新人教版九年级数学下册28.1锐角三角函数第4课时教案新版
- 格式:doc
- 大小:53.50 KB
- 文档页数:4
锐角三角函数人教版数学九年级下册教案28.1锐角三角函数:教案教材分析:学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号inA、coA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
28.1锐角三角函数第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(inA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
你想知道小明怎样算出的吗下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦二、探索新知、分类应用【活动一】问题的引入【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。
锐角三角函数 课题:28. 1锐角三角函数(第四课时) 序号学习目标:1、知识和技能:(1) 根据锐角的度数求对应的三角函数值。
(2)根据三角函数值求对应的锐角的度数。
2、过程和方法:明确锐角和其三角函数值的一一对应关系。
3、情感、态度、价值观:了解“对应”的数学方法。
学习重点:(1) 根据锐角的度数求对应的三角函数值。
(2)根据三角函数值求对应的锐角的度数。
学习难点:明确锐角和其三角函数值的一一对应关系。
导学过程:一、课前导学:《导学案》P86页“教材导读”。
二、课堂导学:情境导入:一个直角三角形中,一个锐角正弦是怎么定义的?一个锐角余弦是怎么定义的?一个锐角正切是怎么定义的?2、出示任务,自主学习:(1) 根据锐角的度数求对应的三角函数值。
(2)根据三角函数值求对应的锐角的度数。
3、合作探究:1.已知:Rt △ABC 中,∠C=90°,cosA=35,AB=15,则AC 的长是( ). A .3 B .6 C .9 D .122.下列各式中不正确的是( ).A .sin 260°+cos 260°=1B .sin30°+cos30°=1C .sin35°=cos55°D .tan45°>sin45°3.计算2sin30°-2cos60°+tan45°的结果是( ).A .2B .3C .2D .14.已知∠A 为锐角,且cosA ≤12,那么( ) A .0°<∠A ≤60°B .60°≤∠A<90° C .0°<∠A ≤30°D .30°≤∠A<90°5.在△ABC 中,∠A 、∠B 都是锐角,且sinA=12, cosB= 3 2 ,则△ABC 的形状是( ) A .直角三角形 B .钝角三角形C .锐角三角形 D .不能确定如图Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=3,AC=4,设∠BCD=a ,则tana•的值为( ).A .34B .43C .35D .45三、展示与反馈:《导学案》P86“自主测评”。
28.1锐角三角函数(第4课时)教学任务分析一棵大树的一段BC被风吹断,顶端着地与地面成31°角,且着地处与大树底端相距4米,则这棵大树的高为_________米4、若tanA×tan15°=1,则锐角A的度数是___________(三)解答下列各题1、如图,边长为3的正方形ABCD绕点C 按顺时针方向旋转35°,后得到正方形EFCG,若EF交AD于点H,求DH的长。
2、用计算器求锐角的三角函数值,填入下表:锐角A …15°18°20°22°…sinAcosAtanA随着锐角A的度数的不断增大,sinA有怎样的变化趋势?cosA呢?tanA呢?你能说明你的结论吗?3、请运用上题中探究的结论填空(1)sin52°8′_____sin50°8′(2)cos52°8′_____cos50°8′(3)sin52°8′_____cos50°8′(4)tan52°8′_____tan50°8′题,抢答3题3、关注同伴表现,参与集体评价。
高理性思辨能力。
通过课外探究,一方面将学生的探索兴趣由课内引向课外,使学生带着收获和新的问题走出课堂,从而发展学生的问题意识;另一方面,通过诸如此类的模拟仿真情景引导学生感受生活与数学的密切关系,提高学生的数学应用意识;第三,为后继学习解直角三角形做好铺垫。
______,23sin 5的取值范围是则)(αα【课外探究】学完锐角三角函数后,小颖突发奇想:能否借助锐角三角函数概念及直角三角形其它知识测算自家所住楼房高度呢?于是,她登上对面楼顶,测得自家所住楼顶点C 处的仰角(视线位于水平线之上时,视线与水平线的夹角)为52°,楼底点D 处的俯角(视线位于水平线下方时,视线与水平线的夹角)为13°,她走下楼来到地面,测得两座楼AB 与CD 相距60米,便兴高采烈地说:“哈哈!这下我就可以算出我家所居住楼房的高度了”,聪明的同学们,你们知道小颖是怎样算出来的吗?请帮助小颖写出计算过程。
人教版数学九年级下册28.1《锐角三角函数》教学设计4一. 教材分析人教版数学九年级下册28.1《锐角三角函数》是本节课的主要内容。
通过本节课的学习,学生能够了解锐角三角函数的概念,理解正弦、余弦、正切函数的定义及它们之间的关系,并能运用这些知识解决一些实际问题。
本节课的内容是学生对三角函数的初步认识,对于学生来说比较抽象,需要通过实例和实际操作来帮助学生理解和掌握。
二. 学情分析九年级的学生已经具备了一定的代数和几何基础,对于一些基本函数的概念和性质有一定的了解。
但是,对于三角函数这一部分内容,由于比较抽象,学生可能会有理解上的困难。
因此,在教学过程中,需要通过实例和实际操作来帮助学生理解和掌握。
三. 教学目标1.了解锐角三角函数的概念,理解正弦、余弦、正切函数的定义及它们之间的关系。
2.能够运用锐角三角函数的知识解决一些实际问题。
3.通过学习,提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:锐角三角函数的概念,正弦、余弦、正切函数的定义及它们之间的关系。
2.难点:对锐角三角函数的理解和应用。
五. 教学方法1.实例教学法:通过具体的实例,让学生了解和理解锐角三角函数的概念和性质。
2.问题驱动法:通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
3.小组合作学习:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,包括锐角三角函数的定义、性质和应用等方面的内容。
2.实例材料:准备一些具体的实例,用于讲解和展示锐角三角函数的概念和性质。
3.练习题:准备一些练习题,用于巩固和检验学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个具体的实例,如测量一个未知角度的三角板,引出锐角三角函数的概念。
让学生思考:如何通过已知的角度和边长来求解未知的角度和边长?2.呈现(15分钟)讲解锐角三角函数的定义和性质,包括正弦、余弦、正切函数的定义及它们之间的关系。
锐角三角函数教学目标:1、 明白得锐角三角函数的概念,把握锐角三角函数的表示法;2、 能依照锐角三角函数的概念计算一个锐角的各个三角函数的值;3、 把握Rt △中的锐角三角函数的表示:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠4、把握锐角三角函数的取值范围;五、通过经历三角函数概念的形成进程,培育学生从特殊到一样及数形结合的思想方式。
教学重点:锐角三角函数相关概念的明白得及依照概念计算锐角三角函数的值。
教学难点:锐角三角函数概念的形成。
教学进程: 一、创设情境:鞋跟多高适合?美国人体工程学研究人员卡特·克雷加文调查发觉,70%以上的女性喜爱穿鞋跟高度为6至7厘米左右的高跟鞋。
但专家以为穿6厘米以上的高跟鞋腿肚、背部等处的肌肉超级容易疲劳。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。
假设某成年人脚前掌到脚后跟长为15厘米,不难算出鞋跟在3厘米左右高度为最佳。
问:你明白专家是如何计算的吗? 显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回忆直角三角形的已学知识,引出课题。
二、探讨新知:一、下面咱们一路来探讨一下。
实践一:作一个30°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。
⑴计算AB BC ,AB AC ,ACBC的值,并将所得的结果与你同伴所得的结果进行比较。
∠A=30°时AB BC AB AC ACBC学生1结果 学生2结果 学生3结果 学生4结果⑵将你所取的AB 的值和你的同伴比较。
实践二:作一个50°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。
(1)量出AB ,AC ,BC 的长度(精准到1mm )。
(2)计算AB BC ,AB AC ,ACBC的值(结果保留2个有效数字),并将所得的结果与你同伴所得的结果进行比较。
∠A=50°时 AB AC BCAB BC AB AC ACBCAC B学生1结果 学生2结果 学生3结果学生4结果(3)将你所取的AB 的值和你的同伴比较。
解直角三角形及其应用(第4课时)教学目标1.正确理解方向角的概念.2.能运用解直角三角形知识解决有关方向角的问题.3.能够融会贯通地运用相关的数学知识,进一步提高运用解直角三角形知识分析解决问题的综合能力.教学重点运用解直角三角形知识解决有关方向角的问题.教学难点运用解直角三角形知识解决有关方向角的问题.教学过程知识回顾利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据问题中的条件,适当选用锐角三角函数等解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.新知探究一、探究学习【问题】方向角在测绘、地质与地球物理勘探、航空、航海及部队行进等方面应用广泛.你知道怎样利用方向角测量两地的距离吗?【师生活动】学生思考,然后找学生代表说一说解决问题的思路,教师纠正.【答案】利用方向角,根据已知条件构造直角三角形,然后通过解直角三角形就可得出所求两地的距离.【新知】一般地,方向角是指目标与参照物所在的直线和南北方向所在的直线所夹的锐角.【追问】你知道怎样表示方向角吗?【师生活动】直接找学生说出图中各点所在位置的方向角(以点O所在位置为参照点),教师纠正.【答案】如图,点A在点O的北偏东60°方向,点B在点O的南偏东45°方向(东南方向),点C在点O的南偏西80°方向,点D在点O的北偏西30°方向.南偏东45°也称为东南方向;南偏西45°也称为西南方向;北偏西45°也称为西北方向;北偏东45°也称为东北方向.【归纳】特别注意:(1)方向角通常是以南北方向线为基准,一般习惯说成“南偏东(西)”或“北偏东(西)”;(2)观测点不同,所得的方向角也不同,但各个观测点的南北方向线是互相平行的,因此,通常借助于此性质进行角度的转换.【设计意图】通过这个问题,让学生了解方向角的概念,知道方向角的表示方法.二、典例精讲【例1】如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处.这时,B处距离灯塔P有多远(结果取整数)?【分析】能确定的线段和角有:∠A=65°,P A=80 n mile,∠B=34°.要求解的是:线段PB的长度.【答案】解:如图,在Rt△APC中,PC=P A·sin 65°≈72.505(n mile).在Rt△BPC中,∠B=34°,∵sin B=PC PB,∴PB=72.505sin sin34PCB=︒≈130(n mile).因此,当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130 n mile.【设计意图】通过这个问题,检验学生对运用解直角三角形的知识解决有关方向角的实际问题的掌握情况.【例2】海中有一个小岛A,它周围8 n mile内有暗礁.渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12 n mile到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?【答案】解:如图,过A点作AE⊥BD于点E,过D点作DC∥AE,则AE是点A到BD的最短距离,且CD//AE//BF.∴∠BAE =∠ABF =60°,∠DAE =∠ADC =30°. ∴∠ABE =∠BAD =30°. ∴AD =BD =12 n mile .∴AE =AD ·sin 60°=12=n mile ).∵8,∴如果渔船不改变航线继续向东航行,没有触礁的危险.【归纳】解答关于方向角的应用题时,对于非直角三角形问题,可以通过作辅助线转化成直角三角形问题来解决.多利用正北、正南、正东、正西方向线构造直角三角形,注意所作的辅助线尽量不分割已知的特殊角.【设计意图】通过这个问题,检验学生对运用解直角三角形的知识解决有关方向角的实际问题的解题思路的掌握情况.【例3】如图,随着我市铁路建设进程的加快,现规划从A 地到B 地有一条笔直的铁路通过,但在附近的C 处有一个大型油库.现测得油库C 在A 地的北偏东60°方向上,在B地的西北方向上,B 地在A 地的正东方向上,AB 的距离为2501)m .已知在以油库C 为中心,半径为200 m 的范围内施工均会对油库的安全造成影响.问:若在此路段修建铁路,油库C 是否受到影响?请说明理由.【答案】解:如图,过点C 作CD ⊥AB 于点D .由题意,得∠CAD =30°,∠CBD =45°. 在Rt △ADC 中,tan ∠CAD =CDAD,即tan 30°=CDAD,∴AD . 在Rt △BDC 中,tan ∠CBD =CDBD,即tan 45°=CDBD,∴BD =CD . ∵AD +BD =AB ,+CD =2501)m . ∴CD =250 m . ∵250 m >200 m ,∴在此路段修建铁路,油库C 不会受到影响.【设计意图】通过这个问题,进一步检验学生对运用解直角三角形的知识解决有方向角的实际问题的掌握情况.【例4】知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13 km ,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B ,C 两地的距离.434sin 53cos53tan 53553参考数据:,,⎛⎫︒≈︒≈︒≈ ⎪⎝⎭【答案】解:如图,作BD ⊥AC 于点D ,则∠BAD =60°,∠DBC =53°.设AD =x km ,则在Rt △ABD 中,BD =AD ·tan ∠BAD (km ).在Rt △BCD 中,CD =BD ·tan ∠DBC ×43(km ).由AC =AD +CD ,得x =13,解得x =3.所以()3cos 5∠BD BC DBC ==(20=-km .即B ,C 两地的距离约为(20-km .【设计意图】通过这个问题,进一步检验学生对运用解直角三角形的知识解决有方向角的实际问题的掌握情况.课堂小结板书设计一、方向角的概念 二、方向角的表示三、运用解直角三角形解关于方向角的应用题课后作业完成教材第79页习题28.2第10题.。