【答案】2【解析】试题分析:能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC外接圆的半径即可解决问题.如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,∵△ABC是等边三角形,∴∠A=60°,∠BOC=2∠A=120°,∵OB=OC,OE⊥BC,∴∠BOE=60°,BE=EC=3,∴sin60°=,∴OB=2考点:(1)三角形的外接圆与外心;(2)等边三角形的性质【题文】如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.【答案】(1,-1)【解析】试题分析:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).考点:坐标与图形变化-旋转【题文】解不等式组.【答案】2≤x<3【解析】试题分析:分别求出各不等式的解集,再求出其公共解集即可试题解析::,由①得,x<3,由②得,x≥2,故不等式组的解集为:2≤x<3.考点:解一元一次不等式组【题文】化简求值:(),其中a=2+.【答案】+1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值试题解析:原式=[+]•+=•+==,当a=2+时,原式=+1.考点:实数的运算【题文】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.【答案】(1)答案见解析;(2)答案见解析【解析】试题分析:(1)根据网格结构找出点A、B、C关于原点对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1关于y轴对称的点A2、B2、C2的位置,然后顺次连接即可.试题解析:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.考点:(1)作图-旋转变换;(2)作图-轴对称变换【题文】为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目学生数长跑短跑跳绳跳远200√×√√300×√×√150√√√×200√×√×150√×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?【答案】(1);(2);(3)跳绳【解析】试题分析:(1)根据求概率的公式即可得到结论;(2)根据求概率的公式即可得到结论;(3)根据求概率的公式求得各项概率进行比较即可得到结论.试题解析:(1)同时喜欢短跑和跳绳的概率==;(2)同时喜欢三个项目的概率==;(3)同时喜欢短跑的概率==,同时喜欢跳绳的概率==,同时喜欢跳远的概率==,∵,∴同时喜欢跳绳的可能性大.考点:(1)利用频率估计概率;(2)列表法与树状图法【题文】在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【答案】证明过程见解析【解析】试题分析:先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题.试题解析:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.考点:等边三角形的性质【题文】某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【答案】(1)0.26元;(2)74千米.【解析】试题分析:(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B 地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.试题解析:(1)设每行驶1千米纯用电的费用为x元,根据题意可得:=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;()2从、A地到B地油电混合行驶,用电行驶y千米,根据题意得:0.26y+(﹣y)×(0.26+0.50)≤39解得,y≥74,即至少用电行驶74千米.考点:(1)分式方程的应用;(2)一元一次不等式的应用【题文】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=,求CD的长.【答案】(1)证明过程见解析;(2)【解析】试题分析:(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,由“三线合一”定理得到BE=CE=BC=,由割线定理可证得结论.试题解析:(1)∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.考点:(1)圆周角定理;(2)等腰三角形的判定与性质;(3)勾股定理.【题文】如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.【答案】(1)y=;(2)【解析】试题分析:(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)求得D的坐标,进而求得AD 的长,得出△ACD的面积,然后根据S四边形CDBO=S△AOB﹣S△ACD即可求得.试题解析:(1)∵∠ABO=90°,∠AOB=30°,OB=2,∴AB=OB=2,作CE⊥OB于E,∵∠ABO=90°,∴CE∥AB,∴OC=AC,∴OE=BE=OB=,CE=AB=1,∴C(,1),∵反比例函数y=(x>0)的图象经过OA的中点C,∴1=,∴k=,∴反比例函数的关系式为y=;(2)∵OB=2,∴D的横坐标为2,代入y=得,y=,∴D(2,),∴BD=,∵AB=2,∴AD=,∴S△ACD=AD•BE=××=,∴S四边形CDBO=S△AOB﹣S△ACD=OB•AB﹣=×2×2﹣=.考点:(1)待定系数法求反比例函数解析式;(2)反比例函数系数k的几何意义【题文】某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.【答案】(1);(2)9;(3)9个笔芯.【解析】试题分析:(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可;(3)分两种情况计算试题解析:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.考点:(1)一次函数的应用;(2)频数与频率;(3)条形统计图【题文】在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.【答案】(1)S=(x﹣2)2+4;x=2,最小值为4;(2)存在,理由见解析.【解析】试题分析:(1)可用x表示出AQ、BQ、BP、CP,从而可表示出S△ADQ、S△BPQ、S△PCD的面积,则可表示出S,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC ,当QP⊥DP时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x的方程,可求得x的值.试题解析:(1)∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ=AD•AQ=×4x=2x,S△BPQ=BQ•BP=(3﹣x)x=x﹣x2,S△PCD=PC•CD=•(4﹣x)•3=6﹣x,又S矩形ABCD=AB•BC=3×4=12,∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x﹣x2)﹣(6﹣x)=x2﹣2x+6=(x﹣2)2+4,即S=(x﹣2)2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S=,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴=,即=,解得x=(舍去)或x=,∴当x=时QP⊥DP.考点:(1)矩形的性质;(2)二次函数的最值;(3)相似三角形的判定和性质;(4)方程思想。
1中宁县大战场初级中学宁夏回族自治区2008年初中毕业暨高中阶段招生数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.31-的绝对值是()A.-3 B.31C. 3 D.31-2.根据国务院抗震救灾总指挥部权威发布:截止2008年6月13日12时,全国共接受国内外社会各界捐赠款物总计455.02亿元.455.02亿元用科学记数法表示为()A. 4.5502×108元B. 4.5502×109元C. 4.5502×1010元 D. 4.5502×1011元3.下列各式运算正确的是()A.21-=2-B.23=6 C.632222=⋅D.6232)2(=4.下列分解因式正确的是()A.)1(222--=--yxxxxyx B.)32(322---=-+-xxyyyxyxyC.2)()()(yxyxyyxx-=---D.3)1(32--=--xxxx5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,乙10次立定跳远成绩的方差S2乙=0.035,则()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较6.平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD7.反比例函数xky=(k>0)的部分图象如图所示,A、B是图象上两点,AC⊥x轴于点C,BD⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1= S2C.S1<S2D.无法确定8.已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙1O的半径为4cm,则⊙O2的半径为()A.5cm B.13cm C.9 cm 或13cm D.5cm 13cm二、填空题(每小题3分,共24分)9.计算:825-= .10.如图,AB∥CD,AC⊥BC,∠BAC =65°,则∠BCD= 度.11.某市对一段全长1500米的道路进行改造.原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了天.12.学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下:已知该校七年级学生有800名,那么中号校服应订制套.13.从-1,1,2三个数中任取一个,作为一次函数y=k x+3的k值,则所得一次函数中y随x的增大而增大的概率是.14.制作一个圆锥模型,已知圆锥底面圆的半径为3.5cm,侧面母线长为6cm,则此圆锥侧面展开图的扇形圆心角为度.15.展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的正方体______块.16.已知a、b、c为三个正整数,如果a+b+c=12,那么以a、b、c为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是.(只填序号)三、解答题(共24分)17.(6分) 先化简,再求值:)1()1112(2-⨯+--aaa,其中33-=a.18.(6分)如图,在△ABC中,∠C=90°,sin A=54,AB=15,求△ABC的周长和tan A的值.219.(6分)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:6因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程. (2)该班捐款金额的众数、中位数分别是多少?20. (6分)张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案: 张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.(1)计算张红获得入场券的概率,并说明张红的方案是否公平? (2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?四、解答题(共48分) 21.(6分)商场为了促销,推出两种促销方式: 方式①:所有商品打7.5折销售:方式②:一次购物满200元送60元现金.(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:方案一:628元和788元的商品均按促销方式①购买;方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买; 方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买;方案四:628元和788元的商品均按促销方式②购买.你给杨老师提出的最合理购买方案是 .(2)通过计算下表中标价在600元到800元之间商品的付款金额,你总结出商品的购买规律是 .22.(6分)如图,在边长均为1的小正方形网格纸中,△OAB 的顶点O 、A 、B 均在格点上,且O 是直角坐标系的原点,点A 在x 轴上. (1)以O 为位似中心,将△OAB 放大,使得放大后的△11B OA 与△OAB 对应线段的比为2∶1,画出△11B OA .(所画△11B OA 与△OAB 在原点两侧).(2)求出线段11B A 所在直线的函数关系式.23.(8分)已知二次函数122--=x x y .(1) 求此二次函数的图象与x 轴的交点坐标.(2)二次函数2x y =的图象如图所示,将2x y =的图象经过怎样的平移,就可以得到二次函数122--=x x y 的图象.(参考:二次函数)0(2≠++=a c bx axy 图象的顶点坐标是(ab ac a b 44,22--))324.(8分)如图,梯形ABCD 内接于⊙O , BC ∥AD ,AC 与BD 相交于点E ,在不添加任何辅助线的情况下:(1) 图中共有几对全等三角形,请把它们一一写出来,并选择其中一对全等三角形进行证明. (2) 若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形.25.(10分)为极大地满足人民生活的需求,丰富市场供应,我区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的矩形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种.科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益.现有一个种植总面积为540m 2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:(1)若设草莓共种植了垄,通过计算说明共有几种种植方案?分别是哪几种? (2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?26. (10分)如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点Q .(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ; (2)当点P 在AB 上运动到什么位置时,△ADQ 的面积是正方形ABCD 面积的61;(3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P 运动到什么位置时,△ADQ 恰为等腰三角形.4宁夏回族自治区2009年初中毕业暨高中阶段招生数 学 试 题一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.下列运算正确的是( )A .3412a a a =· B .623(6)(2)3a a a -÷-=C .22(2)4a a -=- D .23a a a -=-2.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x ,则可列方程为( )A .225(1)64x +=B .225(1)64x -=C .264(1)25x += D .264(1)25x -=3.把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .4.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误..的是()A .众数是85B .平均数是85C .中位数是80D .极差是15 5.一次函数23y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( ) A .24π B .32π C .36π D .48π7.在44⨯的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有( )A .1个B .2个C .3个D .4个 8.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,则下列四个结论错误..的是( ) A .0c > B .20a b += C .240b ac -> D .0a b c -+> 二、填空题(每小题3分,共24分) 9.分解因式:32m mn -= .10.在R t ABC △中,9032C A B B C ∠===°,,,则cos A 的值是 . 11.已知:32a b +=,1ab =,化简(2)(2)a b --的结果是 .12.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为 元.13.用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为 . 14.如图,梯形A B C D 的两条对角线交于点E ,图中面积相等的三角形共有 对.15.如图,A B C △的周长为32,且A B A C A D B C =⊥,于D ,AC D △的周长为24,那么A D 的长为 .16.如图,O ⊙是边长为2的等边三角形ABC 的内切圆,则图中阴影部分的面积为 . 三、解答题(共24分) 17.(6分) 101(2009)12-⎛⎫-++ ⎪⎝⎭.18.(6分)解分式方程:1233x x x+=--.1 0 1-1 01-1 0 1- 1 0 1- 主视图左视图 俯视图(6题图)(7题图)(8题图)A DCBE (14题图) (15题图)A BCDB(16题图)519.(6分)已知正比例函数1y k x =1(0)k ≠与反比例函数22(0)k y k x=≠的图象交于A B、两点,点A 的坐标为(21),.(1)求正比例函数、反比例函数的表达式; (2)求点B 的坐标.20.(6分)桌子上放有质地均匀,反面相同的4张卡片.正面分别标有数字1、2、3、4,将这些卡片反面朝上洗匀后放在桌面上,先从中任意抽出1张卡片,用卡片上所标的数字作为十位上的数字,将取出的卡片反面朝上放回洗匀;再从中任意抽取1张卡片,用卡片上所标的数字作为个位数字.试用列表或画树状图的方法分析,组成的两位数恰好能被3整除的概率是多少?四、解答题(48分) 21.(6分)在“首届中国西部(银川)房·车生活文化节”期间,某汽车经销商推出A B C D 、、、四种型号的小轿车共1000辆进行展销.C 型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中. (1)参加展销的D 型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A B C D 、、、四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A 型号轿车发票的概率.22.(6分)如图:在R t ABC △中,90A C B ∠=°,C D 是A B 边上的中线,将A D C △沿A C 边所在的直线折叠,使点D 落在点E 处,得四边形A B C E .求证:EC AB ∥.23.(8分)已知:如图,A B 为O ⊙的直径,A B A C B C =,交O ⊙于点D ,A C 交O ⊙于点45E BAC ∠=,°.(1)求E B C ∠的度数; (2)求证:B D C D =.型号DC20% B 20% A 35% 各型号参展轿车数的百分比A B C D (图2)(图1)EC BADC624.(8分)如图,抛物线21222y x x =-++与x 轴交于A B 、两点,与y 轴交于C 点.(1)求A B C 、、三点的坐标;(2)证明A B C △为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使A B P △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.25.(10分)如图1、图2,是一款家用的垃圾桶,踏板A B (与地面平行)或绕定点P (固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持AP A P BP B P ''==,).通过向下踩踏点A 到A '(与地面接触点)使点B 上升到点B ',与此同时传动杆B H 运动到B H ''的位置,点H 绕固定点D 旋转(D H 为旋转半径)至点H ',从而使桶盖打开一个张角H D H '∠.如图3,桶盖打开后,传动杆H B ''所在的直线分别与水平直线A B D H 、垂直,垂足为点M C 、,设H C '=B M '.测得6cm 12cm 8cm A P P B D H '===,,.要使桶盖张开的角度H D H '∠不小于60°,那么踏板A Bcm ?(结果保留两位有效数字) 1.41 1.73(图1)26.(10分)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段M N 在A B C △的边A B 上沿A B 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作A B 边的垂线,与A B C △的其它边交于P Q 、两点,线段M N 运动的时间为t 秒.(1)线段M N 在运动的过程中,t 为何值时,四边形M NQP 恰为矩形?并求出该矩形的面积;(2)线段M N 在运动的过程中,四边形M NQP 的面积为S ,运动的时间为t .求四边形M NQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.C PQBA M ND(图2)D(图3)7宁夏回族自治区2010年初中毕业暨高中阶段招生数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.下列运算正确的是 ( ) A .236a a a ⋅= B .532a a a ÷= C .235a a a += D .235()a a =2.把多项式322x x x -+分解因式结果正确的是 ( ) A .2(2)x x x - B .2(2)x x - C .(1)(1)x x x +- D .2(1)x x -3. 把61万用科学记数法可表示为 ( ) A .4101.6⨯ B .5101.6⨯ C .5100.6⨯ D . 41061⨯4.用一个平面去截一个几何体,不能截得三角形截面的几何体是 ( ) A .圆柱 B .圆锥 C .三棱柱 D .正方形5.为了解居民节约用水的情况,增强居民的节水意识,下表是某个单元的住户当月用水量的调查结果:则关于这12户居民月用水量,下列说法错误..的是 ( ) A .中位数 6方 B .众数6方 C .极差8方 D .平均数5方6.点A 、B 、C 是平面内不在同一条直线上的三点,点D 是平面内任意一点,若A 、B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D 有 ( ) A .1个 B .2个 C .3个 D .4个7.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式 ( )A .2(1)3y x =--+ B .2(1)3y x =-++ C .2(1)3y x =--- D .2(1)3y x =-+-. 8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x 元、y 元,则下列方程组正确的是 ( ) A .⎩⎨⎧+⨯=-++=+)201(100)401(101(100000000y x y x B . ⎩⎨⎧⨯=++-=+00000020100401()101(100y x y xC .⎩⎨⎧+⨯=++-=+)201(100401(101(100000000y x y x D . ⎩⎨⎧⨯=-++=+00000020100)401(101(100y x y x二、填空题(每小题3分,共24分)9.若分式12-x 与1互为相反数,则x 的值是 .10.如图,BC ⊥AE ,垂足为C ,过C 作CD ∥AB .若∠ECD =48°则∠B = .11.矩形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是 .12.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折. 如果用27元钱,最多可以购买该商品的件数是 . 13.若关于x 的不等式组⎩⎨⎧>>mx x 2的解集是2>x ,则m 的取值范围是 .14.将半径为10cm ,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是 . 15.如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是 米.16.关于对位似图形的表述,下列命题正确的是 .(只填序号)① 相似图形一定是位似图形,位似图形一定是相似图形; ② 位似图形一定有位似中心;③ 如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形; ④位似图形上任意两点与位似中心的距离之比等于位似比.三、解答题(共24分)17.(6分) 计算:011( 3.14)()12π--+---.EDCB A818.(6分)解不等式组3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩ .19.(6分)先化简,再求代数式的值:222111a a aa a+⎛⎫-÷ ⎪-+-⎝⎭ ,其中1a =.20.(6分)在一个不透明的盒子里,装有3个写有字母A 、2个写有字母B 和1个写有字母C 的小球, 它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下字母后放回盒子,摇匀后再随机取出一个小球,记下字母.请你用画树状图或列表的方法,求摸出的两个小球上分别写有字母B 、C 的概率.四、解答题(共48分)21.(6分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市24000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:请根据以上图表提供的信息,解答下列问题:(1)表中a 和b 所表示的数分别为:a = ,b = ; (2)请在图中,补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市24000名九年级考生数学成绩为优秀的学生约有多少名?22.(6分)已知:正方形ABCD 中,E 、F 分别是边CD 、DA 上的点,且CE =DF ,AE 与BF 交于点M. (1)求证:△ABF ≌△DAE ;(2)找出图中与△ABM 相似的所有三角形(不添加任何辅助线).23.(8分)如图,已知:⊙O 的直径AB 与弦AC 的夹角∠A =30°,过点C 作⊙O 的切线交AB 的延长线于点P .(1) 求证:AC =CP ;(2) 若PC =6,求图中阴影部分的面积(结果精确到0.1). 1.73= 3.14π=)M FE D CBAAP924.(8分)如图,已知:一次函数:4y x =-+的图像与反比例函数:2y x=(0)x >的图像分别交于A 、B两点,点M 是一次函数图像在第一象限部分上的任意一点,过M 分别向x 轴、y 轴作垂线,垂足分别为M 1、M 2,设矩形MM 1OM 2的面积为S 1;点N 为反比例函数图像上任意一点,过N 分别向x 轴、y 轴作垂线,垂足分别为N 1、N 2,设矩形NN 1ON 2的面积为S 2;(1)若设点M 的坐标为(x ,y ),请写出S 1关于x 的函数表达式,并求x 取何值时,S 1的最大值;(2)观察图形,通过确定x 的取值,试比较S 1、S 2的大小.25.(10分)小明想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.26. (10分)在△ABC 中,∠BAC =45°,AD ⊥BC 于D ,将△ABD 沿AB 所在的直线折叠,使点D 落在点E 处;将△ACD 沿AC 所在的直线折叠,使点D 落在点F 处,分别延长EB 、FC 使其交于点M . (1)判断四边形AEMF 的形状,并给予证明.(2)若BD =1,CD =2,试求四边形AEMF 的面积.ABCD10宁夏回族自治区2011年初中毕业暨高中阶段招生考试数 学 试 题一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 1. 计算223a a +的结果是( )A. 23aB. 24aC. 43aD. 44a 2. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =60°,AD =2,则AB 的长是( ) A .2 B .4C. D.3. 等腰梯形的上底是2cm ,腰长是4cm ,一个底角是60︒,则等腰梯形的下底是( )A .5cmB . 6cmC . 7cmD . 8cm4. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A. B.C. D.5. 将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是( ) A . 文 B . 明 C . 城 D . 市6. 已知⊙O 1、⊙O 2的半径分别是1r =3、52=r .若两圆相切,则圆心距O 1O 2的值是( )A .2 或4B .6或8C .2或8D .4或67. 某校A 、B 两队10名参加篮球比赛的同学,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数分别为A x -,B x -,身高的方差分别为As2,Bs2,则正确的选项是( )A .A x -=B x -,As2>B s2B .A x -<B x -,A s 2<B s 2C .A x ->B x -,As2>B s2D .A x -=B x -,A s 2<B s 28. 如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90°,得到△O B A '',那么点A 、B 的对应点'A 、'B 的坐标是( ). A .'A (-4, 2)、 'B (-1,1) B. 'A (-4,1)、 'B (-1,2) C. 'A (-4,1)、'B (-1,1) D. 'A (-4,2)、'B (-1,2)二、填空题(每小题3分,共24分) 9.分解因式:a a -3= .10.数轴上A B 、两点对应的实数分别是2和2,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为 .11. 若线段C D 是由线段A B 平移得到的,点A (-2,3)的对应点为C (3,6),则点B (-5,-2)的对应点D 的坐标是 .12. 在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车费300元,每个学生活动期间需经费15元,则参加这次活动的学生人数最多为 .13. 某商场在促销活动中,原价36元的商品,连续两次降价%m 后售价为25元.根据题意可列方程为 . 14. 如图,点A 、D 在⊙O 上,BC 是⊙O 的直径,若∠D = 35°,则∠OAB 的度数是 .15. 如图,在△ABC 中,DE ∥AB ,CD ︰DA =2︰3,DE =4,则AB 的长为 . 16. 如图是一个几何体的三视图,这个几何体的全面积为 .(π取3.14) 三、解答题(共24分)17.(6分) 计算:02011-3o30tan +2)31(--|23|--18.(6分)解方程:2311+=--x x x18=+y x yx xy =+18 8=+y x y x y x +=++101810 18=+y x yx y x =+)(108=+y xyx y =++181019.(6分)解不等式组20.(6分)有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x ;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y ;然后计算出S =x +y 的值.(1)用树状图或列表法表示出S 的所有可能情况; (2)求出当S <2时的概率.四、解答题(共48分)21.(6分)我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“从未听说”五个等级,统计后的数据整理如下表:(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数; (3)根据上述统计结果,请你对政府相关部门提出一句话建议.22.(6分)已知,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF , BE = DF , BE ∥DF . 求证:四边形ABCD 是平行四边形23.(8分)在A B C △中,A B A C =,以A B 为直径的⊙O 交B C 于点P ,PD ⊥AC 于点D . (1)求证:PD 是⊙O 的切线;(2)若∠CAB =120°,AB =2,求BC 的值.F ED C BAx x --37≤1228+-x >3PNM CBA24.(8分)在Rt △AB C 中,∠C =90°, ∠A =30°, BC =2.若将此直角三角形的一条直角边BC 或AC 与x 轴重合,使点A 或点B 恰好在反比例函数xy 6=(0)x >的图象上时,设A B C△在第一象限部分的面积分别记作1s 、2s (如图1、图2所示),D 是斜边与y 轴的交点,通过计算比较1s 、2s 的大小.25.(10分)甲、乙两人分别乘不同的冲锋舟同时从A 地逆流而上前往B 地.甲所乘冲锋舟在静水中的速度为1211千米/分钟,甲到达B 地立即返回.乙所乘冲锋舟在在静水中的速度为127千米/分钟.已知A 、B 两地的距离为20千米,水流速度为121千米/分钟,甲、乙乘冲锋舟行驶的距离y (千米)与所用时间x (分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y 与x 之间的函数关系式; (2)甲、乙两人同时出发后,经过多少分钟相遇?26.(10分) 在等腰△ABC 中,,AB =AC=5,BC =6.动点M 、N 分别在两腰AB 、AC 上(M 不与A 、B 重合,N 不与A 、C 重合),且M N ∥BC . 将△A MN 沿MN 所在的直线折叠,使点A 的对应点为P . (1)当MN 为何值时,点P 恰好落在BC 上?(2)设MN =x ,△MNP 与等边△ABC 重叠部分的面积为y .试写出y 与x 的函数关系式.当x 为何值时,y 的值最大,最大值是多少?第6题宁夏回族自治区2012年初中毕业暨高中阶段招生考试 数学 试 题一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.下列运算正确的是( )A .32a -2a =3B .32)(a =5aC .⋅3a 6a =9aD .22)2(a =24a2.根据人民网-宁夏频道2012年1月18日报道,2011年宁夏地区生产总值为2060亿元,比上年增长12%,增速高于全国平均水平.2060亿元保留两个有效数字用科学记数法表示为( )A .2.0×109元 B . 2.1×103元 C .2.1×1010元 D .2.1×1011元 3.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( ) A .13 B .17 C .22 D .17或224、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .⎩⎨⎧=+=+16120053y x y xB .⎩⎨⎧=+=+162.1605603y x y x C .⎩⎨⎧=+=+162.153y x y x D .⎩⎨⎧=+=+161200605603y x y x5.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是( ) A.1217πm 2B.617πm 2C.425πm 2D.1277πm26.如图,AB为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠ACP =( ) A .30 B .45 C .60 D .67.57.一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是( )A .24.0B .62.8C .74.2D .113.08.运动会上,初二 (3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为( ). A .20305.140=-xxB.205.13040=-xx C .205.14030=-xx D.20405.130=-x x二、填空题(每小题3分,共24分) 9.当a 时,分式21+a 有意义.10.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是 .11.已知a 、b 为两个连续的整数,且b a <<11,则a b += . 12. 点B (-3,4)关于y 轴的对称点为A ,则点A 的坐标是 . 13.在△ABC 中∠C =90°,AB =5,BC =4,则tan A =_________.14. 如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A 、B 两岛的视角∠ACB =__________度. 15.如图,在矩形ABCD 中,对角线AC 、BD 相较于O ,DE ⊥AC 于E ,∠EDC ∶∠EDA =1∶2,且AC =10,则DE 的长度是 .16.如图,将等边△ABC 沿B C 方向平移得到△A 1B 1C 1.若BC =3,31=∆C PB S ,则BB 1= .三、解答题(共24分)17.(6分)计算:18.(6分)化简,求值: 11222+-+--x x x x x x ,其中x=220)21(21)2012(45sin 22--+----︒∙第5题第15题图第16题 A A 1 11 第7题19.(6分)解不等式组 ⎪⎩⎪⎨⎧≤--+-+131211312x x x x )(>20.(6分)某商场为了吸引顾客,设计了一种促销活动,在一个不透明的箱子里放有4个相同的小球,在球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本商场同一天内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和,返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.四、解答题(共48分)21.(6分)商场对每个营业员在当月某种商品销售件数统计如下: 解答下列问题(1)设营业员的月销售件数为x(单位:件),商场规定:当x <15时为不称职;当15≤x <20时为基本称职;当20≤x <25为称职;当x ≥25时为优秀.试求出优秀营业员人数所占百分比; (2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数;(3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励。
2016年宁夏中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(2016•宁夏)某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃C.6℃D.﹣6℃2.(3分)(2016•宁夏)下列计算正确的是()A.+= B.(﹣a2)2=﹣a4C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)3.(3分)(2016•宁夏)已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.34.(3分)(2016•宁夏)为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.255.(3分)(2016•宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD 边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2 B.C.6D.86.(3分)(2016•宁夏)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.67.(3分)(2016•宁夏)某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.9 9.5 9.5 8.9s20.92 0.92 1.01 1.03A.甲B.乙C.丙D.丁8.(3分)(2016•宁夏)正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B 两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2二、填空题(本题共8小题,每小题3分,共24分)9.(3分)(2016•宁夏)分解因式:mn2﹣m=.10.(3分)(2016•宁夏)若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是.11.(3分)(2016•宁夏)实数a在数轴上的位置如图,则|a﹣3|=.12.(3分)(2016•宁夏)用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为.13.(3分)(2016•宁夏)在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.14.(3分)(2016•宁夏)如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为.15.(3分)(2016•宁夏)已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是.16.(3分)(2016•宁夏)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.三、解答题(本题共6道题,每题6分,共36分)17.(6分)(2016•宁夏)解不等式组.18.(6分)(2016•宁夏)化简求值:(),其中a=2+.19.(6分)(2016•宁夏)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.20.(6分)(2016•宁夏)为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.长跑短跑跳绳跳远200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?21.(6分)(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.22.(6分)(2016•宁夏)某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23.(8分)(2016•宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.24.(8分)(2016•宁夏)如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.25.(10分)(2016•宁夏)某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.26.(10分)(2016•宁夏)在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.2016年宁夏中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2016•宁夏)某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃C.6℃D.﹣6℃【分析】根据题意算式,计算即可得到结果.【解答】解:根据题意得:8﹣(﹣2)=8+2=10,则该地这天的温差是10℃,故选A【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.(3分)(2016•宁夏)下列计算正确的是()A.+= B.(﹣a2)2=﹣a4C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)【分析】分别利用二次根式混合运算法则以及积的乘方运算法则以及幂的乘方运算法则、完全平方公式计算得出答案.【解答】解:A、+无法计算,故此选项错误;B、(﹣a2)2=a4,故此选项错误;C、(a﹣2)2=a2﹣4a+4,故此选项错误;D、÷=(a≥0,b>0),正确.故选:D.【点评】此题主要考查了二次根式混合运算以及积的乘方运算以及幂的乘方运算、完全平方公式等知识,正确掌握相关运算法则是解题关键.3.(3分)(2016•宁夏)已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4x+4y=20,则x+y=5,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.(3分)(2016•宁夏)为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.25【分析】由统计图可知阅读时间为1小数的有19人,人数最多,所以众数为1小时;总人数为40,得到中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),即可确定出中位数为1小时.【解答】解:由统计图可知众数为1小时;共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故选C.【点评】此题考查中位数、众数的求法:①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.5.(3分)(2016•宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD 边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2 B.C.6D.8【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【解答】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.【点评】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.6.(3分)(2016•宁夏)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.6【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.【点评】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.7.(3分)(2016•宁夏)某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.9 9.5 9.5 8.9s20.92 0.92 1.01 1.03A.甲B.乙C.丙D.丁【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙;故选B.【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(3分)(2016•宁夏)正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B 两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【分析】由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.【解答】解:∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.故选B.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标.本题属于基础题,难度不大,根据正、反比例的对称性求出点A的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)(2016•宁夏)分解因式:mn2﹣m=m(n+1)(n﹣1).【分析】先提取公因式m,再利用平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:mn2﹣m,=m(n2﹣1),=m(n+1)(n﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后再利用平方差公式进行二次分解因式,也是难点所在.10.(3分)(2016•宁夏)若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是m<1.【分析】根据△>0⇔抛物线与x轴有两个交点,列出不等式即可解决问题.【解答】解:∵二次函数y=x2﹣2x+m的图象与x轴有两个交点,∴△>0,∴4﹣4m>0,∴m<1.故答案为m<1【点评】本题考查抛物线与x轴的交点,解题的关键是记住△=0⇔抛物线与x轴只有一个交点,△>0⇔抛物线与x轴有两个交点,△<0⇔抛物线与x轴没有交点,属于中考常考题型.11.(3分)(2016•宁夏)实数a在数轴上的位置如图,则|a﹣3|=3﹣a.【分析】根据数轴上的点表示的数右边的总比左边的大,可得a与3的关系,根据差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得a<3.|a﹣3|=3﹣a,故答案为:3﹣a.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a与3的关系是解题关键,注意差的绝对值是大数减小数.12.(3分)(2016•宁夏)用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为2.【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题【解答】解:设这个圆锥的底面圆的半径为R,由题意:2πR=,解得R=2.故答案为2.【点评】本题考查圆锥的计算、扇形的弧长公式、圆的周长公式等知识,解题的关键是理解扇形的弧长等于这个圆锥的底面圆的周长,学会用方程的思想解决问题,属于中考常考题型.13.(3分)(2016•宁夏)在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于2.【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.【点评】此题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AB=BE是解决问题的关键.14.(3分)(2016•宁夏)如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为(,)..【分析】作O′C⊥y轴于点C,首先根据点A,B的坐标分别为(,0),(0,1)得到∠BAO=30°,从而得出∠OBA=60°,然后根据Rt△AOB沿着AB对折得到Rt△A O′B,得到∠CBO′=60°,最后设BC=x,则OC′=x,利用勾股定理求得x的值即可求解.【解答】解:如图,作O′C⊥y轴于点C,∵点A,B的坐标分别为(,0),(0,1),∴OB=1,OA=,∴tan∠BAO==,∴∠BAO=30°,∴∠OBA=60°,∵Rt△AOB沿着AB对折得到Rt△AO′B,∴∠CBO′=60°,∴设BC=x,则OC′=x,∴x2+(x)2=1,解得:x=(负值舍去),∴O′C=,∴OC=OB+BC=1+=,∴点O′的坐标为(,).故答案为:(,).【点评】本题考查了翻折变换及坐标与图形的性质的知识,解题的关键是根据点A和点B 的坐标确定三角形为特殊三角形,难度不大.15.(3分)(2016•宁夏)已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是2.【分析】能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC 外接圆的半径即可解决问题.【解答】解:如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,∵△ABC是等边三角形,∴∠A=60°,∠BOC=2∠A=120°,∵OB=OC,OE⊥BC,∴∠BOE=60°,BE=EC=3,∴sin60°=,∴OB=2,故答案为2.【点评】本题考查等边三角形的性质、三角形外接圆的性质、锐角三角函数等知识,解题的关键是理解题意,学会转化的思想解决问题,属于中考常考题型.16.(3分)(2016•宁夏)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为(1,﹣1).【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故答案为(1,﹣1).【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.三、解答题(本题共6道题,每题6分,共36分)17.(6分)(2016•宁夏)解不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<3,由②得,x≥2,故不等式组的解集为:2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(6分)(2016•宁夏)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.【分析】(1)根据网格结构找出点A、B、C关于原点对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1关于y轴对称的点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.(6分)(2016•宁夏)为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.长跑短跑跳绳跳远200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?【分析】(1)根据求概率的公式即可得到结论;(2)根据求概率的公式即可得到结论;(3)根据喜欢长跑同时喜欢短跑、跳绳、跳远人数即可得到结论.【解答】解:(1)同时喜欢短跑和跳绳的概率==;(2)同时喜欢三个项目的概率==;(3)喜欢长跑的有700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.【点评】本题考查了利用频率估计概率,求概率,正确的理解题意是解题的关键.21.(6分)(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【分析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.22.(6分)(2016•宁夏)某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【解答】解:(1)设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,0.26y+(﹣y)×(0.26+0.50)≤39解得,y≥74,即至少用电行驶74千米.【点评】本题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的分式方程与不等式,注意分式方程在最后要检验.四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23.(8分)(2016•宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.【分析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,证明△CDE∽△CBA 后即可求得CD的长.【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.24.(8分)(2016•宁夏)如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)求得D的坐标,进而求得AD的长,得出△ACD的面积,然后根据S四边形CDBO=S△AOB ﹣S△ACD即可求得.【解答】解:(1)∵∠ABO=90°,∠AOB=30°,OB=2,∴AB=OB=2,作CE⊥OB于E,∵∠ABO=90°,∴CE∥AB,∴OC=AC,∴OE=BE=OB=,CE=AB=1,∴C(,1),∵反比例函数y=(x>0)的图象经过OA的中点C,∴1=,∴k=,∴反比例函数的关系式为y=;(2)∵OB=2,∴D的横坐标为2,代入y=得,y=,∴D(2,),∴BD=,∵AB=2,∴AD=,∴S△ACD=AD•BE=××=,∴S四边形CDBO=S△AOB﹣S△ACD=OB•AB﹣=×2×2﹣=.【点评】本题考查待定系数法求反比例函数的解析式,解决本题的关键是明确反比例函数图象上点的坐标特征.25.(10分)(2016•宁夏)某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.【分析】(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可.(3)分两种情况计算【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.【点评】此题是一次函数的应用,主要考查了一次函数的性质,统计图,解本题的关键是统计图的分析.26.(10分)(2016•宁夏)在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.【分析】(1)可用x表示出AQ、BQ、BP、CP,从而可表示出S△ADQ、S△BPQ、S△PCD的面积,则可表示出S,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,当QP⊥DP时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x的方程,可求得x的值.【解答】解:(1)∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ=AD•AQ=×4x=2x,S△BPQ=BQ•BP=(3﹣x)x=x﹣x2,S△PCD=PC•CD=•(4﹣x)•3=6﹣x,又S矩形ABCD=AB•BC=3×4=12,∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x﹣x2)﹣(6﹣x)=x2﹣2x+6=(x﹣2)2+4,即S=(x﹣2)2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S=,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△CDP,∴=,即=,解得x=(舍去)或x=,∴当x=时QP⊥DP.【点评】本题为四边形的综合应用,涉及知识点有矩形的性质、二次函数的最值、相似三角形的判定和性质及方程思想等.在(1)中求得S关于x的关系式后,求S的最值时需要注意x的范围,在(2)中证明三角形相似是解题的关键.本题考查知识点较多,综合性较强,难度适中.。