2.1《生活中的变量关系》ppt课件
- 格式:ppt
- 大小:1.84 MB
- 文档页数:35
§2.1 生活中的变量关系【学习目标】1.通过学习结合实例来理解生活中变量之间的依赖关系和函数关系,特别要注意这两种关系之间的区别和联系;2. 2.结合初中学习过的函数,能描述因变量随自变量而变化的依赖关系;3. 3.激情投入,高效学习,踊跃展示,大胆质疑,体验成功,创想快乐。
【学习重点】判断变量与变量间是否存在函数关系【学习难点】生活中变量关系与函数关系的区分预习案 一、相关知识 知识链接1:初中阶段我们已经知道常量与变量的含义,即在某个变化过程中,数值保存不变的量叫作______,可以取不同数值的量叫作______。
知识链接2:初中数学中函数的定义:设在一个变化过程中有两个变量x 与y ,如果当变 量x 在某变化范围内任意取一个数值时,变量y 按照一定的法则总有_______确定的数值与它 对应,则称y 是x 的函数,通常_______叫自变量,_______叫因变量。
知识链接3:现实生活充满变化,在初中数学、物理等学科中我们都接触过一个变量随着 另一个变量而变化的实例,这些变量之间都有依赖关系吗?都是函数关系吗? 二、教材助读 阅读课本p23实例分析,思考在高速公路的情况下,有哪些变量存在?哪些变量与变量之间无依赖关系,哪些变量与变量之间有依赖关系?它们是函数关系吗? 问题1:高速公路的里程数与修建的年数之间有无依赖关系?若有它们是函数关系吗? 问题2:一辆汽车在高速公路上行驶的过程中,行驶的路程与时间有无依赖关系?若有,它们是函数关系吗?问题3:观察课本 p24图2-2的高速公路加油站的图片,探究储油量v 与油面高度h ;储油量v 与油面宽度w 是否存在依赖关系?若有依赖关系,那它们是函数关系吗?为什么?问题4.进一步分析上述储油罐问题,讨论:还有哪些常量?哪些变量? 哪些变量之间存在依赖关系? 导学案装 订线哪些依赖关系是函数关系?哪些依赖关系不是函数关系?自主整理:非依赖关系:在变化过程中有两个变量,如果其中一个变量的值发生了变化,另一个变量的值_______发生任何变化,这两个变量间具有非依赖关系。
第二章 函数2.1生活中的变量关系1.从实际生活中的例子出发,让学生认识到日常生活中各种变量之间的依赖关系,能利初中对函数的认识,了解依赖关系与函数关系的联系与区别.2.在观察事物的变量间关系过程中,培养学生发现问题、提出问题的能力,发展数学应用意识.重点:感受生活中处处有变量,加深理解初中的函数概念.难点:依赖关系和函数关系的差别. 一、新课导入 生活中变化的事物无处不在,你感受到了哪些事物的变化?请举例并加以说明? 例如:温度随四季的变化,身高随年龄的变化,汽车行驶里程随时间的变化等. 设计意图:引导学生用数学的眼光,关注生活中的变量.二、新知探究活动1:分析生活中的变化现象,认识变量之间的关系.问题1:生活中温度的变化.我们能感受到每天温度的变化,怎么刻画这种变化呢?在一个标准大气压下定义了摄氏零度的概念,这样就可以用温度值的大小表示温度的变化,温度的变化与季节、时间、地点、空气湿度、海拔高度等很多客观因素都有关系.引导学生依据生活中的情境,围绕以下问题进行小组讨论交流:⑴生活情境是什么?其中的变化怎样描述?这种变化有什么需要说明的条件吗? ⑵变化的过程中存在哪些变量?哪些常量?⑶变量之间是什么关系?这种关系是怎样描述的?答案:⑴生活情境是每天温度的变化,这种变化用温度值描述,这种变化要限制季节、时间、地点、空气湿度、海拔高度等客观因素.⑵变化过程中一个标准大气压下摄氏零度是常量,季节、时间、地点、空气湿度、海拔高度等是变量.⑶对于季节、时间、地点、空气湿度、海拔高度等每一个不同的值都对应一个温度. 设计意图:通过一个简单的例子,引导学生用数学的方式分析生活现象.◆教学目标 ◆教学重难点 ◆ ◆教学过程问题2:高速公路的加油站经过高速公路的加油站时,你是否想过,汽油存在哪儿?是怎么储存的?如图是某高速公路加油站的图片.加油站的油是存放在地下,常用圆柱体罐储存.储油罐的长度为d,截面半径为r,油面高度为h、油面宽度为w、储油量记作V.这些量哪些是常量,哪些是变量?量与量之间存在着怎样的关系?这些关系是同一类关系吗?有什么不同?答案:储油罐的长度d、截面半径r是常量,油面高度h、油面宽度w、储油量V是变量.当油面高度h和油面宽度w发生变化时,储油量V也随之改变即油面高度h和油面宽度w与储油量V是依赖关系.但这两种关系又不完全相同,对于油面高度h的每一个取值,都有唯一的储油量V与它对应.而对于油面宽度w取定一个值可以有两种油面高度和它对应.设计意图:在较为复杂的问题情境中,理解变量之间的依赖关系和函数关系,提升对函数概念的认识.问题3:阅读下面材料,回答问题.自2008年京津城际列车开通运营以来,高速铁路在中国大陆迅速发展,截至2017年年底运营里程突破25 000 km.下图表示的是中国高铁年运营里程的变化.从图中可以看出:随着时间的变化,高铁运营里程与年份存在着依赖关系.依据图中的数据,你能得出哪些结论?答案:通过观察图不难看出,(1)从2008年到2017年,高铁年运营里程是不断增加的,与前一年相比,2014年增长得最多.(2)随着时间的变化,高铁运营里程在变化,它与年份存在着依赖关系.对于年份的每一个取值,都有唯一的运营里程与它对应.初中我们学习过函数的概念:如果在一个变化过程中,有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它相对应,那么y就是x的函数,其中x是自变量,y是因变量.判断两个变量是否有函数关系:对于变量x的每一个值,变量y都有唯一确定的值和它相对应.因此在问题2与问题3中,储油量V是油面高度h的函数,高铁运营里程是年份时间的函数,但是储油量V不是油面宽度w的函数.设计意图:通过以上三个问题的分析,复习初中的函数概念,即在一个变化的过程中,有两个变量x,y,对于变量x的每一个取值,变量y都有唯一确定的值与之对应,那么y是x的函数,其中x是自变量.另外,在现实生活中,要确定两个变量之间是否具有函数关系,关键是判断对于变量x的每一个取值,变量y是否都有唯一确定的值与之对应,这点非常重要,需要学生认真理解.活动2:分析事物中变量间的函数关系,叙述刻画函数关系的不同方法.阅读下面的材料,思考以下问题,学生之间交流讨论.(1)确认变量之间是否存在函数关系.(2)材料中采用什么方法描述函数关系的?材料1:表2-1记录了几个不同气压下水的沸点:条曲线画在同一平面直角坐标系中,每一条曲线表示在一个观测点的观测情况.材料3:某地电力公司为鼓励市民节约用电,采取阶梯电价,即按月用电量分段计费办法.居民每月应缴电费y(单位:元)与用电量x(单位:kW•h)的关系是y={0.4883x,0≤x≤240,0.5383x−12,240<x≤400,0.7883x−112,x>400.答案:(1)材料1,2,3中的变量之间均存在着函数关系.(2)材料1,2,3分别用列表法、图象法和解析法来表示函数.尤其是在材料3中,给定范围内,对于自变量x的取值范围不同所对应的函数关系也不同,我们称这样的函数为分段函数.设计意图:通过分析学生理解材料中隐含着函数的三种表示法:列表法、图象法和解析法.活动3:1.对于问题2中的储油罐的问题中还有很多量,如储油罐长度、油面面积等,找出这些量中的常量和变量,并指出哪些变量之间是函数关系.答案:(1)常量有圆柱底面积、油罐容积、油的密度等;变量有油的体积、圆柱底面上的弓形面积等;(2)储油量和油的体积、储油量和圆柱底面上弓形的面积、油的体积和油面宽度之间都存在依赖关系;(3)储油量是油体积的函数,油的体积也是储油量的函数,储油量是圆柱底面上弓形面积的函数.2.选定超市、邮局、公路或其他一个场景,观察分析其中有哪些常量和变量,哪些变量之间是函数关系?答案:略.结论很开放,由学生交流各自的结论.设计意图:鼓励学生积极思考,让学生体会到生活中的函数关系非常普遍,数学源于生活,用于生活.三、应用举例1.某电器商店以2 000元/台的价格购进了一批电视机,然后以2100元/台的价格售出,随着售出台数的变化,商店的利润是怎样变化的?利润和售出的台数之间存在函数关系吗?答案:随着售出台数的变化,商店的利润也会增加,利润和售出的台数间存在函数关系.2.坐电梯时,电梯距地面的高度与时间之间存在怎样的依赖关系?答案:坐电梯时,电梯距地面的高度随时间的确定而确定.3.在一定量的水中加入蔗糖,糖水的质量分数与所加蔗糖的质量之间存在怎样的依赖关系?答案:在一定量的水中加人燕糖,糖水的浓度随所加蔗糖的质量的确定而确定.四、课堂练习1.下列各组中两个变量间之间是否存在依赖关系?其中哪些是函数关系?(1)球的体积和它的半径;(2)速度不变的情况下,汽车行驶的路程与行驶时间;(3)家庭的收入与其消费支出;(4)正三角形的面积和它的边长.πr3的关系.答案:(1)中,球的体积V与半径r间存在V=43(2)中,在速度不变的情况下,行驶路程s与行驶时间t之间存在正比例关系.(3)中,家庭收入与其消费支出间存在关系,但具有不确定性.a2的关系.(4)中,正三角形的面积s与其边长a间存在s=√34综上可知(1)(2)(3)(4)中两个变量间都存在依赖关系,其中(1)(2)(4)是函数关系.2.下图是我国某年某地降雨量的统计情况,图中横轴为月份(单位:月),纵轴为降雨量(单位:cm).由图中曲线可判断该地该年的降雨量与时间是否具有函数关系?答案:因为对于该年的每一个月都有唯一的降雨量与之对应,故可得该年的降雨量与时间具有函数关系,且自变量是时间,因变量是降雨量.五、课堂小结1.依赖关系:如果在一个变化过程中,有两个变量x和y,对于变量x的改变引起变量y的改变,则这两个变量是依赖关系.2.函数关系:如果在一个变化过程中,有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它对应,则这两个变量是函数关系,在现实生活中,凡是要确定两个变量具有函数关系,就要判断“对于变量x的每一个值,变量y都有唯一确定的值和它对应”.3.依赖关系不一定是函数关系,但函数关系一定是依赖关系.六、布置作业教材第51页习题2-1A组、B组.。
2.1生活中的变量关系【学习目标】通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系。
能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系。
培养广泛联想的能力和热爱数学的态度。
让学生领悟生活中处处有变量,变量间充满了联系。
【学习重点】生活中变量间依赖关系和函数关系的区分。
【学习难点】依赖关系和函数关系的差别。
【课前预习案】一、温故知新:◇初中学习的函数定义是什么?答:________________________________________________________________________________________________________◇下图为运行中的电梯,它离地面高度h与时间t是否存在函数关系?◇下图为行驶中的汽车,它行驶速度v与时间t是否存在函数关系?二、课本导读:阅读课文23—24页,在高速公路情境下的函数问题1.课本高速公路情景下研究了哪些函数关系?请指出它们的自变量和因变量。
2.对实例分析3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?3.请以高速公路为背景再研究一些函数关系,并思考自变量与因变量交换后是否为函数关系。
4.请同学们尝试归纳依赖关系与函数关系的区别与联系。
区别:_______________________________联系:________________________________三、预习自测1.给出下列关系:①(她)拥有的财富之间的关系;②橘子的产量与气候之间的关系;③某同学在6次考试中的数学成绩与他的考试次数之间的关系;其中不是函数关系的有____________2.小明从北京给榆林的爷爷打电话,电话费和时间这两个变量间存在依赖关系吗?这种关系是函数关系吗?3.一年之中有许多节日,如春节、元宵节、清明节等,试问:今年的各个节日和日期(公历)之间是否存在依赖关系?这是一种函数关系吗?4.某校建立学生电子档案,主要信息有:档案序号、姓名、学号、照片、家庭住址等。
高一年级班第组学生姓名组评:编写时间:2014 年9 月日授课时间:年月日共第课时课题:生活中的变量关系主备人李厦厦审核人学习目标1.通过实例,认识生活中存在的一些变量间的依赖关系2.能够利用初中对函数的认识,了解依赖关系与函数关系的区别与联系3.了解变量之间有函数关系应该具备的条件学习重难点重点:体会变量之间的依赖关系与函数关系难点:对变量之间函数关系的理解课时安排 1 教学用具教学过程师生笔记学习流程学习内容自主学习自主预习学案问题1、阅读课文P23-25页实例分析:书上在高速公路情境下的问题。
在高速公路情景下,你能发现哪些函数关系?问题2、储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?预习展示1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足,才称它们之间有函数关系。
2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有值与之对应。
3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是,另一个变量是。
探究交流1.依赖关系与函数关系的联系与区别2.反映变量间的关系的两种方式3.具备函数关系的两变量的表示方法训练达标1.判一判:(正确的打“√”,错误的打“×”)(1)生活中任意两个变量都存在依赖关系.()(2)两个变量之间不一定都具有函数关系.()(3)函数关系中的自变量和因变量交换位置后还是函数关系.()2.做一做:(请把正确的答案写在横线上)(1)人的健康状况与饮食之间的关系是关系.(2)球的半径与体积之间的关系是关系.(3)家庭收入与支出之间的关系是关系.3.选择题(1)张大爷种植了10亩小麦,每亩施肥x千克,小麦总产量为y千克,则()A.x,y之间有依赖关系B.x,y之间有函数关系C.y是x的函数D.x是y的函数4.下列各组中的两个变量之间是否存在依赖关系?其中哪些是函数关系?(1)圆的面积和它的半径长.(2)商品的价格与销售量.(3)一个人的身高与体重.(4)某同学的学习时间与其学习成绩.课内小结作业布置教学反思备注。
生活中的变量
六(1)郝子胥
1.婴儿体重的变化
从表格中可以发现:婴儿的体重随着月龄的变化而变化 关系式:w=4100+700t (月龄t ,体重w )
2.汽车行驶(匀速)的路程
关系式1:路程=100*时间
从这个关系式中可以发现:路程随着时间的变化而变化 关系式2:速度*时间= 100km
从这个关系式中可以发现:速度越快,时间越短;速度越慢,时间越长
3.
从这两个圆柱中可以发现:高一样,半径大,体积就大(高
一样,体积随着半径的变化而变化)
4.单价数量与总量
上超市买东西,一种矿泉水,1.5元1瓶,买4瓶6元,买10瓶15元。
假设你只有3元,都买矿泉水,一种1.5元一瓶,另一种1元一瓶。
如果你买1.5元一瓶的,那你可以买2瓶;如果你买1元一瓶的,那你可以买3瓶。
从这段文字中可以得出:
1.东西的总价随着东西数量的变化而变化(买的越多,花钱越多)
2.总价一样时,数量随着价格的变化而相反的变化(价格越贵,数量越少,东西越便宜,数量越多)。